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A self map T defined on a subset A of a Banach space X is said to fulfill Condition
(C) if

1

2
∥x− T x∥ ≤ ∥x− y∥ =⇒ ∥T x− T y∥ ≤ ∥x− y∥.

Suzuki demonstrated that mappings satisfying Condition (C) are more general than
nonexpansive mappings, and he also established several results concerning the ex-
istence of fixed points for such mappings.

Later, Ullah and Arshad [4] developed an iteration process called M∗ iteration
with faster convergence than most the schemes discussed above and is which is given
as follows. For a0 ∈ X

(1.1)


cn = (1− sn)an + snT an,
bn = T ((1− rn)cn + rnT cn),

an+1 = T bn,

for all n ≥ 0, where {rn}, {sn} are in (0, 1).
Taking inspiration from above mentioned iteration process, we propose a new

iterative algorithm. For a0 ∈ X :

(1.2)


dn = T ((1− δn)an + δnT an),
cn = T ((1− tn)T an + tnT dn),
bn = T ((1− sn)T dn + snT cn),

an+1 = T ((1− rn)bn + rnT bn).

Our proposed algorithm (1.2) introduces additional intermediate steps compared
to existing methods, providing a more refined approximation process. This is de-
signed to handle the complexities of generalized nonexpansive mappings more ef-
fectively. Comparing with iterative processes mentioned above, the novel algorithm
is expected to provide faster convergence and improved accuracy in finding fixed
points of Suzuki’s generalized nonexpansive mappings.

2. Preliminaries

We now present some basic definitions and results that are utilized throughout
this paper.

In uniformly convex Banach space X , let E be a nonempty, closed, convex subset.
We denote the fixed point set of the mapping T as F (T ) = {y ∈ X : T y = y}.

Definition 2.1 ([15]). A Banach space X satisfies Opial’s condition if for every
sequence {pn} in X that converges weakly to p ∈ X , we have lim supn→∞∥pn−p∥ <
lim supn→∞∥pn − q∥ for all q ∈ X and p ̸= q.

Definition 2.2. A mapping T : E −→ X is said to be demiclosed at p ∈ X if for
every sequence {qn} in E such that qn ⇀ q in X and T qn → p, it follows that q ∈ E
and T q = p.
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For a bounded sequence {pn} in X and each p ∈ X , we define the distance to the
sequence as

s(p, {pn}) = lim sup
n→∞

∥p− pn∥.

The asymptotic radius of {pn} relative to E is given by

s(E, {pn}) = inf{s(p, {pn}) : p ∈ E}.

The asymptotic center Z(E, {pn}) of the sequence {pn} is defined as

Z(E, {pn}) = {p ∈ E : s(p, {pn}) = s(E, {pn})}.

Uniformly convex Banach space is reflexive and Z(E, {pn}) contains exactly one
point. Further, a class of mappings that satisfy Condition (I) was introduced by
Senter and Dotson [6]. A mapping T : E −→ E will satisfy the condition if there
exists a nondecreasing function g : [0,∞) −→ [0,∞) with the properties g(0) = 0
and g(x) > 0 for all x ∈ (0,∞) such that ∥p − T p∥ ≥ g(d(p, F (T ))) for all p ∈ E,
where d(p, F (T )) = infy∈F (T )∥p− y∥.

Definition 2.3. Consider two real sequences {an} and {bn} that converge to the
limits a and b, respectively. The sequence {an} is said to exhibit a faster convergence

rate than {bn} if limn→∞
∥an−a∥
∥bn−b∥ = 0.

Lemma 2.4 ( [18]). Let X be a uniformly convex Banach space, and consider a
sequence {tn} such that 0 < s ≤ tn ≤ t < 1 for some s, t ∈ R and for all
n ≥ 1. If two sequences in X , say {pn} and {qn} satisfy: lim supn→∞∥pn∥ ≤
a, lim sup < n→ ∞∥qn∥ ≤ b, and lim supn→∞∥tnpn + (1 − tn)qn∥ = a for some
a ≥ 0. Then, we have limn→∞∥pn − qn∥ = 0.

