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MINIMIZATION PROBLEMS IN CAT(0) SPACE

FOUZIA AMIR, SITORABONU SULAYMONOVA SIROJIDDIN-QIZI,
AND DEKHKANOV SUXROB SOBIROVICH

ABSTRACT. In this research, we provide a modified proximal point approach to
estimate the shared component of the set of solutions of convex minimization
problems and the fixed points in the framework of CAT(0) spaces. We also
demonstrate that the suggested approach is A-convergent. Our findings expand
upon and enhance the comparable recent findings in the literature.

1. INTRODUCTION

In this article, we suppose that (Z,d) is a geodesic metric space and & : Z —
(—00, 00] is proper, lower-semicontinuous and convex functions.

In CAT(0) spaces, fixed point theory was brought in by Kirk [21], which caught
the interest of numerous researchers and has been an exciting subject of study for
the last several years. Kirk established that on a bounded convex closed subset of a
complete CAT(0) space, one could construct a nonexpansive mapping with a fixed
point.

A basic optimization task is to determine u € Z in order that

(1.1) &(u) :Zréigﬁ(v).

We indicate the solution of problem 1.1 by

arg min &(v),
vEZ

the set of a minimizer of a convex function. Proximal Point Algorithm (for short
term, PPA) is among the most beneficial approaches for solving problem (1.1). Af-
ter being employed for the first time by Martinet [24], Rockafellar [27] expanded
the PPA in a Hilbert space and demonstrated the weak convergence of the sequence
produced by the proximal point method to a zero of the maximum monotone oper-
ator in Hilbert spaces. In the domain of manifolds, which are extensions of Hilbert,
Banach, and linear spaces, this topic has received a lot of attention lately for its
potential to extend PPA for solving optimization problems ( [13,23,26,35]). Opti-
mization problems on manifolds are solved by a wide range of applications in com-
puter vision, machine learning, electronic structure computation, system balance,
and robot manipulation (see [1,29,33,34]).
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In 2014, Bacak [4] attained some results using the proximal point algorithm in
CAT(0) spaces. Also, he extended the findings of Bertsekas [5] into Hadamard
spaces by using a splitting version of the PPA to determine the minimizer of a sum
of convex functions. Since then, a great deal of mathematician have produced a
number of findings pretaining to the proximal point methods within the context of
CAT(0) spaces (see [7,8,14,16,18-20,31]).

In this study, captivated by recent research, we modify proximal point technique
for locating a shared element between the set of minimizers of two lower semi-
continuous functions and the set of fixed point mapings. It is demonstrate that the
sequence {uy}-converges to a shared element of the fixed point set of three single-
valued nonexpansive mappings, the fixed point set of three multi-valued nonexpan-
sive mappings, and the set of solutions of convex minimization problems within the
context of CAT(0) spaces.

2. PRELIMINARIES

This section reiterates a few commonly employed lemmas and ideas that are
frequently used in our main findings.

If every geodesic triangle in a metric space Z is at least as thin as its corresponding
triangle in the Euclidean plane and the space is geodesically connected, it is referred
to as a CAT(0) space (more information may be found in [6]).

When a subset D of a CAT(0) space Z contains every geodesic segment linking
two of its points, it is said to be convex; that is, for every pair of points u,v € D, we
obtain [u,v] C D, where [u,v] := {ou® (1 — p)v : 0 < p < 1} is the unique geodesic
joining w and v.

If, for every u,v € D, d(%u, Tv) < d(u,v), then single-valued mapping ¥ : D — D
is referred as nonexpansive mapping.

If any sequence {ug} in D fulfilling limg_,o d(Tug, ur) = 0, has a convergent
subsequence, then the single-valued mapping ¥ : D — D is referred to as semi-
compact. LU(T) represents the set of all fixed points of T. Now, we talk about the
following lemma, which turns out to be helpful later on.

