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Then p is called partial metric on X and the pair (X, p) is called partial metric
space (in short PMS).

We note that in a partial metric space (X, p):

(1) p(x, y) = 0 ⇒ x = y;
(2) limn→∞ p(xn, x) = p(x, x) = limn,m→∞ p(xn, xm);
(3) by the references [1, 2], which is proved recently, the condition p2 is redun-

dant;

for every x, y, xn ∈ X.

2. Main Results

In this section, by using the Kummer’s test, we present a new relation between
p(Tx, Ty) and p(x, y) as a new fixed point result in partial metric space.

Definition 2.1. Let (X, p) be a PMS. The function L : X × X → R+ is called
G-function if it satisfies the following items:

(i) L(x, y) = L(y, x), for all x, y ∈ X,
(ii) for each sequence {xn} ⊂ X and each y ∈ X and c > 0

xn → x implies
L(xn, x)

c+ L(xn+1, y)
is bounded

for sufficiently large n ∈ N.
The set of all G-functions is denoted by SG(X).

Example 2.2. Let X = R endowed

p(x, y) = max{x, y}, L(x, y) = xy or L(x, y) = |x+ y|+ 1

and let c > 0 be arbitrary. Then L is a G−function.

Example 2.3. Let (X, p) be partial metric space, L(x, y) = p(x, y) and let c > 0
be arbitrary. Then L is a G−function.

Definition 2.4. Let (X, p) be a partial metric space. We say that T : X → X is
(L, c)-expansion mapping, if there exist L ∈ SG(X) and c > 0 such that

(2.1) p(Tx, Ty) ≤ L(x, y)

c+ L(Tx, Ty)
p(x, y), ∀x, y ∈ X.

As you know in finding a fixed point, we always put an = d(xn, xn−1), where
xn = Tn(x0) as an iterative sequence induced by the mapping T , initiated at x0.
So the convergence of the series

∑∞
n=1 an, leads us to the limit point of xn as the

best candidate for the fixed point.

Theorem 2.5. Let (X, p) be a complete PMS and let T from X → X be a (L, c)-
expansion mapping. Then T has a unique fixed point.

Proof. Let x0 ∈ X and let x1 = Tx0. If x0 = x1, then x0 is the fixed point and the
proof is completed. If xn be selected, then we can define xn+1 = Txn, inductively.
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Without loss of generality, we can suppose that xn+1 ̸= xn. Considering (2.1), we
have

p(xn+1, xn) ≤
L(xn, xn−1)

c+ L(xn+1, xn)
p(xn, xn−1).

Letting un = p(xn, xn−1) and kn = L(xn, xn−1), we yields

kn

(
un
un+1

)
− kn+1 ≥ c.

Thus, by the Kummer’s test, the series
∑∞

n=1 un is convergent.
Now we have to show that: {xn} is a Cauchy sequence and so is convergent to a
some unique x ∈ X.

Let m,n ∈ N and m > n. Then

p(xn, xm) ≤
m−1∑
k=n

p(xi, xi+1) =

m−1∑
k=n

ui+1 → 0 (m,n → ∞).

Therefore, lim
n→∞

sup{p(xn, xm) : m ≥ n} = 0. So, the sequence {xn} is Cauchy and

since X is complete, there exists x ∈ X such that xn → x, as n → ∞.

lim
n→∞

p(xn, xm) = 0 = lim
n→∞

p(xn, x) = p(x, x).

(2.2) p(xn+1, Tx) ≤
L(xn, x)

c+ L(xn+1, Tx)
p(xn, x).

According to (ii) of Definition 2.1, we have L(xn,x)
c+L(xn+1,Tx) is bounded. So by letting

n tends to ∞, the right hand both side of (2.2), tends to zero i.e. p(xn+1, Tx) → 0
and it deduces that by uniqueness Tx = x.