Proposition 2.5 ([19]). Assume any mapping T : X −→ X . Then,

(1) T is a Suzuki generalized nonexpansive mapping, if T is nonexpansive.
(2) If T is a Suzuki generalized nonexpansive mapping, then:

(a) If F (T ) ̸= ∅, then T is a quasi-nonexpansive mapping.
(b) For all p, q ∈ X ,

(2.1) ∥p− T q∥ ≤ 3∥T p− p∥+ ∥p− q∥.

Lemma 2.6 ( [20]). Let T be a Suzuki generalized nonexpansive mapping defined
on a subset E of a Banach space X that has the Opial property. Consider a sequence
{pn} that converges weakly to p. If it holds that limn→∞∥T pn − pn∥ = 0, then the
mapping I − T is demiclosed at zero.

Lemma 2.7 ( [19]). A Suzuki generalized nonexpansive mapping T defined on a
compact convex subset E of a uniformly convex Banach space, then T possesses a
fixed point.

Definition 2.8 ([16]). A mapping T : X → X is classified as a contractive-like
mapping if there exists a continuous and strictly increasing function ψ : [0,∞) →
[0,∞) such that ψ(0) = 0 and a constant b ∈ [0, 1). For every pair of points p, q ∈ X ,
the following condition must be satisfied:

∥T p− T q∥ ≤ κ∥p− q∥+ ψ(∥p− T p∥).
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3. Convergence analysis

In this section, we begin by showing that our algorithm (1.2) achieves a faster
convergence rate than the iteration process described in (1.1).

Theorem 3.1. Let E be a nonempty closed convex subset of a Banach space X , and
T a contractive-like mapping on E, where F (T ) the fixed point set, is not empty.
Consider the sequence {an}n≥1 generated by the iterative scheme described in (1.2).
It follows that this sequence converges at a rate superior to that of the iterative
algorithm presented in (1.1).

Proof. For any q ∈ F (T ), using (1.1), we have

∥cn − q∥ = ∥(1− sn)an + snT an − q∥
≤ (1− sn)∥an − q∥+ snκ∥an − q∥,

∥cn − q∥ = (1− (1− κ)sn)∥an − q∥,
∥bn − q∥ = ∥(1− rn)cn + rnT cn − q∥

≤ (1− rn)∥cn − q∥+ rnκ∥cn − q∥
= (1− (1− κ)rn)∥cn − q∥,

∥bn − q∥ = (1− (1− κ)rn)(1− (1− κ)sn)∥an − q∥,
∥an+1 − q∥ = ∥T bn − q∥

≤ κ∥bn − q∥
≤ κ(1− (1− κ)rn)(1− (1− κ)sn)∥an − q∥
≤ κ(1− (1− κ)r)(1− (1− κ)s)∥an − q∥
...

∥an+1 − q∥ ≤ κn(1− (1− κ)r)n(1− (1− κ)s)n∥a1 − q∥.

Now from (1.2),

∥dn − q∥ = ∥T ((1− δn)an + δnT an)− q∥
≤ κ(∥(1− δn)an + δnT an − q∥)
≤ κ((1− δn)∥an − q∥+ δn∥T an − q∥)
≤ κ((1− δn)∥an − q∥+ κδn∥an − q∥)
≤ κ(1− δn(1− κ))∥an − q∥,

∥cn − q∥ = ∥T ((1− tn)T an + tnT dn)− q∥
≤ κ(∥(1− tn)T an + tnT dn − q∥)
≤ κ((1− tn)∥T an − T q∥+ tn∥T dn − T q∥)
≤ κ((1− tn)κ∥an − q∥+ tnκ∥dn − q∥)
≤ κ2((1− tn)∥an − q∥+ tn(κ((1− δn(1− κ))∥an − q∥)),
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∥cn − q∥ ≤ κ2(1− tn(1− κ(1− δn(1− κ))))∥an − q∥,
∥bn − q∥ = ∥T ((1− sn)T dn + snT cn)− q∥

≤ κ∥(1− sn)T dn + snT cn − q∥
≤ κ((1− sn)∥T dn − T q∥+ sn∥T cn − T q∥)
≤ κ2((1− sn)∥dn − q∥+ sn∥cn − q∥)
≤ κ3((1− sn)(1− δn(1− κ))

+ snκ(1− tn(1− κ(1− δn(1− κ)))))∥an − q∥
≤ κ3((1− sn((1− δn(1− κ))

