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In 2014, Bačák [4] attained some results using the proximal point algorithm in
CAT(0) spaces. Also, he extended the findings of Bertsekas [5] into Hadamard
spaces by using a splitting version of the PPA to determine the minimizer of a sum
of convex functions. Since then, a great deal of mathematician have produced a
number of findings pretaining to the proximal point methods within the context of
CAT(0) spaces (see [7, 8, 14,16,18–20,31]).

In this study, captivated by recent research, we modify proximal point technique
for locating a shared element between the set of minimizers of two lower semi-
continuous functions and the set of fixed point mapings. It is demonstrate that the
sequence {uk}-converges to a shared element of the fixed point set of three single-
valued nonexpansive mappings, the fixed point set of three multi-valued nonexpan-
sive mappings, and the set of solutions of convex minimization problems within the
context of CAT(0) spaces.

2. Preliminaries

This section reiterates a few commonly employed lemmas and ideas that are
frequently used in our main findings.

If every geodesic triangle in a metric space Z is at least as thin as its corresponding
triangle in the Euclidean plane and the space is geodesically connected, it is referred
to as a CAT(0) space (more information may be found in [6]).

When a subset D of a CAT(0) space Z contains every geodesic segment linking
two of its points, it is said to be convex; that is, for every pair of points u, v ∈ D, we
obtain [u, v] ⊂ D, where [u, v] := {ϱu⊕ (1− ϱ)v : 0 ≤ ϱ ≤ 1} is the unique geodesic
joining u and v.

If, for every u, v ∈ D, d(Tu,Tv) ≤ d(u, v), then single-valued mapping T : D → D
is referred as nonexpansive mapping.

If any sequence {uk} in D fulfilling limk→∞ d(Tuk, uk) = 0, has a convergent
subsequence, then the single-valued mapping T : D → D is referred to as semi-
compact. U(T) represents the set of all fixed points of T. Now, we talk about the
following lemma, which turns out to be helpful later on.

Lemma 2.1 ([12]). Given CAT(0) space (Z, d), the subsequent claims hold:

(i) A unique z ∈ [u, v] exists for u, v ∈ Z and p ∈ [0, 1] such that

d(u, z) = pd(u, v) and d(v, z) = (1− p)d(u, v).

(ii) For u, v, z ∈ Z and p ∈ [0, 1], we have

d((1− p)u⊕ pv, z) ≤ (1− p)d(u, z) + pd(v, z)

and

d2((1− p)u⊕ pv, z) ≤ (1− p)d2(u, z) + pd2(v, z)− p(1− p)d2(u, v).

In the preceding Lemma, for the unique point z, we use the notation (1−p)u⊕py.
Now, we gather some fundamental geometric properties that will be useful in the

article.
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Let {uk} be a bounded sequence in a complete CAT(0) space Z. For u ∈ Z we
write:

r(x, {uk}) = lim sup
k→∞

d(u, uk).

The asymptotic radius r({uk}) is provided by

r({uk}) = inf{r(u, uk) : x ∈ Z}
and the asymptotic center A({uk}) of {uk} is characterized as:

A({uk}) = {x ∈ X : r(u, uk) = r({uk})}.
The fact that A({uk}) is composed of exactly one point in a complete CAT(0) space
is widely known [11]. Now, in order to help with our explanation that follows, we
provide the definition and some basic properties of the ∆-convergence.

Definition 2.2 ( [21]). For every subsequence {sk} of {uk}, if u is the unique
asymptotic center of {sk}, then {uk} in a CAT(0) space Z is said to be ∆-convergent
to a point u ∈ Z. In this instance, we denote u the ∆-limit of {uk} and write
∆− limk→∞ uk = u.

Lemma 2.3 ( [21]). There exists a ∆-convergent subsequence for every bounded
sequence in a complete CAT(0) space.

Lemma 2.4 ([10]). If D is a closed convex subset of a complete CAT(0) space Z
and {uk} is a bounded sequence in D, then the asymptotic center of {uk} is in D.

Lemma 2.5 ([12]). In a complete CAT(0) space (Z, d), let D be a nonempty closed
convex subset, and let T : D → D be a nonexpansive mapping. Then x is a fixed
point of T if {uk} is a bounded sequence in D such that ∆ − limk uk = x and
limk→∞ d(Tuk, uk) = 0.

