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A NEW PROOF TO THE FIXED POINT THEORY FOR
PARTIAL METRIC SPACES BY (L,¢)-EXPANSION MAPPINGS

MEHDI ASADI*, MORTEZA BAYAT, AND RUCHI SINGH RAJAWAT

ABSTRACT. In this paper, by using the Kummer’s test, we present a new relation
between p(T'z, Ty) and p(z,y) as a new fixed point result in partial metric space.

1. INTRODUCTION

The study of fixed point theory in partial metric spaces and their results by
Kummer’s test, is our goal in the new point of view. Our results improve very
recent topics which is verified by F. Khojasteh el. al [3].

Theorem 1.1 (Kummer’s Test, [4]). Let Y 7, uy be a positive series.

(1) D02 up is convergent if and only if there is a positive series y .- | ky and
a constant ¢ > 0, such that kp(-%2=) — kp4+1 > c.

Un+1
(2) D02 up is divergent if and only if there is a positive series » o | ky such
that 7, é diverges and kp(-22—) — kyp41 < 0.

Un+1

In the simple case when k,, := k be constant. By Kummer’s test converts to
form:

Let > >, up be a positive series. Then, we hve

(1)

Zun<oo <= dk,c >0 such that k:( tn >—k:>c.

» =
n=1 n+1

(2)

o
Un+1
> Uy > 00 ntl >,
Un,
n=1
U U . U
k( n)—k20<:> n+1§ <1 <= limsup n+1§1.
Unp+41 Un, k+c n—oo  Up

Definition 1.2 ([1,2,5]). Let X be a nonempty set and p: X x X — R™ be a self
mapping of X such that for all x,y, z € X the followings are satisfied:

pl z =y < p(z,z) = p(z,y) = p(y,y),

p2 p(z,z) < p(z,y),

p3 p(z,y) = p(y, v),

pd p(z,y) < p(z,2) +p(z,y) — p(2, 2).
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Then p is called partial metric on X and the pair (X,p) is called partial metric
space (in short PMS).

We note that in a partial metric space (X, p):

(1) p(z,y) =0=2x =y;

(2) hmn—>oo p(ﬂ?m .’E) = p(l’v .’E) = hmn,m—wo P(l’m xm);

(3) by the references [1,2], which is proved recently, the condition p2 is redun-
dant;

for every z,y,x, € X.

2. MAIN RESULTS

In this section, by using the Kummer’s test, we present a new relation between
p(Tx,Ty) and p(x,y) as a new fixed point result in partial metric space.

Definition 2.1. Let (X,p) be a PMS. The function L : X x X — RT is called
G-function if it satisfies the following items:

(i) L(z,y) = L(y,), for all ,y € X,

(73) for each sequence {z,} C X and each y € X and ¢ > 0
L(zy,, )

———————— s bounded
c+ L(xn"rlv y)

T, — ¢ implies

for sufficiently large n € N.
The set of all G-functions is denoted by S (X).

Example 2.2. Let X =R endowed
p(z,y) = max{z,y}, L(z,y) =2y or L(z,y)=|z+y/+1
and let ¢ > 0 be arbitrary. Then L is a G—function.

Example 2.3. Let (X, p) be partial metric space, L(x,y) = p(x,y) and let ¢ > 0
be arbitrary. Then L is a G—function.

Definition 2.4. Let (X,p) be a partial metric space. We say that T : X — X is
(L, c)-expansion mapping, if there exist L € S5(X) and ¢ > 0 such that

L(z,y) )p(x,y), Vo, y € X.

2.1 Te,Ty) < ———————

As you know in finding a fixed point, we always put a,, = d(xy,z,—1), where
xn, = T"(x) as an iterative sequence induced by the mapping T, initiated at xg.
So the convergence of the series Y >°, a,, leads us to the limit point of z, as the
best candidate for the fixed point.

Theorem 2.5. Let (X,p) be a complete PMS and let T from X — X be a (L,c)-
expansion mapping. Then T has a unique fized point.