− κ(1− tn(1− κ(1− δn(1− κ)))))∥an − q∥),
∥an+1 − q∥ = ∥T ((1− rn)bn + rnT bn)− q∥

≤ κ∥(1− rn)bn + rnT bn − q∥
≤ κ ((1− rn)∥bn − q∥+ rn∥T bn − T q∥)
≤ κ ((1− rn)∥bn − q∥+ rnκ∥bn − q∥)
≤ κ ((1− rn(1− κ))∥bn − q∥)
≤ κ4((1− rn(1− κ))((1− sn((1− δn(1− κ))

− κ(1− tn(1− κ(1− δn(1− κ)))))∥an − q∥))
≤ κ4((1− r(1− κ))((1− s((1− δ(1− κ))

− κ(1− t(1− κ(1− δ(1− κ)))))∥an − q∥))
...

≤ κ4n((1− r(1− κ))n((1− s((1− δ(1− κ))

− κ(1− t(1− κ(1− δ(1− κ)))))n∥a1 − q∥.
Assume that

xn = κn(1− (1− κ)r)n(1− (1− κ)s)n,

yn = κ4n((1− r(1− κ))n((1− s((1− δ(1− κ))− κ(1− t(1− κ(1− δ(1− κ)))))n.

Clearly,

yn
xn

=
κ4n((1− r(1− κ))n((1− s((1− δ(1− κ))− κ(1− t(1− κ(1− δ(1− κ)))))n

κn(1− (1− κ)r)n(1− (1− κ)s)n
,

yn
xn

−→ 0, n −→ ∞.

The sequence produced by algorithm (1.2) exhibits a faster convergence rate com-
pared to the sequence generated by algorithm (1.1). □

Now, we prove both weak and strong convergence results for the sequence defined
by equation (1.2) under Suzuki’s generalized nonexpansive mappings. We start by
presenting the following lemma.

Lemma 3.2. Let T denote Suzuki’s generalized nonexpansive mapping defined on
a nonempty closed convex subset E within a Banach space X, where F (T ) ̸= ∅.
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Consider the iterative sequence {an} generated by algorithm (1.2). Then, for every
q ∈ F (T ), the limn→∞∥an − q∥ exists.

Proof. Say q ∈ F (T ) and s ∈ E. Using definition of T we get,

1

2
∥q − T q∥ = 0 ≤ ∥q − s∥ =⇒ ∥T q − T s∥ ≤ ∥q − s∥.

We have from (1.2),

∥dn − q∥ = ∥T ((1− δn)an + δnT an)− q∥
≤ ∥((1− δn)an + δnT an)− q∥
≤ ((1− δn)∥an − q∥+ δn∥T an − q∥
≤ ((1− δn)∥an − q∥+ δn∥an − q∥
≤ ∥an − q∥.

(3.1)

Also,

∥cn − q∥ = ∥T ((1− tn)T an + tnT dn)− q∥
≤ ∥((1− tn)T an + tnT dn)− q∥
≤ ((1− tn)∥T an − q∥+ tn∥T dn − q∥
≤ ((1− tn)∥an − q∥+ tn∥dn − q∥
≤ ((1− tn)∥an − q∥+ tn∥an − q∥
≤ ∥an − q∥,

(3.2)

∥bn − q∥ = ∥T ((1− sn)T dn + snT cn)− q∥
≤ ∥((1− sn)T dn + snT cn)− q∥
≤ ((1− sn)∥T dn − q∥+ sn∥T cn − q∥
≤ ((1− sn)∥dn − q∥+ sn∥cn − q∥
≤ ((1− sn)∥an − q∥+ sn∥an − q∥
≤ ∥an − q∥.

(3.3)

Now,

∥an+1 − q∥ = ∥T ((1− rn)bn + rnT bn)− q∥
≤ ∥((1− rn)bn + rnT bn)− q∥
≤ ((1− rn)∥bn − q∥+ rn∥T bn − q∥
≤ ((1− rn)∥bn − q∥+ rn∥bn − q∥
≤ ∥bn − q∥
≤ ∥an − q∥.