Lemma 2.1 ([12]). Given CAT(0) space (Z,d), the subsequent claims hold:
(1) A unique z € [u,v] exists for u,v € Z and p € [0,1] such that
d(u, z) = pd(u,v) and d(v,z) = (1 — p)d(u,v).
(ii) For u,v,z € Z and p € [0, 1], we have
d((1 = p)u® pv,z) < (1 = p)d(u,z) + pd(v, 2)
and
(1 = plu@®pv,2) < (1= p)d*(u, 2) + pd*(v, 2) = p(1 = p)d*(u,v).

In the preceding Lemma, for the unique point z, we use the notation (1 —p)u®py.
Now, we gather some fundamental geometric properties that will be useful in the
article.
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Let {ur} be a bounded sequence in a complete CAT(0) space Z. For u € Z we
write:
r(x,{ur}) = limsup d(u, ug).
k—oco

The asymptotic radius r({ug}) is provided by
r({ug}) = inf{r(u,u;) : x € Z}
and the asymptotic center A({uy}) of {uy} is characterized as:

A({ur}) ={z € X : r(u,ug) = r({ug})}-
The fact that A({ug}) is composed of exactly one point in a complete CAT(0) space
is widely known [11]. Now, in order to help with our explanation that follows, we
provide the definition and some basic properties of the A-convergence.

Definition 2.2 ([21]). For every subsequence {sp} of {uy}, if u is the unique
asymptotic center of {sy}, then {uy} in a CAT(0) space Z is said to be A-convergent
to a point u € Z. In this instance, we denote u the A-limit of {u;} and write
A — hmkﬁoo Ul = U.

Lemma 2.3 ([21]). There exists a A-convergent subsequence for every bounded
sequence in a complete CAT(0) space.

Lemma 2.4 ([10]). If D is a closed convex subset of a complete CAT(0) space Z
and {u} is a bounded sequence in D, then the asymptotic center of {uy} is in D.

Lemma 2.5 ([12]). In a complete CAT(0) space (Z,d), let D be a nonempty closed
convex subset, and let T : D — D be a nonexpansive mapping. Then x is a fized
point of ¥ if {ur} is a bounded sequence in D such that A — limgu, = x and
limy_y 00 d(Fug, ug) = 0.

Lemma 2.6 ([12]). If {uy} is a bounded sequence in a complete CAT(0) space with
A({ur}) = {z}, {Sk} is a subsequence of {uy} with A({Sx}) = {u} and the sequence
{d(ug,u)} converges, then r = u.

Lemma 2.7 ([9,32]). In a complete CAT(0) space (Z,d), let D be a nonempty

closed convex subset. Then, for any {u;}%_, € D and g; € (0,1), i = 1,2, ...,k with
Zle 0; = 1, we have the following mequalities:

(21) d( i=10iUi, 2 < ZQ’L Uj, 2 V S D

and

n
d?(ug, z) — Z 0i0jd*(u;,u ), ¥V z € D.
1,j=1i#]

In this paper, we mainly study lower semi-continuous and convex functions on
CAT(0) spaces. Note that a function & : D — (—o00, oo] defined on a convex subset
D of a CAT(0) space is convex if and only if the function oy is convex for any
geodesic v : [a,b] — D. In other words, &(ou® (1 —0)v) < p&(u) + (1 — 0)B(v) for
all u,v € D. See [3] for a few noteworthy examples.

(2.2) d2( D 0iU;, 2

HMPT
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Further, a function & defined on D is considered as lower semi-continuous at
u € D if

O (u) < liminfy_, B (ug)

for each sequence {uy} such that uy — u as k — co. A function & is considered as
a lower semi-continuous on D if it is lower semi-continuous at any point in D.

For any A > 0, define the Moreau-Yosida resolvent of & in CAT(0) space as
follows:

(1) = arg min[6(v) + —d2(v, u)]
veD 2\
for all w € D. For any A > 0, the mapping J is clearly defined; see [15]. The set
$U(Jy) of the fixed point of the resolvent .Jy associated with & coincides with the
set argmin,cp &(v) of minimizers of & if & is a proper, convex, and lower semi-
continuous function; see [3]. Moreover, the resolvent Jy of & is nonexpansive for
every A > 0; see [17].