Lemma 2.6 ([12]). If {uk} is a bounded sequence in a complete CAT(0) space with
A({uk}) = {x}, {Sk} is a subsequence of {uk} with A({Sk}) = {u} and the sequence
{d(uk, u)} converges, then x = u.

Lemma 2.7 ( [9, 32]). In a complete CAT(0) space (Z, d), let D be a nonempty
closed convex subset. Then, for any {ui}ki=1 ∈ D and ϱi ∈ (0, 1), i = 1, 2, ..., k with∑k

i=1 ϱi = 1, we have the following inequalities:

(2.1) d(⊕k
i=1ϱiui, z) ≤

k∑
i=1

ϱid(ui, z), ∀ z ∈ D

and

(2.2) d2(⊕k
i=1ϱiui, z) ≤

k∑
i=1

ϱid
2(ui, z)−

n∑
i,j=1,i ̸=j

ϱiϱjd
2(ui, uj), ∀ z ∈ D.

In this paper, we mainly study lower semi-continuous and convex functions on
CAT(0) spaces. Note that a function G : D → (−∞,∞] defined on a convex subset
D of a CAT(0) space is convex if and only if the function Goγ is convex for any
geodesic γ : [a, b] → D. In other words, G(ϱu⊕ (1− ϱ)v) ≤ ϱG(u) + (1− ϱ)G(v) for
all u, v ∈ D. See [3] for a few noteworthy examples.
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Further, a function G defined on D is considered as lower semi-continuous at
u ∈ D if

G(u) ≤ lim infk→∞G(uk)

for each sequence {uk} such that uk → u as k → ∞. A function G is considered as
a lower semi-continuous on D if it is lower semi-continuous at any point in D.

For any λ > 0, define the Moreau-Yosida resolvent of G in CAT(0) space as
follows:

Jλ(u) = argmin
v∈D

[G(v) +
1

2λ
d2(v, u)]

for all u ∈ D. For any λ ≥ 0, the mapping Jλ is clearly defined; see [15]. The set
U(Jλ) of the fixed point of the resolvent Jλ associated with G coincides with the
set argminv∈D G(v) of minimizers of G if G is a proper, convex, and lower semi-
continuous function; see [3]. Moreover, the resolvent Jλ of G is nonexpansive for
every λ > 0; see [17].

Lemma 2.8 ([2]). For a given complete CAT(0) space (Z, d), consider that G :
Z → (−∞,∞] is a proper, convex and lower semi-continuous function, then for all
u, v ∈ Z and λ > 0, we have

1

2λ
d2(Jλu, v)−

1

2λ
d2(u, v) +

1

2λ
d2(y, Jλu) +G(Jλu) ≤ G(v).

Lemma 2.9 ([17, 25]). Assume that (Z, d) is a complete CAT(0) space and that
G : Z → (−∞,∞] is a lower semi-continuous, proper, convex function. Then, the
subsequent identity is valid:

Jλu = Jµ(
λ− µ

λ
Jλu⊕ µ

λ
u)

for all u ∈ Z and λ > µ > 0.

The notations CB(D), CC(D), and KC(D) represent the families of nonempty
closed bounded subsets, closed convex subsets, and compact convex subsets of D,
respectively.

H(A,B) = max{sup
u∈A

dist(u,B), sup
v∈B

dist(v,A)}

defines the Pompeiu-Hausdorff distance [28] on CB(D) for A,B ∈ CB(D), where the
distance between a point u and a subset D is denoted by dist(u,D) = inf{d(u, v) :
v ∈ D}. The following defines a fixed point of a multi-valued mapping S : D →
CB(D):

u ∈ D if u ∈ Su.

The set of all fixed points in S is represented by the notation U(S).
A multi-valued mapping S : D → CB(D) is referred to as a nonexpansive map-

ping or Hemi-compact if, for every u, v ∈ D, H(Su,Sv) ≤ d(u, v), or if there is a
subsequence {uki} of {uk} such that {uki} converges strongly to u∗ ∈ D for each
sequence {uk} in D, with limk→∞ dist(Suk, uk) = 0, respectively.
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3. Main results

Lemma 3.1. Assume that a complete CAT(0) space Z has a nonempty closed and
convex subset D. The single-valued nonexpansive mappings are denoted by Ti : D →
D; the multi-valued nonexpansive mappings are denoted by Si : D → CB(D) for
i = 1 : 3 and G, h : D → (−∞,∞] are two proper convex and lower semi-continuous
functions. Suppose that