Proof. Let x¢g € X and let 1 = Txg. If xg = 1, then xg is the fixed point and the
proof is completed. If x,, be selected, then we can define x,,,1 = Tx,, inductively.
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Without loss of generality, we can suppose that x,1 # x,. Considering (2.1), we
have

L(xy, zp—1)
¢+ L(xpy1,xn)
Letting u, = p(xpn,xn—1) and k, = L(zy, Tp—1), we yields

u
kn( n>—k‘n+126~
Un+1

Thus, by the Kummer’s test, the series > >, u, is convergent.
Now we have to show that: {x,} is a Cauchy sequence and so is convergent to a
some unique x € X.

Let m,n € N and m > n. Then

p(xn+laxn) S p(xnawn—1)~

m—1

p(Tn, Tm) < Z p(Ti, Tit1) Z uiy1 =0 (m,n — o0).
k=n

Therefore, lim sup{p(zn,zm): m > n} = 0. So, the sequence {z,} is Cauchy and
n—oo

since X is complete, there exists x € X such that x, — x, as n — oc.

lim p(zy, ) = 0= lim p(zy, ) = plz. ).

n—oo

L(zy, )
c+ L(zpy1, Tx

(2.2) p(xpy1, Tx) < )p(:):n, x).

. . " L(zn, . .
According to (i) of Definition 2.1, we have % is bounded. So by letting
n tends to oo, the right hand both side of (2.2), tends to zero i.e. p(xp41,Tz) — 0
and it deduces that by uniqueness Tx = x.

To prove uniqueness, assume z,y € X are two fixed points. We have

L(z,y) L(z,y)
=p(Tz,Ty) < — 27 = o .
p(z,y) =p(Tz, Ty) < C+L(T%ﬂ,y)p(fﬂ,y) C+L(x’y)p(fﬁ7y)
L(z,y) )
z, 1- S 0
P(a,) < ¢+ L(z,y)
c
0< z, T /N S )
<Pl L(z,y)
so we have x = y and hence the fixed point is unique. O

Theorem 2.6. Let (X, p) be a complete PMS and let T from X — X be a Banach
contraction mapping. Then T has a unique fixed point in X.

Proof. We just show that constant of A, here is A # 1.
p(Tz,Ty) < Ap(z,y)
for any A # 1. Put k, := |1 A| > 0 with ¢ > 0. By Kummar’s test we have

cA  plry) A
1—Alp(Tz,Ty) |1—A|

>c¢ <= p(Tz,Ty) < Ap(x,y).
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If A <1 it’s clear that

cA  p(z,y) cA
_ S - |
1-Ap(Tz, Ty) 1—-A" c <= p(Tz,Ty) < Ap(x,y)

By A>1
cA  p(x,y) cA A p(z,y)
— > — —1 > 1
A—-1p(Tx, Ty) A—-1" ¢ A—1\p(Tz,Ty) -
p(z,y) 24 —1 1
> > — = p(Tx,Ty) < A .
ToTy) > A 24 p(Tz,Ty) < Ap(x,y)

g

Example 2.7. Let X = {0, 1, %} and let p(z,y) = max{z,y}, for all z,y € X. Now
define

T0=0, leé, and T%:O.
Also, define L(z,y) =2+ y+ 1 and put ¢ = %, we obtain
p(T0,T1) =p (0, ;) = % < CJFL(LO(’;’)%)JD(OJ) = % =1
p(TO,Té) =p(0,0) =0 < mp <0,;> = %; = %
p(rrg) = (30) =5 = ibgr (v3) = 1=

Thus, T satisfies in Theorem (2.5) and so is (L, §)-expansion mapping. Note that

the coeflicient

L(1,1 L(0,1 L(0, 3
7( 12) >1 and (©, )1 = (0.5) =
c+L(%,0) c+L(0,3) ¢+ L(0,0)
which show that it is not needed to be less than one.
Our Theorems improve the following results in [3].