Lemma 2.8 ([2]). For a given complete CAT(0) space (Z,d), consider that & :
Z — (—o0,00] is a proper, convex and lower semi-continuous function, then for all
u,v € Z and A > 0, we have

ifu ) if()+i¥(J)+wJ)<w)

o AU, V) = 5rd (U, v) + o2 d™(y, Jyu ) < B(v).
Lemma 2.9 ([17,25]). Assume that (Z,d) is a complete CAT(0) space and that
®: Z — (—o0,00] is a lower semi-continuous, proper, convex function. Then, the
subsequent identity is valid:
A—p 7

)

Hud —u

Jau=J
=T )

forallu e Z and A > p > 0.

The notations CB(D), CC(D), and KC(D) represent the families of nonempty
closed bounded subsets, closed convex subsets, and compact convex subsets of D,
respectively.

H(A, B) = max{sup dist(u, B), sup dist(v, A)}
ucA veEDB
defines the Pompeiu-Hausdorff distance [28] on CB(D) for A, B € CB(D), where the
distance between a point u and a subset D is denoted by dist(u, D) = inf{d(u,v) :
v € D}. The following defines a fixed point of a multi-valued mapping S : D —
CB(D):
uwE€Dif ueSu.

The set of all fixed points in S is represented by the notation (S).

A multi-valued mapping S : D — CB(D) is referred to as a nonexpansive map-
ping or Hemi-compact if, for every u,v € D, H(Su,Sv) < d(u,v), or if there is a
subsequence {ug, } of {ug} such that {ug,} converges strongly to u* € D for each
sequence {uy} in D, with limy_, o dist(Sug, uy) = 0, respectively.
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3. MAIN RESULTS

Lemma 3.1. Assume that a complete CAT(0) space Z has a nonempty closed and
convez subset D. The single-valued nonexpansive mappings are denoted by T; : D —
D; the multi-valued nonexpansive mappings are denoted by S; : D — CB(D) for
i=1:3and B, h:D — (—o0,00] are two proper conver and lower semi-continuous
functions. Suppose that

Q= U(T7) NU(T2) NU(T3) NLU(St) NU(S2) NLU(S3) Narg min &(y) Narg min h(¢) # 0
yeD ¢eD

and S;q = {q}, i =1:3 for g € Q. For uy € D, let the sequence {uy} is generated
in the following manner:

sp = argmin,cp[G(y) + ﬁdz(yauk)]v

vp = argmingep[h(C) + 5-d*(C, s1)],

(3.1) Ok = KUk D Sy, B YRV,

Uy, = Pruy © kgvy © dpFrug,

| Uk+1 = Opug D MToug D EZ3Vy, for all k € N.

where {ok}, {s&}, {w}, {¥x}, {rr}, {ox}, {0k}, {m} and {&} are sequences in
(0,1) such that

0<a < {Qk}a {Ck}’ {’Yk}a {¢k}7 {Kk}v {d)k}v {516}7 {Uk}7 {fk} < b< ]-7
ok +sk+ v =Lk + ke + k= 1,06 + M + & =1,

for all k € N and {\r} is a sequence such that \y > X\ > 0 for all k € N and some
A. Then, the subsequent claims are true:

(3.2)

(i) limg_yo0 d(ug, q) exists for all q € Q;

(i1) limg_yeo d(ug, sk) = 0; limg_yoo d(sk, vk) = 0;
(iil) limg_yoo dist(ug, Sjux) = 0,1 =1,2,3;

(iv) limg— oo d(ug, Tiug) = 0,1 =1,2,3;

(V) hmkﬁoo (uk, J,\uk) = 0, limkﬁoo d(uk, Jguk) =0.

Proof. Let q € €, then
q= %19 = Taq = T3q € (519N S2q N S3q)

and
&(q) < &(y), and h(q) < h(C), Yy, ¢ €D.
Therefore, we have

(q) + ——d*(q,9) < B(y) + ——d2(y,0).