(3.4)

Clearly, {∥an−q∥} is a decreasing sequence and bounded below. Thus, limn→∞ ∥an−
q∥ exists. □

Lemma 3.3. Let E be a nonempty closed convex subset within a uniformly convex
Banach space X , and consider T : E −→ E as a Suzuki generalized nonexpansive
mapping. The sequence {an} produced by algorithm (1.2) will have a nonempty
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fixed point set F (T ) if and only if the sequence {an} is bounded and the limit
limn→∞ ∥T an − an∥ exists.

Proof. Assume F (T ̸= ∅ with q ∈ F (T , then by Lemma 3.2 limn→∞ ∥an−q∥ exists.
Say,

(3.5) lim
n→∞

∥an − q∥ = r.

As,

(3.6) ∥T an − q∥ ≤ ∥an − q∥ =⇒ lim sup
n→∞

∥T an − q∥ ≤ r.

Since ∥dn − q∥ ≤ ∥an − q∥, it follows that

lim sup
n→∞

∥dn − q∥ ≤ r.

Also, ∥cn − q∥ ≤ ∥an − q∥, which gives

lim sup
n→∞

∥cn − q∥ ≤ r.

Moreover, ∥bn − q∥ ≤ ∥an − q∥, which implies

lim sup
n→∞

∥bn − q∥ ≤ r.

Now,

∥an+1 − q∥ = ∥T ((1− rn)bn + rnT bn)− q∥
≤ ∥(1− rn)bn + rnT bn − q∥
≤ ∥bn − q∥
≤ ∥T ((1− sn)dn + snT cn)− q∥
≤ ∥cn − q∥
≤ ∥T ((1− tn)an + tnT dn)− q∥
≤ ∥(1− tn)T an + tnT dn − q∥
≤ (1− tn)∥T an − q∥+ tn∥T dn − q∥
≤ (1− tn)∥an − q∥+ tn∥dn − q∥
≤ ∥an − q∥ − tn∥an − q∥+ tn∥dn − q∥,

∥an+1 − q∥ − ∥an − q∥ ≤ tn (∥dn − q∥ − ∥an − q∥)
∥an+1 − q∥ − ∥an − q∥

tn
≤ ∥dn − q∥ − ∥an − q∥

∥an+1 − q∥ − ∥an − q∥ ≤ ∥an+1 − q∥ − ∥an − q∥
tn

≤ ∥dn − q∥ − ∥an − q∥

∥an+1 − q∥ − ∥an − q∥ ≤ ∥dn − q∥ − ∥an − q∥
∥an+1 − q∥ ≤ ∥dn − q∥

r ≤ ∥dn − q∥
r ≤ lim inf

n→∞
∥dn − q∥.
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Hence,

(3.7) r = lim
n→∞

∥dn − q∥.

From equation (3.1),

∥dn − q∥ ≤ (1− δn)∥an − q∥+ δn∥T an − q∥ ≤ ∥an − q∥.

Now by (3.5) and (3.7), we have

(3.8) lim sup
n→∞

[(1− δn)∥an − q∥+ δn∥T an − q∥] = r.

Finally by Lemma 2.4 with (3.5), (3.6) and (3.8),

lim
n→∞

∥T an − an∥ = 0.

On the other hand, let {an} be bounded and limn→∞ ∥T an − an∥ = 0. If q ∈
Z(C, {an}), then

s(T q, {an}) = lim
n→∞

lim sup ∥an − T q∥

≤ lim
n→∞

lim sup[3∥T an − an∥+ ∥an − q∥]

= lim
n→∞

lim sup ∥an − q∥

= s(q, {an}).

It shows that Tq ∈ Z(C, {an}). As X is uniformly convex, so Z(C, {an}) is
singleton. This implies that Tq = q and that F (T ) ̸= ∅. □

Theorem 3.4 (Weak convergence theorem). Let E be a nonempty closed convex
subset of a uniformly convex Banach space X that satisfies Opial’s condition. Sup-
pose T : E −→ E be a Suzuki generalized nonexpansive mapping with F (T ) ̸= ∅. If
{an} is the sequence produced by algorithm (1.2), then {an} weakly converges to a
fixed point of T .