Ω = U(T1)∩U(T2)∩U(T3)∩U(S1)∩U(S2)∩U(S3)∩argmin
y∈D

G(y)∩argmin
ζ∈D

h(ζ) ̸= ∅

and Siq = {q}, i = 1 : 3 for q ∈ Ω. For u1 ∈ D, let the sequence {uk} is generated
in the following manner:

sk = argminy∈D[G(y) + 1
2λk

d2(y, uk)],

vk = argminζ∈D[h(ζ) +
1

2σk
d2(ζ, sk)],

φk = ϱkuk ⊕ ςkv
′
k ⊕ γkv

′′
k ,

Ψk = ψkuk ⊕ κkv
′′′
k ⊕ ϕkT1uk,

uk+1 = δkuk ⊕ ηkT2uk ⊕ ξkT3Ψk, for all k ∈ N.

(3.1)

where {ϱk}, {ςk}, {γk}, {ψk}, {κk}, {ϕk}, {δk}, {ηk} and {ξk} are sequences in
(0, 1) such that

0 < a ≤ {ϱk}, {ςk}, {γk}, {ψk}, {κk}, {ϕk}, {δk}, {ηk}, {ξk} ≤ b < 1,

ϱk + ςk + γk = 1, ψk + κk + ϕk = 1, δk + ηk + ξk = 1,
(3.2)

for all k ∈ N and {λk} is a sequence such that λk ≥ λ > 0 for all k ∈ N and some
λ. Then, the subsequent claims are true:

(i) limk→∞ d(uk, q) exists for all q ∈ Ω;
(ii) limk→∞ d(uk, sk) = 0; limk→∞ d(sk, vk) = 0;
(iii) limk→∞ dist(uk,Siuk) = 0, i = 1, 2, 3;
(iv) limk→∞ d(uk,Tiuk) = 0, i = 1, 2, 3;
(v) limk→∞ d(uk, Jλuk) = 0, limk→∞ d(uk, Jσuk) = 0.

Proof. Let q ∈ Ω, then

q = T1q = T2q = T3q ∈ (S1q ∩ S2q ∩ S3q)

and
G(q) ≤ G(y), and h(q) ≤ h(ζ), ∀y, ζ ∈ D.

Therefore, we have

G(q) +
1

2λk
d2(q, q) ≤ G(y) +

1

2λk
d2(y, q),

and

h(q) +
1

2σk
d2(q, q) ≤ h(ζ) +

1

2σk
d2(ζ, q),

for all y, ζ ∈ D and therefore q = Jλq and q = Jσq.
(i) Note that wk = Jλk

uk, vk = Jσk
wk and Jλk

, Jσk
are nonexpansive map for

each k ∈ N. So, we have

(3.3) d(wk, q) = d(Jλk
uk, Jλk

q) ≤ d(uk, q).
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We also have

(3.4) d(vk, q) = d(Jσk
wk, Jσk

q) ≤ d(wk, q).

Based on (3.3), (3.4), and Lemma 2.7, we obtain q ∈ Si(q) for i = 1 : 3.

d(φk, q) = d(ϱkuk ⊕ ςkv
′
k ⊕ γkv

′′
k , q)

≤ ϱkd(uk, q) + ςkd(v
′
k, q) + γkd(v

′′
k , q)

≤ ϱkd(uk, q) + ςkd(S1uk,S1q) + γkd(S2vk,S2q)
≤ d(uk, q)(3.5)

and

d(Ψk, q) = d(ψkuk ⊕ κkv
′′′
k ⊕ ϕkT1uk, q)

≤ ψkd(uk, q) + κkd(v
′′′
k , q) + ϕkd(T1uk, q)

≤ ψkd(uk, q) + κkd(S3φk, q) + ϕkd(T1uk, q)
≤ d(uk, q).(3.6)

Now, consider

d(uk+1, q) = d(δkuk ⊕ ηkT2uk ⊕ ξkT3Ψk, q)
≤ δkd(uk, q) + ηkd(T2uk, q) + ξkd(T3Ψk)
≤ d(uk, q).(3.7)

This demonstrates the existence of limk→∞ d(uk, q).
(ii) Next, we will prove that limk→∞ d(uk, wk) = 0 and limk→∞ d(wk, vk) = 0.