2\ 2
and
1 1
20k 20’k

for all y,( € D and therefore ¢ = Jyq and ¢ = J,q.
(i) Note that wy, = Jy, ug, vy = Jywy and Jy,, Js, are nonexpansive map for
each k € N. So, we have

(3.3) d(wg, q) = d(Jy, uk, Irq) < d(ug, q).
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We also have

(34) d(”k? Q) = d(‘]O'kwkv JakQ) S d(wku Q)
Based on (3.3), (3.4), and Lemma 2.7, we obtain ¢ € S;(¢q) for i =1: 3.

d(opuy ® §kU;€ ® 'ka;c/a q)

ord(ug, q) + spd(vy, q) + d(vy, q)

ord(uk, q) + kd(Si1uk, S1q) + Vkd(S2vk, S2q)
d(uka Q)

d(ox,q)

INIAIN I

d(V,q) d(Yrur ® krvy, & ORT1uk, q)
Yrd(ug, q) + ked(vy', q) + ord(Truk, q)
Yrd(ug, q) + rked(S3¢k, q) + ord(Z1u, q)

d(ur, q)-

VAN VANIVANI

(3.6)
Now, consider

= d(opur ® mToug ® T3V, q)
< Opd(ug,q) + ned(Taug, q) + Ekd(T3 V)
(3.7) < d(ug, q)-
This demonstrates the existence of limg_, d(ug, q).
(ii) Next, we will prove that limg_,o d(ug, wr) = 0 and limg_,oo d(wg, vg) = 0.
Assume that

d(ug+1,q)

(3.8) lim d(ug,q) =7
k—o0
for some r > 0. Based on Lemma 2.8, we possess
Given that for every k € N, f(p) < f(wg), it follows that
(3.9) & (up, wi) < d*(ug, q) — d*(wr, q).
and
1
T‘k{dz(vm q) — d*(wy, q) + d*(wg, vr)} < h(q) — h(vg).

Since h(p) < h(vg) for all k € N, It thus follows that
(3.10) A (wg, vy) < d*(wy, q) — d* (v, ).
Using (3.7) along with the fact that d; + nx + & = 1 for all k£ > 1, we obtain

d(urs1,q9) < Okd(uk, q) + mrpd(Taug, q) + Epd(T3 Vg, q)
< (1 —&)d(ug, q) + £xd(Vy, q),

That is the same as

o) < g ld(un,q) = dwein, )+ (i)
< ldlu) — (ke q)) + (V).
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that provides
. |
lim inf d(ug, q) < liminf{-[d(ug,q) — d(uk+1,q)] + d(Pg, q)}.
k—o0 k—oo ~a

Assuming our hypothesis and considering liminf;_,,, on both sides, we come up
with

(3.11) liminf d(ug, q) < liminf d(¥g,q) = r.
k—o0 k—o0

Using (3.6), we possess

(3.12) limsup d(Uy, q) < limsup d(ug, q) = r.
k—o00 k—o00

Combining (3.11) and (3.12), we attain

(3.13) lim d(Ug,q) =r.
k—o0
From (3.5), we obtain
(3.14) lim sup d(¢x, ¢) < limsup d(uk, q) = 7.
k—o00 k—o0

Similarly, (3.6) yields

dWi,q) < Yrd(uk,q) + ked(Vr, q) + ord(u, q)
S d(’LLk, Q) - :‘ikd(Uk, Q) + ’ikd(SOka Q)v
which results into
1
d(ug,q) < ;k[d(uk, q) — d(Vg, q)] + d(¥x, q)
1

This, when combined with (3.8) and (3.13), yields
(3.15) r < liminf d(pg, q).
k—o0
From (3.14) and (3.15), we acquire
(3.16) lim d(¢k,q) =
k—o0