Proof. Since F (T ) ̸= ∅, let q ∈ F (T ). By Lemma 3.2, limn→∞ ∥an − q∥ exists.
As X is uniformly convex, there exists a subsequence {ani} that converges weakly
to some u ∈ X . Next, we will demonstrate that {an} has a unique subsequential
limit. Assume, for contradiction, that there exist subsequences {ani} and {anj}
converging to u and v respectively. Since E is a closed convex subset of X , we have
u, v ∈ E. By Lemma 3.3, the sequence {an} is bounded, and limn→∞ ∥T an−an∥ =
0. Furthermore, as established in Lemma 2.6, (I−T ) is demiclosed at zero, implying
that u, v ∈ F (T ). Thus, both limn→∞ ∥an−u∥ and limn→∞ ∥an−v∥ exist. If u ̸= v,
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then by Opial’s condition,

lim
n→∞

∥an − u∥ = lim
i→∞

∥ani − u∥

< lim
i→∞

∥ani − v∥

= lim
n→∞

∥an − v∥

= lim
j→∞

∥anj − v∥

< lim
j→∞

∥anj − v∥

= lim
n→∞

∥an − u∥,

this leads to a contradiction, implying u = v. Hence, {an} weakly converges to a
fixed point of T . □
Theorem 3.5 (Strong convergence theorem). Let E be a nonempty closed convex
subset of a Banach space X that satisfies Opial’s condition. Let T : E −→ E be a
Suzuki generalized nonexpansive mapping with F (T ) ̸= ∅. Then, the sequence {an}
generated by the algorithm in (1.2) strongly converges to a fixed point of T .

Proof. By Lemma 2.7, since F (T ) ̸= ∅ and according to Lemma 3.3, we have
limn→∞ ∥T an − an∥ = 0. Given that E is compact, there exists a subsequence
of {an}, denoted as {anj}, which converges strongly to some q ∈ X . Now, by
Proposition 2.5(iii), we can express the following inequality:

∥anj − T q∥ ≤ ∥T anj − anj∥+ ∥anj − q∥.
As j approaches infinity, this implies that {anj} converges to q, leading to T q = q,

which means p ∈ F (T ). Moreover, since limn→∞ ∥an−p∥ exists for every q ∈ F (T ),
it follows from Lemma 3.2 that {an} converges strongly to q. □
Theorem 3.6. Suppose E is a nonempty closed convex subset of a Banach space
X that satisfies Opial’s condition, and let T : E −→ E be a Suzuki’s generalized
nonexpansive mapping with F (T ) ̸= ∅. A sequence {an} generated by the Algorithm
in (1.2) converges strongly to a fixed point of T if T satisfies condition (I).

Proof. According to Lemma 3.2, limn→∞ ∥an− q∥ exists, and we have ∥an+1− q∥ ≤
∥an − q∥ for all q ∈ F (T ). Thus, we obtain:

inf
q∈F (T )

∥an+1 − q∥ ≤ inf
q∈F (T )

∥an − q∥,

which implies that
d(an+1, F (T )) ≤ d(an, F (T )).

This indicates that {d(an, F (T ))} constitutes a decreasing sequence bounded below,
hence limn→∞ d(an, F (T )) exists. Let limn→∞ ∥an−q∥ = r for some r ≥ 0. If r = 0,
then the conclusion follows immediately.

Assuming r > 0, by condition (I), we have:

g(d(an, F (T ))) ≤ ∥an − T an∥.
Thus, it follows that:

lim
n→∞

∥T an − an∥ = 0 =⇒ lim
n→∞

g(d(an, F (T ))) = 0.
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Since g is a nondecreasing function, this implies limn→∞ d(an, F (T )) = 0. There-
fore, we can find a subsequence {anj} of {an} and a sequence {bnj} in F (T ) such
that

(3.9) ∥anj − bj∥ <
1

2j

for all j ∈ N. By the inequality in (3.9), we have:

∥anj+1 − bj∥ ≤ ∥anj − bj∥ <
1

2j
,

∥bj+1 − bj∥ ≤ ∥bnj − anj∥+ ∥anj − bj∥

<
1

2j+1
+

1

2j

<
1

2j−1
−→ 0 as j −→ ∞.