Assume that

lim
k→∞

d(uk, q) = r(3.8)

for some r ≥ 0. Based on Lemma 2.8, we possess

1

2λk
{d2(wk, q)− d2(uk, q) + d2(uk, wk)} ≤ G(q)− f(wk).

Given that for every k ∈ N, f(p) ≤ f(wk), it follows that

d2(uk, wk) ≤ d2(uk, q)− d2(wk, q).(3.9)

and

1

2σk
{d2(vk, q)− d2(wk, q) + d2(wk, vk)} ≤ h(q)− h(vk).

Since h(p) ≤ h(vk) for all k ∈ N, It thus follows that

d2(wk, vk) ≤ d2(wk, q)− d2(vk, q).(3.10)

Using (3.7) along with the fact that δk + ηk + ξk = 1 for all k ≥ 1, we obtain

d(uk+1, q) ≤ δkd(uk, q) + ηkd(T2uk, q) + ξkd(T3Ψk, q)
≤ (1− ξk)d(uk, q) + ξkd(Ψk, q),

That is the same as

d(uk, q) ≤ 1

ξk
[d(uk, q)− d(uk+1, q)] + d(Ψk, q)

≤ 1

a
[d(uk, q)− d(uk+1, q)] + d(Ψk, q),
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that provides

lim inf
k→∞

d(uk, q) ≤ lim inf
k→∞

{1
a
[d(uk, q)− d(uk+1, q)] + d(Ψk, q)}.

Assuming our hypothesis and considering lim infk→∞ on both sides, we come up
with

(3.11) lim inf
k→∞

d(uk, q) ≤ lim inf
k→∞

d(Ψk, q) = r.

Using (3.6), we possess

(3.12) lim sup
k→∞

d(Ψk, q) ≤ lim sup
k→∞

d(uk, q) = r.

Combining (3.11) and (3.12), we attain

(3.13) lim
k→∞

d(Ψk, q) = r.

From (3.5), we obtain

(3.14) lim sup
k→∞

d(φk, q) ≤ lim sup
k→∞

d(uk, q) = r.

Similarly, (3.6) yields

d(Ψk, q) ≤ ψkd(uk, q) + κkd(φk, q) + ϕkd(uk, q)
≤ d(uk, q)− κkd(uk, q) + κkd(φk, q),

which results into

d(uk, q) ≤ 1

κk
[d(uk, q)− d(Ψk, q)] + d(φk, q)

≤ 1

a
[d(uk, q)− d(Ψk, q)] + d(φk, q),

This, when combined with (3.8) and (3.13), yields

(3.15) r ≤ lim inf
k→∞

d(φk, q).

From (3.14) and (3.15), we acquire

(3.16) lim
k→∞

d(φk, q) = r.

Now, on using (3.5), we derive

d(uk, q) ≤
1

a
[d(uk, q)− d(φk, q)] + d(sk, q),

which along with (3.8) and (3.16) gives

(3.17) r ≤ lim inf
k→∞

d(sk, q).

Also, (3.3) results into

(3.18) lim sup
k→∞

d(sk, q) ≤ lim sup
k→∞

d(uk, q) = r.

Utilizing (3.17) and (3.18), we obtain

(3.19) lim
k→∞

d(sk, q) = r.
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From (3.8), (3.9) and (3.19), we attain

(3.20) lim
k→∞

d(uk, sk) = 0.

With reference to (3.5), we have

d(φk, q) = d(ϱkuk ⊕ ςkv
′
k ⊕ γkv

′′
k , q)

≤ ϱkd(uk, q) + ςkd(v
′
k, q) + γkd(v

′′
k , q)

≤ (1− γk)d(uk, q) + γkd(vk, q),

which suggests that

d(uk, q) ≤
1

a
[d(uk, q)− d(φk, q)] + d(vk, q),

We obtain r = lim infk→∞ d(uk, p) ≤ lim infk→∞ d(vk, p) using (3.8) and (3.16).
This, along with lim supk→∞ d(vk, p) ≤ lim supk→∞ d(uk, p) = r, indicates that

(3.21) lim
k→∞

d(vk, p) = r.