To prove uniqueness, assume x, y ∈ X are two fixed points. We have

p(x, y) = p(Tx, Ty) ≤ L(x, y)

c+ L(Tx, Ty)
p(x, y) =

L(x, y)

c+ L(x, y)
p(x, y).

p(x, y)

(
1− L(x, y)

c+ L(x, y)

)
≤ 0.

0 ≤ p(x, y)
c

c+ L(x, y)
≤ 0,

so we have x = y and hence the fixed point is unique. □

Theorem 2.6. Let (X, p) be a complete PMS and let T from X → X be a Banach
contraction mapping. Then T has a unique fixed point in X.

Proof. We just show that constant of A, here is A ̸= 1.

p(Tx, Ty) ≤ Ap(x, y)

for any A ̸= 1. Put kn := cA
|1−A| ≥ 0 with c > 0. By Kummar’s test we have

cA

|1−A|
p(x, y)

p(Tx, Ty)
− cA

|1−A|
≥ c ⇐⇒ p(Tx, Ty) ≤ Ap(x, y).
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If A < 1 it’s clear that

cA

1−A

p(x, y)

p(Tx, Ty)
− cA

1−A
≥ c ⇐⇒ p(Tx, Ty) ≤ Ap(x, y).

By A > 1

cA

A− 1

p(x, y)

p(Tx, Ty)
− cA

A− 1
≥ c ⇐⇒ A

A− 1

(
p(x, y)

p(Tx, Ty)
− 1

)
≥ 1

⇐⇒ p(x, y)

p(Tx, Ty)
≥ 2A− 1

A
≥ 1

A
⇐⇒ p(Tx, Ty) ≤ Ap(x, y).

□
Example 2.7. Let X = {0, 1, 12} and let p(x, y) = max{x, y}, for all x, y ∈ X. Now
define

T0 = 0, T1 =
1

2
, and T

1

2
= 0.

Also, define L(x, y) = x+ y + 1 and put c = 1
2 , we obtain

p(T0, T1) = p

(
0,

1

2

)
=

1

2
≤ L(0, 1)

c+ L(0, 12)
p(0, 1) =

4

4
= 1

p

(
T0, T

1

2

)
= p(0, 0) = 0 ≤

L(0, 12)

c+ L(0, 0)
p

(
0,

1

2

)
=

3
2
3
2

1

2
=

1

2

p

(
T1, T

1

2

)
= p

(
1

2
, 0

)
=

1

2
≤

L(1, 12)

c+ L(12 , 0)
p

(
1,

1

2

)
=

5
2
4
2

=
5

4

Thus, T satisfies in Theorem (2.5) and so is (L, 12)-expansion mapping. Note that
the coefficient

L(1, 12)

c+ L(12 , 0)
> 1 and

L(0, 1)

c+ L(0, 12)
=

L(0, 12)

c+ L(0, 0)
= 1

which show that it is not needed to be less than one.

Our Theorems improve the following results in [3].

Corollary 2.8 ([3]). Let (X, d) be a complete metric space and let T from X → X
be a (L, c)-expansion mapping. Then T has a unique fixed point in X.

Corollary 2.9 ([3]). Let (X, d) be a complete metric space and let T from X into
itself is a contraction mapping. Then T has a unique fixed point in X.

Corollary 2.10 ([3]). Let (X, d) be a complete metric space and let T from X itself
be a mapping. Suppose that there exists c > 0 such that

(2.3) d2(Tx, Ty) + cd(Tx, Ty) ≤ d2(x, y),

for all x, y ∈ X. Then T has a unique fixed point in X.

Corollary 2.11 ([3]). Let (X, d) be a complete metric space and let T from X itself
be a mapping. Suppose that there exists c > 0 and φ : [0,+∞) → [0,+∞) such that
for all sequence {tn} ⊂ [0,+∞) implies lim sup

n→∞
φ(tn) exists. Also,

(2.4) d(Tx, Ty)(c+ φ(d(Tx, Ty)) ≤ φ(d(x, y))d(x, y),



FPT FOR PMS BY (L, c)-EXPANSION MAPPINGS 919

for all x, y ∈ X. Then T has a unique fixed point in X.