Now, on using (3.5), we derive

1
which along with (3.8) and (3.16) gives
(3.17) r < liminf d(sg, q).
k—o0
Also, (3.3) results into
(3.18) lim sup d(sg, ¢) < limsup d(ug,q) = 7.
k—o00 k—o00

Utilizing (3.17) and (3.18), we obtain
(3.19) lim d(sg,q) =
k—ro00
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From (3.8), (3.9) and (3.19), we attain
(3.20) lim d(ug, si) = 0.

k—o0

With reference to (3.5), we have

d(¢k, q) d(opug ® kv, ® ’Yl/c’UZ, q) .,
okd(ug, q) + srd(vi, q) + rd(vi, q)

(1 — y)d(uk, q) + ved(vi, q),

INIA

which suggests that

SH R

d(ur,q) < —[d(ur, q) — d(er, q)] + d(vk, q),

We obtain r = liminfy_,o d(ug,p) < liminfy_, d(vg,p) using (3.8) and (3.16).
This, along with lim sup;,_, d(vk., p) < limsupy_,, d(ug,p) = r, indicates that

(3.21) lim d(vg,p) = 7.
k—o00
By utilizing (3.10) and (3.21), we can ensure
(3.22) lim d(ug,vi) =0
k—o0
(iii) Now, we prove limg_, o d(ug, Sjux) = 0 for i =1 : 3.
Consider
&* (k) d* (orur ® Skvy, © YkVi q)

IN I

de2(uk7 Q) + gde(vlw ) + dez(vlw )
_29k§kd2(uka VL) " ok Yk d* (ug, v)) ~ SkYed> (v}, v)) ,
< d*(ug, q) — okskd” (ug, vi,) — ok Ved” (g, Vi) — Sved” (V) VL),

which is equivalent to

okskd” (ug, vi) + ok ed? (ur, vf)) + eyrd® (vg, i) < d*(ug, q) — d*(r, q)-
With the use of (3.8) and (3.14), we yield

(3.23) klingo d(ug,vy,) = 0,
(3.24) hm d(ug,vp) =0
and

(3.25) hm d(vi,vp) = 0.

Now, triangle inequality gives
dist(ug, Syug) < d(ug,vy,) + dist(vy, Siug),
which on using (3.23) results into

(3.26) lim dist(ug,Siug) = 0.

k—o0

Again, consider

dist(ug, Souy) d(ug, vy) + dist(vy,, Soug)

d(ulm U%) + d(vkv Uk)>

IAIA
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which on using (3.20) and (3.24) gives
(3.27) lim dist(ug,Saug) = 0.
k—o0

Now, we have

(Wi, q) < pd?(ur, q) + rrd” (v, @) + Srd® (Trug, @)
—trhid” (up, v') — Ypdrd® (up, Trug) — spdrd® (), Trug)
< d*(up, q) — Yrrrd (up, vf) — Ypdrd® (up, Trug) — sedrd® (), Trug),
which is equivalent to
@bknde(uk, Ug/) + ¢k¢kd2(uk, Tug) + Iikgf)kd2(7j,/€”, Trug) < d2(uk, q) — dz(‘l/k, q),
By using (3.8) and (3.13), this results in

(3.28) lim d(ug,vy) =0,
k—o0
(3.29) lim d(uk,‘Eluk) =0
k—o00
and
(3.30) lim d(vy, Tyug) = 0.
k—o0

On using (3.23) and (3.24), we have

d(ep,up) < opd(ug, ug) + sed(vy, ug) + ved(vy, ur,)
(3.31) — 0as k— oo.