By utilizing (3.10) and (3.21), we can ensure

(3.22) lim
k→∞

d(uk, vk) = 0

(iii) Now, we prove limk→∞ d(uk,Siuk) = 0 for i = 1 : 3.
Consider

d2(φk, q) = d2(ϱkuk ⊕ ςkv
′
k ⊕ γkv

′′
k , q)

≤ ϱkd
2(uk, q) + ςkd

2(v′k, q) + γkd
2(v′′k , q)

−ϱkςkd2(uk, v′k)− ϱkγkd
2(uk, v

′′
k)− ςkγkd

2(v′k, v
′′
k)

≤ d2(uk, q)− ϱkςkd
2(uk, v

′
k)− ϱkγkd

2(uk, v
′′
k)− ςkγkd

2(v′k, v
′′
k),

which is equivalent to

ϱkςkd
2(uk, v

′
k) + ϱkγkd

2(uk, v
′′
k) + ςkγkd

2(v′k, v
′′
k) ≤ d2(uk, q)− d2(φk, q).

With the use of (3.8) and (3.14), we yield

(3.23) lim
k→∞

d(uk, v
′
k) = 0,

(3.24) lim
k→∞

d(uk, v
′′
k) = 0

and

(3.25) lim
k→∞

d(v′k, v
′′
k) = 0.

Now, triangle inequality gives

dist(uk,S1uk) ≤ d(uk, v
′
k) + dist(v′k,S1uk),

which on using (3.23) results into

(3.26) lim
k→∞

dist(uk,S1uk) = 0.

Again, consider

dist(uk,S2uk) ≤ d(uk, v
′′
k) + dist(v′′k ,S2uk)

≤ d(uk, v
′′
k) + d(vk, uk),
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which on using (3.20) and (3.24) gives

(3.27) lim
k→∞

dist(uk,S2uk) = 0.

Now, we have

d2(Ψk, q) ≤ ψkd
2(uk, q) + κkd

2(v′′′k , q) + ϕkd
2(T1uk, q)

−ψkκkd
2(uk, v

′′′
k )− ψkϕkd

2(uk,T1uk)− κkϕkd
2(v′′′k ,T1uk)

≤ d2(uk, q)− ψkκkd
2(uk, v

′′′
k )− ψkϕkd

2(uk,T1uk)− κkϕkd
2(v′′′k ,T1uk),

which is equivalent to

ψkκkd
2(uk, v

′′′
k ) + ψkϕkd

2(uk,T1uk) + κkϕkd
2(v′′′k ,T1uk) ≤ d2(uk, q)− d2(Ψk, q),

By using (3.8) and (3.13), this results in

(3.28) lim
k→∞

d(uk, v
′′′
k ) = 0,

(3.29) lim
k→∞

d(uk,T1uk) = 0

and

(3.30) lim
k→∞

d(v′′′k ,T1uk) = 0.

On using (3.23) and (3.24), we have

d(φk, uk) ≤ ϱkd(uk, uk) + ςkd(v
′
k, uk) + γkd(v

′′
k , uk)

→ 0 as k → ∞.(3.31)

Thus, with the help of (3.28) and (3.31), we obtain

dist(uk,S3uk) ≤ d(uk, v
′′′
k ) + dist(v′′′k ,S3uk)

≤ d(uk, v
′′′
k ) + d(φk, uk) → 0

as k → ∞.(3.32)

(iv) Afterwards, we demonstrate that limk→∞ d(uk,T1uk)=limk→∞ d(uk,T2uk)=
limk→∞ d(uk,T3uk) = 0.

We have previously demonstrated in (3.29) that limk→∞ d(uk,T1uk) = 0.
Thus,

d2(uk+1, q) ≤ d2(uk, q)− δkηkd
2(uk,T2uk)

−δkξkd2(uk,T3Ψk)− ηkξkd
2(T2uk,T3Ψk),

which results into

(3.33) lim
k→∞

d(uk,T2uk) = 0,

(3.34) lim
k→∞

d(uk,T3Ψk) = 0

and

(3.35) lim
k→∞

d(T2uk,T3Ψk) = 0.