Corollary 2.8 ([3]). Let (X, d) be a complete metric space and let T from X — X
be a (L, c)-expansion mapping. Then T has a unique fized point in X.

Corollary 2.9 ([3]). Let (X,d) be a complete metric space and let T from X into
itself is a contraction mapping. Then T has a unique fized point in X.

Corollary 2.10 ([3]). Let (X,d) be a complete metric space and let T from X itself
be a mapping. Suppose that there exists ¢ > 0 such that

(2.3) d*(Tx, Ty) + cd(Tz, Ty) < d*(z,y),

for all x,y € X. Then T has a unique fixed point in X.

Corollary 2.11 ([3]). Let (X,d) be a complete metric space and let T from X itself
be a mapping. Suppose that there exists ¢ > 0 and ¢ : [0,4+00) — [0,4+00) such that
for all sequence {t,} C [0,+00) implies limsup ¢(t,,) exists. Also,

n—0o0

(2.4) d(Tz, Ty)(c + p(d(Tz, Ty)) < @(d(z,y))d(z,y),
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for all z,y € X. Then T has a unique fixed point in X.

Corollary 2.12 (Caristi type, [3]). Let (X,d) be a complete metric space and let T
from X itself be a mapping. Suppose that there exists ¢ > 0 and ¢ : X — [0, +00)
such that for all sequence {t,} C [0,+00) implies limsup ¢(t,) exists. Also,

n—oo

(2.5) cd(Tz,Ty) < o(x)e(y) — o(Tx)p(Ty),
for allx,y € X. Then T has a unique fized point.

Definition 2.13 ([3]). Let F™ : Rt — R™T, be an strictly increasing mapping A
mapping T : X — X is said to be F*—contraction if there exists 7 > 0 such that
for all z,y € X such that

(2.6) d(Tz,Ty) > 0= 74 F(d(Tz,Ty)) < F(d(z,y)).

Corollary 2.14 ([3]). Let (X,d) be a complete metric space and let T from X into
itself be a F'™— contraction mapping. Then T has a unique fized point in X.

The following lemma plays a crucial rule in the next theorem.

Lemma 2.15 ([3]). Let {a,} C (0,400) and let Y > | an < co. Then there ezists a
monotonic sequence {7} C (0,400) such that lim v, = 0o and > >7 | apyn < 00.
n—oo

Proof. Put p, = > 72 . ap > 0. Therefore, the series ) 7, \/[% < 0. Pick

Yn = pn%l, to get desired result. -

Theorem 2.16. Let (X,p) be a complete PMS and let T : X — X be a mapping.
Suppose that vog € X and consider {T™(xo)} as the Picard iterative sequence such
that

(2.7) > (T (o), T" (o)) < o0.
n=1

Then there exist ¢ > 0 and a mapping F : Op(xo) X Op(zg) — [0,400) such that
for each n € N,

N n F(T" (o), F(T"(0)))
(28) p(T (.CE(]),T ""1(1}0)) < C—|—F(Tn(l'0),Tn+1(l’0))

in which Or(xg) = {T™(xo) : n € {0} UN}.

Proof. Put a,, = p(T™(x0),T" (z0)) and by (2.7), we have > o2 a, < oco. By
Lemma 2.15,

p(T" (o), T (o)),

o0
I{y} € (0,+00) such that lim 7, =oco0 and Zvnan < o0.
n—oo

n=1

So
oo
db; € R such that Z GnYn = a1b1.

n=1
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By Lemma 2.15 and {a,}, {7} C (0,+00), we want to define a positive sequence
{bn} by the following way. If we take
b, > Int+10n4+1 > 0.
a/n
Then
bnan — Yn4+10n+1