Corollary 2.12 (Caristi type, [3]). Let (X, d) be a complete metric space and let T
from X itself be a mapping. Suppose that there exists c > 0 and φ : X → [0,+∞)
such that for all sequence {tn} ⊂ [0,+∞) implies lim sup

n→∞
φ(tn) exists. Also,

(2.5) cd(Tx, Ty) ≤ φ(x)φ(y)− φ(Tx)φ(Ty),

for all x, y ∈ X. Then T has a unique fixed point.

Definition 2.13 ([3]). Let F+ : R+ → R+, be an strictly increasing mapping A
mapping T : X → X is said to be F+−contraction if there exists τ > 0 such that
for all x, y ∈ X such that

(2.6) d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Corollary 2.14 ([3]). Let (X, d) be a complete metric space and let T from X into
itself be a F+−contraction mapping. Then T has a unique fixed point in X.

The following lemma plays a crucial rule in the next theorem.

Lemma 2.15 ([3]). Let {an} ⊂ (0,+∞) and let
∑∞

n=1 an < ∞. Then there exists a
monotonic sequence {γn} ⊂ (0,+∞) such that lim

n→∞
γn = ∞ and

∑∞
n=1 anγn < ∞.

Proof. Put ρn =
∑∞

k=n+1 ak ≥ 0. Therefore, the series
∑∞

n=1
an√
ρk−1

< ∞. Pick

γn = 1
ρn−1

, to get desired result. □

Theorem 2.16. Let (X, p) be a complete PMS and let T : X → X be a mapping.
Suppose that x0 ∈ X and consider {Tn(x0)} as the Picard iterative sequence such
that

(2.7)

∞∑
n=1

p(Tn(x0), T
n−1(x0)) < ∞.

Then there exist c > 0 and a mapping F : OT (x0) × OT (x0) → [0,+∞) such that
for each n ∈ N,

(2.8) p(Tn(x0), T
n+1(x0)) ≤

F (Tn−1(x0), F (Tn(x0)))

c+ F (Tn(x0), Tn+1(x0))
p(Tn(x0), T

n−1(x0)),

in which OT (x0) = {Tn(x0) : n ∈ {0} ∪ N}.

Proof. Put an = p(Tn(x0), T
n−1(x0)) and by (2.7), we have

∑∞
n=1 an < ∞. By

Lemma 2.15,

∃{γn} ⊆ (0,+∞) such that lim
n→∞

γn = ∞ and
∞∑
n=1

γnan < ∞.

So

∃b1 ∈ R such that

∞∑
n=1

anγn = a1b1.
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By Lemma 2.15 and {an}, {γn} ⊂ (0,+∞), we want to define a positive sequence
{bn} by the following way. If we take

bn ≥ γn+1an+1

an
≥ 0.

Then
bnan − γn+1an+1

an+1
≥ 0.

Now, define {bn} by

bn+1 :=
bnan − γn+1an+1

an+1
.

Thus

(2.9)
∞∑
n=1

γn+1an+1 =
∞∑
n=1

(bnan − bn+1an+1) = a1b1 − lim
n→∞

an+1bn+1

which implies that,

lim
n→∞

an+1bn+1 = 0.

Define F : OT (x0) × OT (x0) → [0,+∞) such that for each n ∈ N, F (Tn−1(x0),
Tn(x0)) = bn. Since

lim
n→∞

γn = ∞ ⇐⇒ ∀c > 0, ∃N > 0 such that γn > c.

Applying (2.9) for all n ≥ N , we have

bnan − bn+1an+1 = γn+1an+1 > can+1.

Thus,

(2.10) an+1 <

(
bn

bn+1 + c

)
an.

Hence, we can rewrite (2.10) as follows

p(Tn(x0), T
n+1(x0)) ≤

F (Tn−1(x0), F (Tn(x0)))

c+ F (Tn(x0), Tn+1(x0))
p(Tn(x0), T

n−1(x0)).