On using (3.28) and (3.29), we obtain

d(Ψk, uk) ≤ ψkd(uk, uk) + κkd(v
′′′
k , uk) + ϕkd(T1uk, uk)

→ 0 as k → ∞.(3.36)
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Now, (3.33), (3.35) and (3.36) yields

d(uk,T3uk) ≤ d(uk,T2uk) + d(T2uk,T3Ψk) + d(T3Ψk,T3uk) → 0
as k → ∞.(3.37)

(v) Now, as sk = Jλk
uk, from Lemma 2.9 we have

d(Jλuk, uk) ≤ d(Jλuk, wk) + d(wk, uk)

= d(Jλuk, Jλk
uk) + d(wk, uk)

= d(Jλuk, Jλ(
λk − λ

λk
Jλk

uk ⊕
λ

λk
uk)) + d(wk, uk)

≤ d(uk, (1−
λ

λk
)Jλk

uk ⊕
λ

λk
uk) + d(wk, uk)

≤ (1− λ

λk
)d(uk, Jλk

uk) +
λ

λk
d(uk, uk) + d(wk, uk)

= (1− λ

λk
)d(uk, wk) + d(wk, uk) → 0

as k → ∞.

Similarly by using Lemma 2.9 and using vk = Jσk
wk, we obtain

d(Jσuk, uk) ≤ d(Jσuk, vk) + d(vk, wk) + d(wk, uk)

= d(Jσuk, Jσk
wk) + d(vk, wk) + d(wk, uk)

= d
(
Jσuk, Jσ(

σk − σ

σk
Jσk

wk ⊕
σ

σk
wk)

)
+ d(vk, wk) + d(wk, uk)

≤ d(uk, (1−
σ

σk
)Jσk

wk ⊕
σ

σk
wk) + d(vk, wk) + d(wk, uk)

≤ (1− σ

σk
)d(uk, Jσk

wk) +
σ

σk
d(uk, wk) + d(vk, wk) + d(wk, uk)

= (1− σ

σk
)d(uk, vk) + (1 +

σ

σk
)d(wk, uk) + d(vk, wk) → 0

as k → ∞.

□

We now present the ∆-convergence result in CAT(0) spaces.

Theorem 3.2. Assume that a complete CAT(0) space Z has a nonempty closed
and convex subset D. The single-valued nonexpansive mappings are denoted by Ti :
D → D; the multi-valued nonexpansive mappings are denoted by Si : D → CB(D)
for i = 1 : 3 and G, h : D → (−∞,∞] are two proper convex and lower semi-
continuous functions. Consider that

Ω = U(T1)∩U(T2)∩U(T3)∩U(S1)∩U(S2)∩U(S3)∩argmin
y∈D

G(y)∩argmin
ζ∈D

h(ζ) ̸= ∅

and Siq = {q}, i = 1 : 3 for q ∈ Ω. For u1 ∈ D, let the sequence {uk} is generated by
(3.1), where {ϱk}, {ςk}, {γk}, {ψk}, {κk}, {ϕk}, {δk}, {ηk} and {ξk} are sequences
in (0, 1) such that it satisfies (3.2) and {λk} is a sequence such that λk ≥ λ > 0 for
all n ∈ N and some λ. In turn, the sequence {uk} ∆-converges to a point in Ω.
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Proof. Let Wω({uk}) = ∪Λk⊂{uk}A({Λk}) ⊂ Ω. Let Λ ∈ Wω(uk). Then a subse-
quence Λk of {uk} occurs such that A(Λk) = Λ. Consequently, for any ν ∈ Ω, there
exists a subsequence {νk} of Λk such that ∆− limk→∞ νk = ν. In view of Theorem
3.1, we obtain

lim
k→∞

d(νk,Tiνk) = 0, i = 1 : 3

and
lim
k→∞

d(νk, Jλνk) = 0, lim
k→∞

d(νk, Jσνk) = 0.

Given that Ti, i = 1 : 3, Jλ, and Jσ are nonexpansive mappings, we may utilize
Lemma 2.5 to acquire

ν = T1ν = T2ν = T3ν = Jλν = Jσν.

So, we have

(3.38) ν ∈ U(T1) ∩ U(T2) ∩ U(T3) ∩ argmin
y∈D

G(y) ∩ argmin
ζ∈D

h(ζ).

Since Si, is compact valued for i = 1 : 3, then for every k ∈ N, there exist rik ∈ Siνk
and pik ∈ Siν for i = 1 : 3 such that

d(νk, r
i
k) = dist(νk,Siνk), i = 1 : 3

and
d(rik, p

i
k) = dist(rik,Siν), i = 1 : 3.