Thus, with the help of (3.28) and (3.31), we obtain

dist(ug, Ssu) < d(ug,vp) + dist(v), Ssug)
< d(ug,vy) + d(pr, ug) = 0
(3.32) as k — oo.
(iv) Afterwards, we demonstrate that limg_,o d(ug, Trug) =limg_ o0 d(ug, Toug) =
limy, o0 d(ug, Taug) = 0.
We have previously demonstrated in (3.29) that limy_, o d(ug, T1ug) = 0.
Thus,

d*(ug1,9) < d*(uk, q) — Skmied® (uk, Toug)
—0kEd? (ur, TyWy) — Melpd®(Toug, T3Wy,),

which results into

(333) lim d(uk,SQUk) = 0,
k—o0
(3.34) lim d(uk,izg\yk) =0
k—o0
and
(3.35) lim d(ZQUk,Eg\Ifk) =0.
k—00

On using (3.28) and (3.29), we obtain

d(Wg,up) < pd(ug, ug) + cRd(V), ug) + Grpd(Trug, ug)
(3.36) — 0as k — oo.
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Now, (3.33), (3.35) and (3.36) yields

d(uk, S3uk) S d(uk, ‘Zguk) + d(TQUk, Tg‘I/k) + d(‘I3\I/k, Tguk) —0
(3.37) as k — oo.

(v) Now, as s = Jy, ug, from Lemma 2.9 we have
d(JAuk,uk) < d(J)\’LLk,wk) er(wk,uk)
= d(Jyug, Iy, ux) + d(wg, uk)

A — A A
= d(J)\uk, J)\(]{;TJ)\}C’UJ]C D TkUk)) + d(wk,uk)

A A
< dug, (1 — —) I ur @ ~—ug) + d(wy, ug)

Ak py?
A A
< (1 - —)d(uk, Jr,ur) + —d(ug, ug) + d(wg, ug)
W "
A
= (1- )\—)d(uk, wy,) + d(wy, ug) — 0
k
as k — oo.

Similarly by using Lemma 2.9 and using vy = J,, wy, we obtain
d(Joup,ur) < d(Joug,vg) + d(vg, w) + d(wg, ug)
= d(JUuk’ ‘]Ukwk) + d(’(}k, wk) + d(wkv ’LLk)

O — O g
= d(Jour, Jg(kaTJakwk @ ;kwk)) + d(vg, wg) + d(wg, ug)

< d(ug, (1= Z)Jywi & —wy) + d(vg, wy,) + d(wg, ug)
log® log®

o o
< (1- J—k)d(uk, Jo W) + U—kd(uk,wk) + d(vg, wy) + d(wg, ug)

= (1= Dyd(ur, vi) + (1 + =) d(w, ug) + d(vg, wg) — 0
Ok Ok
as k — oo.

We now present the A-convergence result in CAT(0) spaces.

Theorem 3.2. Assume that a complete CAT(0) space Z has a nonempty closed
and convex subset D. The single-valued nonexpansive mappings are denoted by %; :
D — D; the multi-valued nonexpansive mappings are denoted by S; : D — CB(D)
fori=1:3 and &,h : D — (—o0,o0] are two proper convex and lower semi-
continuous functions. Consider that

Q= U(T) NU(T2) NU(T3) NU(S1) NU(S2) NU(S3) Narg min G(y) Narg min h(¢) # 0

yeD ¢eD

and S;q ={q},i=1:3 forq € Q. Foruy € D, let the sequence {uy} is generated by
(3.1), where {ox}, {st}, {7}, {¥r}, {kr}, {or}, {0k}, {mx} and {&} are sequences
in (0,1) such that it satisfies (3.2) and {\;} is a sequence such that \y > X\ > 0 for
all n € N and some \. In turn, the sequence {ux} A-converges to a point in §Q.
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Proof. Let Wy,({ux}) = Up,cquyA{Ak}) € Q. Let A € Wy(ug). Then a subse-
quence Ay of {uy} occurs such that A(Ax) = A. Consequently, for any v € €2, there
exists a subsequence {v} of Ay such that A —limg_, v = v. In view of Theorem
3.1, we obtain
lim d(Vk,‘Zil/k) = O, 1=1:3
k—o00
and
lim d(vg, Jyavg) =0, lim d(vg, Jovi) = 0.
k—o00 k—o00
Given that %;, ¢ = 1 : 3, Jy, and J, are nonexpansive mappings, we may utilize
Lemma 2.5 to acquire
v=T1v=%1v=%3v=Jw=J,.
So, we have