Thus, {bj} is a Cauchy sequence in F (T ), and since F (T ) is closed, it converges to
{bj} converges to a point q ∈ F (T ). Consequently, {an} strongly converges to q,
and since limn→∞ ∥an − q∥ exists, we conclude that an −→ q ∈ F (T ). □

4. Numerical example

In this section, we numerically compare the convergence rates of the previously
discussed iterative schemes with our algorithm in (1.2). We also construct an ex-
ample of a Suzuki generalized nonexpansive mapping that is not nonexpansive to
highlight the superior convergence rate of our algorithm over existing methods.

Example 4.1. Let T : R −→ R such that T (x) = x
3 . Clearly T is a nonexpansive

mapping with x = 0 as the fixed point of T .

Table 1 and 2 shows the influence of various parameters on the number of steps
different iterative processes required to converge to the fixed point.

Example 4.2. Define a map T : [0, 1] −→ [0, 1] as

T (a) =

{
1− a, if a ∈

[
0, 1

11

)
a+10
11 , if a ∈

[
1
11 , 1

]
We begin by proving that T is not a nonexpansive mapping. To do this, let

a = 8
100 and b = 1

11 . Then,

∥T a− T b∥ = ∥(1− a)−
(
b+ 10

11

)
∥ = 0.00264462

and

∥a− b∥ =

∣∣∣∣ 8

100
− 1

11

∣∣∣∣ = 0.01090909.

Clearly, ∥T a − T b∥ > ∥a − b∥, so T is not a nonexpansive mapping. Now, we
show that T satisfies condition (C). We will consider the following cases:

Case 1. Let a ∈
[
0, 1

11

)
. Then 1

2∥a − T a∥ = 1
2 |a− (1− a)| = 1

2 |2a− 1| . For
1
2∥a−T a∥ ≤ ∥a− b∥, we must have 1

2 |2a− 1| ≤ ∥a− b∥ i.e., 1
2 |2a− 1| ≤ |a− b| .

Here, we see that b < a is not possible, so we have only one choice a < b, which gives
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Table 1. Influence of initial value and constant parameter

Algorithm Initial Points (rn = 0.95, sn = 0.95, tn = 0.95)
5 50 500 5000 10000

Mann 10 12 15 17 18
Ishikawa 6 7 8 9 10
Noor 5 6 7 9 9

Agarwal 5 6 7 9 9
Abbas 4 6 7 8 8
Thakur 4 5 5 6 6

Thakur New 3 4 5 6 6
M∗ 3 4 4 5 5
New 2 2 3 3 3

rn = 0.25, sn = 0.25, tn = 0.25
Mann 47 60 72 85 89

Ishikawa 25 30 36 43 45
Noor 45 53 66 77 81

Agarwal 8 10 12 15 16
Abbas 5 6 7 9 10
Thakur 7 9 10 12 13

Thakur New 4 5 6 7 7
M∗ 4 5 6 7 7
New 2 3 3 4 4

rn = 0.1, sn = 0.1, tn = 0.1
Mann 125 158 192 225 235

Ishikawa 63 80 97 113 120
Noor 121 153 185 217 227

Agarwal 8 10 12 14 15
Abbas 5 6 7 8 8
Thakur 8 10 12 14 14

Thakur New 4 5 6 7 8
M∗ 4 5 6 7 7
New 2 3 3 4 4

1
2 |2a− 1| ≤ (b − a), leading to b ≥ 1

2 . Thus, b ∈
[
1
2 , 1

]
. Now we have a ∈

[
0, 1

11

)
and b ∈

[
1
2 , 1

]
. We find

∥T a− T b∥ = ∥(1− a)−
(
b+ 10

11

)
∥ =

∣∣∣∣11a− b+ 1

11

∣∣∣∣ < 1

11

and

∥a− b∥ = |a− b| > 9

22
.

Hence,
1

2
∥a− T a∥ ≤ ∥a− b∥ =⇒ ∥T a− T b∥ ≤ ∥a− b∥.