Theorem 3.1 allows us to obtain

lim
k→∞

d(νk, r
i
k) = 0, i = 1 : 3.

Utilizing the compactness of Siν for i = 1 : 3, we can deduce the existence of a
subsequence {pinj

} of {pik}, such that limj→∞ pinj
= pi ∈ Siν. With the aid of the

Opial condition, we are able to get

lim sup
j→∞

d(νnj , p
i) ≤ lim sup

j→∞
(d(νnj , r

i
nj
) + d(rinj

, pinj
) + d(pinj

, pi))

≤ lim sup
j→∞

(d(νnj , r
i
nj
) + dist(rinj

,Siν) + d(pinj
, pi))

≤ lim sup
j→∞

(d(νnj , r
i
nj
) +H(Siνnj ,Siν) + d(pinj

, pi))

≤ lim sup
j→∞

(d(νnj , r
i
nj
) + d(νnj , ν) + d(pinj

, pi))

= lim sup
j→∞

d(νnj , ν).

We obtain ν = pi ∈ Siν for i = 1 : 3, because the asymptotic center is unique.
Equation (3.38) is used to get

ν ∈ U(T1)∩U(T2)∩U(T3)∩U(S1)∩U(S2)∩U(S3)∩argmin
y∈D

G(y)∩argmin
σ∈D

h(ζ) = Ω.

We derive q = ν and Wω({uk}) ⊂ Ω from Theorem 3.1 and Lemma 2.6.
Ultimately, it is sufficient to demonstrate that Wω({uk}) is composed of a single

element. For this, let {Λk} be a subsequence of {uk} and let A({uk}) = u. Since
Λ ∈ Wω(uk) ⊂ Ω and d(uk,Λ) converges, we have ν = u. This indicates that
Wω({uk}) = {u}. □
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Strong convergence theorems for the suggested approach in CAT(0) spaces are
shown in the following results.

Theorem 3.3. According to Theorem 3.2, if Jλ, or Jσ, or T1, or T2, or T3 are semi-
compact, or S1, or S2, or S3, are hemi-compact then the sequence {uk} converges
to an element of Ω in the given scenario.

Proof. Assuming S1 to be hemi-compact, we can proceed without losing generality.
Consequently, a subsequence {vk} of {uk} exists, and it has a strong limit p in D.
Theorem 3.1 provide us

lim
k→∞

d(Tisk, sk) = 0, i = 1, 2, 3,

lim
k→∞

d(Jλsk, sk) = 0

lim
k→∞

d(Jσsk, sk) = 0

and
lim
k→∞

dist(Sisk, sk) = 0, i = 1, 2, 3.

Lemma 2.5 allows us to gain

(3.39) p ∈ U(T1) ∩ U(T2) ∩ U(T3) ∩ argmin
y∈D

G(y) ∩ argmin
ζ∈D

h(ζ).

By using nonexpansiveness of S1, we have

dist(p,S1p) ≤ d(p, sk) + dist(sk,S1sk) +H(S1sk,S1p)
≤ 2d(p, sk) + dist(sk,S1sk)
→ 0 as k → ∞.

dist(p,S1p) = 0 is the outcome of this, and it is equivalent to p ∈ S1p. Therefore,
p ∈ U(S1). Likewise, it is possible to demonstrate that p ∈ U(S2) and p ∈ U(S3).
Consequently, from (3.39), we attain

p ∈ U(T1)∩U(T2)∩U(T3)∩U(S1)∩U(S2)∩U(S3)∩argmin
y∈D

G(y)∩argmin
ζ∈D

h(ζ) = Ω.

By using double extract subsequence principle, the sequence {uk} is found to have
a strong convergence to p ∈ Ω. □

Every multi-valued mapping S : D → CB(D) is hemi-compact for a compact
subset D of Z. Thus, Theorem 3.3 can be used to quickly arrive at the following
result.