(3.38) v e U(Tr) NU(T2) NU(T3) Narg min G(y) Narg min h(().
yeD ¢eD

Since §;, is compact valued for ¢ = 1 : 3, then for every k € N, there exist r}; € Sivp
and pfC € S;v for i =1 : 3 such that
d(vg,ri) = dist(vg, Sivg), i =1:3
and o '
d(ry,py) = dist(ry,,Siv), i =1:3.
Theorem 3.1 allows us to obtain
lim d(vg, ) =0, i=1:3.
k—o0
Utilizing the compactness of S;v for ¢ = 1 : 3, we can deduce the existence of a

subsequence {pilj} of {pi}, such that lim;_, pﬁlj = p' € S;v. With the aid of the
Opial condition, we are able to get

hni)sogpd(yn],p) < limsup(d(vn,, 7, )+ d(r, ) +d(ph,, )
’ < liin sup(d(vn; , rfhb]) + dist(?"zj,sil/) + d(P;jaPi))
< h;n:;jp(d(un] sThy) + H(Sivn;, Siv) + d(py,,, p))
< liinsot.;p(d( 1)+ d(vng, v) + d(p, 1))
= hin_;ip d(Vn;,v).
o0

We obtain v = p' € S;v for i = 1 : 3, because the asymptotic center is unique.
Equation (3.38) is used to get
v € U(F1) NU(T2) NU(T3) NLU(S1) NU(S2) NU(S3) Narg min G(y) Narg min ~h(() = Q.
yeD o€D
We derive ¢ = v and W, ({ug}) C Q from Theorem 3.1 and Lemma 2.6.
Ultimately, it is sufficient to demonstrate that W, ({ux}) is composed of a single
element. For this, let {Ax} be a subsequence of {uy} and let A({ux}) = w. Since
A € Wy(ug) € Q and d(ug,A) converges, we have v = w. This indicates that

Wo({ur}) = {u}. O
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Strong convergence theorems for the suggested approach in CAT(0) spaces are
shown in the following results.

Theorem 3.3. According to Theorem 3.2, if Jy, or J,, or X1, or o, or T3 are semi-
compact, or Si, or Sa, or Ss, are hemi-compact then the sequence {uy} converges
to an element of ) in the given scenario.

Proof. Assuming S; to be hemi-compact, we can proceed without losing generality.
Consequently, a subsequence {vy} of {uy} exists, and it has a strong limit p in D.
Theorem 3.1 provide us

lim d(TiSk, Sk) = 0, 1= 1, 2,3,
k—oo

lim d(Jysg,sk) =0

k—o0
lim d(J,sk,sK) =0
k—o0
and
lim dist(S;sg,sk) =0, i =1,2,3.
k—o0
Lemma 2.5 allows us to gain
(3.39) p € U(T1) NU(T2) NU(T3) Narg min &(y) Narg min A(C).

yeD ¢eD
By using nonexpansiveness of S1, we have
dlSt(pa Slp) d(pa Sk) + diSt(Skv Slsk) + H(Slska Slp)

2d(p, si) + dist(sk, S15k)
— 0as k — oco.

<
<

dist(p,S1p) = 0 is the outcome of this, and it is equivalent to p € S1p. Therefore,
p € U(Sy). Likewise, it is possible to demonstrate that p € U(Sz) and p € U(S3).
Consequently, from (3.39), we attain
p € U(T1) NU(T2) NLU(T3) NLU(S1) NLU(S2) NLU(S3) Narg min &(y) Nargmin ~(() = €.
yeD ¢eD
By using double extract subsequence principle, the sequence {uy} is found to have
a strong convergence to p € (). O

Every multi-valued mapping S : D — CB(D) is hemi-compact for a compact
subset D of Z. Thus, Theorem 3.3 can be used to quickly arrive at the following
result.