Case 2. Let a ∈
[
1
11 , 1

]
. Then 1

2∥a − T a∥ = 1
2

∣∣a− a+10
11

∣∣ = 1
2

∣∣10−10a
11

∣∣ . For
1
2∥a−T a∥ ≤ ∥a−b∥, we must have 1

2

∣∣10−10a
11

∣∣ ≤ ∥a−b∥ i.e., 1
2

∣∣10−10a
11

∣∣ ≤ |a− b| .
Here, we have two choices: A. When a < b, we get

(
10−10a

22

)
≤ (b− a) which results
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Table 2. Influence of initial value and variable parameter

Algorithm Initial Points (rn = n
n+20

, sn = 1

(n+4)
2
3
, tn = δn = n

4n+1
)

10 102 103 104 105

Mann 53 66 80 91 104
Ishikawa 34 43 53 65 73
Noor 15 63 75 88 100

Agarwal 9 11 13 15 17
Abbas 5 6 8 9 10

Thakur New 8 10 11 13 15
Thakur 4 5 6 7 8
M∗ 4 5 6 7 8
New 3 3 4 4 5

rn = 2n
7n+6

, sn = (1− 1
(n+6)2

), tn = δn = (1− 1
2n+5

)

Mann 48 60 71 82 105
Ishikawa 9 11 13 14 17
Noor 33 41 48 55 63

Agarwal 8 10 12 13 15
Abbas 4 5 6 7 7
Thakur 4 5 6 7 8

Thakur New 4 5 5 6 6
M∗ 4 4 5 6 6
New 2 3 3 3 4

rn = n
n+5

, sn = n

(36n2+1)
1
2
, tn = δn = ( 2n

4n+5
)
1
2

Mann 19 22 25 28 31
Ishikawa 17 19 22 25 27
Noor 18 21 24 27 29

Agarwal 9 11 13 14 16
Abbas 5 6 7 9 10
Thakur 6 8 9 10 12

Thakur New 4 5 6 7 8
M∗ 4 5 6 6 7
New 2 3 3 4 4

in b ≥ 11+12a
22 . Thus, b ∈

[
133
242 , 1

]
⊂

[
1
11 , 1

]
, which implies ∥T a− T b∥ = 1

11∥a− b∥ <
∥a− b∥. Hence,

1

2
∥a− T a∥ ≤ ∥a− b∥ =⇒ ∥T a− T b∥ ≤ ∥a− b∥.

B. When a > b, we get
(
10−10a

22

)
≤ (a − b) which results in b ≤ 32a−10

22 . Thus,

b ∈ [0, 1]. Also, a ≥ 22b+10
32 which yields a ∈

[
10
32 , 1

]
. For a ∈

[
10
32 , 1

]
and b ∈

[
1
11 , 1

]
,

we can use Case 2A. Therefore, we only verify for a ∈
[
10
32 , 1

]
and b ∈

[
0, 1

11

)
. For

this,

∥T a− T b∥ =

∣∣∣∣a+ 10

11
− (1− b)

∣∣∣∣ = ∣∣∣∣11b+ a− 1

11

∣∣∣∣ ≤ 1

11

and

∥a− b∥ = |a− b| > 78

363
.
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Table 3. Comparison with various standard algorithms

Figure 1. Comparing our algorithm with other standard algo-
rithms

Hence,
1

2
∥a− T a∥ ≤ ∥a− b∥ =⇒ ∥T a− T b∥ ≤ ∥a− b∥.

Thus, the mapping T satisfies condition (C) for all possible cases. Applying the
mapping outlined above, we aim to demonstrate that the algorithm (1.2) achieves
faster convergence than Noor iteration, Thakur iteration, Abbas and Nazir iteration,
and Ullah and Arshad iteration. Set rn = sn = tn = δn = 1

n+4 and a0 = 0.02.

5. Conclusion

In this study a new fixed iteration process (1.2) has been obtained which is
utilized to approximate fixed point of Suzuki generalized nonexpansive mappings.
Further, we establish that the proposed algorithm (1.2) achieves faster convergence
compared to the recent Ullah and Arshad iteration process. Next we performed
weak and strong convergence analysis of our algorithm (1.2). At last we perform
numerical examples to illustrate the convergence behaviour and comparison with
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other iterative methods. Additionally, it is important to note that the computa-
tional time of the convergence is higher than that of other algorithms due to its
enhanced structure and additional intermediate steps designed to improve conver-
gence accuracy. .
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[3] R. P. Agarwal, DÓ Regan and D. R. Sahu, Iterative construction of fixed points of nearly
asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61–79.

[4] M. Arshad and K. Ullah,New three step iteration process and fixed point approximation in
Banach space, J. Linear Topol. Algebra 7 (2018), 87–100.

[5] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
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