Theorem 3.4. Suppose that Z is a complete CAT(0) space and D is a nonempty
closed and convex subset of Z. The single-valued nonexpansive mappings are denoted
by Ti : D → D; the multi-valued nonexpansive mappings are denoted by Si : D →
KC(D) for i = 1 : 3 and G, h : D → (−∞,∞] are two proper convex and lower
semi-continuous functions. Suppose that

Ω = U(T1)∩U(T2)∩U(T3)∩U(S1)∩U(S2)∩U(S3)∩argmin
y∈D

G(y)∩argmin
ζ∈D

h(ζ) ̸= ∅

and Siq = {q} for q ∈ Ω and i = 1 : 3. For u1 ∈ D, let the sequence {uk} is
generated by (3.1), where {ϱk}, {ςk}, {γk}, {ψk}, {κk}, {ϕk}, {δk}, {ηk} and {ξk}
are sequences in (0, 1) such that it satisfies (3.2) and {λk} is a sequence such that
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λk ≥ λ > 0 for all k ∈ N and some λ. Then, there is a strong convergence of the
sequence {uk} to a point in Ω.

Remarks.

(i) As per [6], any CAT(k) space with k ≤ 0 is a CAT(k′) space for k′ ≥ k.
Therefore, our findings are instantly applicable to any CAT(k) space.

(ii) We may obtain the following convergence conclusions from Theorems 3.2
and 3.3 since H is a complete CAT(0) space for all real Hilbert spaces.

Corollary 3.5. Let Z be a real Hilbert space and D be a nonempty closed and
convex subset of Z. The single-valued nonexpansive mappings are denoted by Ti :
D → D; the multi-valued nonexpansive mappings are denoted by Si : D → CB(D)
for i = 1 : 3 and G, h : D → (−∞,∞] are two proper convex and lower semi-
continuous functions. Suppose that Ω = U(T1) ∩ U(T2) ∩ U(T3) ∩ U(S1) ∩ U(S2) ∩
U(S3) ∩ argminy∈D G(y) ∩ argminζ∈D h(ζ) ̸= ∅ and Siq = {q}, i = 1 : 3 for q ∈ Ω.
For u1 ∈ D, let us assume that the sequence {uk} is produced as follows:

sk = argminy∈Z [G(y) + 1
2λk

∥y − uk∥2],
vk = argminζ∈Z [h(ζ) +

1
2σk

∥ζ − sk∥2],
φk = ϱkuk + ςkw

′
k + γkw

′′
k ,

Ψk = ψkuk + κkw
′′′
k + ϕkT1uk,

uk+1 = δkuk + ηkT2uk + ξkT3Ψk, for all k ∈ N.

(3.40)

where {ϱk}, {ςk}, {γk}, {ψk}, {κk}, {ϕk}, {δk}, {ηk} and {ξk} are sequences in
(0, 1) such that it satisfies (3.2) and {λk} and {σk} are sequences such that λk ≥
λ > 0 σk ≥ σ > 0 for all k ∈ N and some λ, σ. Then, the sequence {uk} ∆-converges
to a point in Ω.

Corollary 3.6. Let Z be a real Hilbert space and D be a nonempty closed and convex
subset of Z. The single-valued nonexpansive mappings are denoted by Ti : D → D;
the multi-valued nonexpansive mappings are denoted by Si : D → CB(D) for i =
1 : 3 and G, h : D → (−∞,∞] are two proper convex and lower semi-continuous
functions. Also, assume that Ω = U(T1) ∩ U(T2) ∩ U(T3) ∩ U(S1) ∩ U(S2) ∩ U(S3) ∩
argminy∈D G(y) ∩ argminζ∈D h(ζ) ̸= ∅ and Siq = {q}, i = 1 : 3 for q ∈ Ω. For
u1 ∈ D, let the sequence {uk} is generated by (3.40), where {ϱk}, {ςk}, {γk}, {ψk},
{κk}, {ϕk}, {δk}, {ηk} and {ξk} are sequences in (0, 1) such that it satisifes (3.2)
and {λk} is a sequence such that λk ≥ λ > 0 for all k ∈ N and some λ. Then, the
sequence {uk} converges to an element of Ω if Jλ or T1 or T2 or T3 is semi-compact
or S1 or S2 or S3 is hemi-compact.

4. Conclusion

This study aimed to offer a modified proximal point technique for addressing
the fixed point problem of nonexpansive single-valued and multi-valued mappings
in CAT(0) spaces, as well as the constrained convex minimization problem. The
corresponding findings of Cholamjiak [7], Suantai and Phuengrattana [30], Kumam
et al. [22], Weng et al. [37], Weng et al. [36], and Garodia et al. [14] are all expanded
upon by our findings.
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