Theorem 3.4. Suppose that Z is a complete CAT(0) space and D is a nonempty
closed and convex subset of Z. The single-valued nonexpansive mappings are denoted
by %; : D — D; the multi-valued nonexpansive mappings are denoted by S; : D —
KC(D) fori=1:3 and &,h : D — (—o0,00] are two proper conver and lower
semi-continuous functions. Suppose that

Q= U(T1) NU(T2) NU(T3) NLUST) NU(S2) NLU(S3) Narg min &(y) Narg min ~(() # 0

yeD ¢eD

and S;q = {q} forq € Q and i = 1: 3. For uy € D, let the sequence {uy} is
generated by (3.1), where {ox}, {sk}, {v}, {¥n}, {rr}, {dx}, {0k}, {m} and {&}

are sequences in (0,1) such that it satisfies (3.2) and {\r} is a sequence such that
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A > A >0 for all k € N and some A. Then, there is a strong convergence of the
sequence {ug} to a point in €.

Remarks.
(i) As per [6], any CAT(k) space with k < 0 is a CAT(K’) space for &’ > k.
Therefore, our findings are instantly applicable to any CAT(k) space.
(i) We may obtain the following convergence conclusions from Theorems 3.2
and 3.3 since H is a complete CAT(0) space for all real Hilbert spaces.

Corollary 3.5. Let Z be a real Hilbert space and D be a nonempty closed and
convez subset of Z. The single-valued nonexpansive mappings are denoted by T; :
D — D; the multi-valued nonexpansive mappings are denoted by S; : D — CB(D)
fori=1:3 and &, h : D — (—o0,00] are two proper convex and lower semi-
continuous functions. Suppose that Q@ = U(T1) NU(T2) NU(T3) NUST) NUS2) N
U(S3) Narg min,cp &(y) Nargmingep h(¢) # 0 and Sig = {q}, i =1:3 for ¢ € Q.
For uy € D, let us assume that the sequence {uy} is produced as follows:

(s}, = arg min, ¢ z[&(y) + ﬁ”y ]t
vp = argmingcz[h(¢) + ﬁHC — sl
(3.40) Y = okuk + Wy, + YWy,
Uy, = Ypuy + kpwy + opZiug,
Ups1 = Opug + MpToug + T3V, for all k € N.

where {ox}, {s}t, {m}, {¥n}, {rr}, {9x}, {0k}, {m} and {&} are sequences in
(0,1) such that it satisfies (3.2) and {A\x} and {0} are sequences such that \j >

A>00, >0 >0 forallk € N and some \,o. Then, the sequence {uy} A-converges
to a point in €.

Corollary 3.6. Let Z be a real Hilbert space and D be a nonempty closed and convex
subset of Z. The single-valued nonexpansive mappings are denoted by T; : D — D;
the multi-valued nonexpansive mappings are denoted by S; : D — CB(D) for i =
1:3 and &,h : D — (—o00,00] are two proper convex and lower semi-continuous
functions. Also, assume that = U(T1) NU(T2) NU(T3) NU(ST) NU(S2) NLU(S3) N
argmingep G(y) Nargmingcp h(¢) # 0 and Sig = {q}, i = 1:3 for q € Q. For
uy € D, let the sequence {uy} is generated by (3.40), where {or}, {sx}, {7k}, {¢x},
{ki}, {o}, {0k}, {nk} and {&} are sequences in (0,1) such that it satisifes (3.2)
and {\;} is a sequence such that \x, > X\ > 0 for all k € N and some \. Then, the
sequence {ug} converges to an element of Q if Jy or Ty or Ty or T is semi-compact
or 81 or S or 83 is hemi-compact.

4. CONCLUSION

This study aimed to offer a modified proximal point technique for addressing
the fixed point problem of nonexpansive single-valued and multi-valued mappings
in CAT(0) spaces, as well as the constrained convex minimization problem. The
corresponding findings of Cholamjiak [7], Suantai and Phuengrattana [30], Kumam
et al. [22], Weng et al. [37], Weng et al. [36], and Garodia et al. [14] are all expanded
upon by our findings.
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