> 0.
An+1

Now, define {b,} by

bnan — Tn+10n+1

bn+1 =
An+1
Thus
oo o
(2.9) Z Tn+1Gn+1 = Z(bnan — bpg1an41) = a1by — nlgrolo ap+1bp41
n=1 n=1

which implies that,
nlinolo an4+1bpy1 = 0.
Define F' : Or(z0) x Or(x0) — [0, +00) such that for each n € N, F(T" 1(xg),
T"(x0)) = by. Since

lim v, =00 <= Ve >0, 3N >0 such that ~,>c.

n—300
Applying (2.9) for all n > N, we have
bnan — bnt1Gn+1 = Ynt1Gn+1 > Capyi-
Thus,
(2.10) ng1 < <b”> an.
bp+1 +c
Hence, we can rewrite (2.10) as follows

" n F(T"Y(xo), F(T"(20)))
p(T"(x0), T (z0)) < c+F(T”(()mo),T”+1(:(;0))

p(T"™(x0), T"*(20)).
O

Corollary 2.17 ([3]). Let (X,d) be a complete metric space and let T : X — X
be a mapping. Suppose that xo € X and consider {T"(xo)} as the Picard iterative
sequence such that

(2.11) > (T (o), T (o)) < oo.

n=1
Then there exist ¢ > 0 and a mapping F : Op(xo) x Op(zo) — [0,+00) such that
for each n € N,
F (T (@o), F(T"(0)))
2.12 T"(z0), T < ’
( ) d( (x())a (.1170)) = C+F(T”($0),Tn+1($0))
in which Op(xo) = {T™(xo) : n € {0} UN}.

d(T"(x0), " (0)),
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3. AN APPLICATION

Let © be the set of all functions 6 : [0,00) — [0,00) satisfying the following
conditions:

(j1) 0 is a nondecreasing function, i.e., t1 < to implies 0(t1) < 0(t2);

(j2) 0 is continuous;
Example 3.1. Let 2,y € X = C([a,b],R). Put 6(t) = LZLQ:("ET’)‘ZZJ — 7, where v > 0

’ 2

and L € Sg(X). So 6 € ©.

Consider the following nonlinear integral equation:

(3.1) z(t) = ¢(t) +/ K(t,s,x(s))ds,

where a € R, x € C([a,b],R), ¢[a,b] - R and K : [a,b] x [a,b] x R — R are two
given functions.

Theorem 3.2. Consider the nonlinear integral equation (3.1). Suppose that the
following condition holds:
(i) K is continuous;

(i) 61) = 250t — v, where Liw,y) = amaxioylals) = y(s)] + 8 and

B
Yy Z W; such that

K (t,5,2(s) — K(t, 5,y(s))| < 9(|x(2)_—ay(s))

for all z,y € C([a,b],R), a >0, B > 0 and for t,s € [a,b]. Then the nonlinear
integral equation (3.1) has a unique solution.

Proof. Let X := C([a,b],R), T : X — X defined by

(Tz)(t) = o(t) +/0 K(t,s,z(s))ds, Vre X.

The metric d given by d(z,y) = maxe|q) [7(s) — y(s)| for all z,y € X. Thus X is
a complete metric space. Now define p by p(x,y) = ad(x,y) + S for each xz,y € X
where a > 0, 5 > 0. So (X, p) is a complete PMS.

Let z,y € X and t € [a,b]. Therefore

Ta(t) — Ty(t)| = /K(t,s,x(s))ds—/ K(t, 5, (s))ds

IN

/ Kt 5,2(5)) — K (£, 5,y(s)|ds
By ORI

a b—a
bia/a 0(d(x, y))ds
< 0(d(z,y))

S

IN
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L(z,y)

——2d(z,y) — 7
L(z,y) + 1

So
d(Txz,Ty)

IN

ad(Tz, Ty) + B
ad(Tx, Ty) + 8

L(z,y)
——=—p(d(x,
S It %p( (2,9))
for all z,y € X. Hence it satisfies the contraction (2.1).
Thus all the conditions of Theorem 2.5 with ¢ = % are satisfied and hence T has
a unique fixed point in X. This implies that there exists a unique solution of the
nonlinear integral equation (3.1). O

p(Tz, Ty)
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