□

Corollary 2.17 ([3]). Let (X, d) be a complete metric space and let T : X → X
be a mapping. Suppose that x0 ∈ X and consider {Tn(x0)} as the Picard iterative
sequence such that

(2.11)

∞∑
n=1

d(Tn(x0), T
n−1(x0)) < ∞.

Then there exist c > 0 and a mapping F : OT (x0) × OT (x0) → [0,+∞) such that
for each n ∈ N,

(2.12) d(Tn(x0), T
n+1(x0)) ≤

F (Tn−1(x0), F (Tn(x0)))

c+ F (Tn(x0), Tn+1(x0))
d(Tn(x0), T

n−1(x0)),

in which OT (x0) = {Tn(x0) : n ∈ {0} ∪ N}.
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3. An application

Let Θ be the set of all functions θ : [0,∞) → [0,∞) satisfying the following
conditions:

(j1) θ is a nondecreasing function, i.e., t1 < t2 implies θ(t1) ≤ θ(t2);
(j2) θ is continuous;

Example 3.1. Let x, y ∈ X = C([a, b],R). Put θ(t) = L(x,y)

L(x,y)+ 1
2

t − γ, where γ ≥ 0

and L ∈ SG(X). So θ ∈ Θ.

Consider the following nonlinear integral equation:

(3.1) x(t) = ϕ(t) +

∫ t

a
K(t, s, x(s))ds,

where a ∈ R, x ∈ C([a, b],R), ϕ[a, b] → R and K : [a, b] × [a, b] × R → R are two
given functions.

Theorem 3.2. Consider the nonlinear integral equation (3.1). Suppose that the
following condition holds:

(i) K is continuous;

(ii) θ(t) = L(x,y)

L(x,y)+ 1
2

t − γ, where L(x, y) = αmaxt∈[a,b] |x(s) − y(s)| + β and

γ ≥ β
α(2L(x,y)+1) , such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ θ(|x(s)− y(s)|)
b− a

for all x, y ∈ C([a, b],R), α > 0, β ≥ 0 and for t, s ∈ [a, b]. Then the nonlinear
integral equation (3.1) has a unique solution.

Proof. Let X := C([a, b],R), T : X → X defined by

(Tx)(t) = ϕ(t) +

∫ t

0
K(t, s, x(s))ds, ∀x ∈ X.

The metric d given by d(x, y) = maxt∈[a,b] |x(s)− y(s)| for all x, y ∈ X. Thus X is
a complete metric space. Now define p by p(x, y) = αd(x, y) + β for each x, y ∈ X
where α > 0, β ≥ 0. So (X, p) is a complete PMS.

Let x, y ∈ X and t ∈ [a, b]. Therefore

|Tx(t)− Ty(t)| =

∣∣∣∣∫ t

a
K(t, s, x(s))ds−

∫ t

a
K(t, s, y(s))ds

∣∣∣∣
≤

∫ t

a
|K(t, s, x(s))−K(t, s, y(s))|ds

≤
∫ t

a

θ(|x(s)− y(s)|)
b− a

ds

≤ 1

b− a

∫ t

a
θ(d(x, y))ds

≤ θ(d(x, y))
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≤ L(x, y)

L(x, y) + 1
2

d(x, y)− γ.

So

d(Tx, Ty) ≤ L(x, y)

L(x, y) + 1
2

d(x, y)− γ.

αd(Tx, Ty) + β ≤ α
L(x, y)

L(x, y) + 1
2

d(x, y) + β − αγ

αd(Tx, Ty) + β ≤ α
L(x, y)

L(x, y) + 1
2

d(x, y) +
L(x, y)

L(x, y) + 1
2

β

p(Tx, Ty) ≤ L(x, y)

L(x, y) + 1
2

p(d(x, y))

for all x, y ∈ X. Hence it satisfies the contraction (2.1).
Thus all the conditions of Theorem 2.5 with c = 1

2 are satisfied and hence T has
a unique fixed point in X. This implies that there exists a unique solution of the
nonlinear integral equation (3.1). □
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