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Distance/similarity measures serve as efficient tools for evaluating the degree
of similarity or dissimilarity between two sets. They find widespread application
across various academic domains, including pattern recognition, machine learning,
decision-making, signal detection, security verification systems, and image process-
ing. Several similarity measures grounded in IFS have been proposed. Szmidt and
Kacprzyk [25] presented diverse similarity measures for IFSs, utilizing metrics like
Euclidean distance, Hamming distance, and their normalized counterparts. Hung
and Yong [14] integrated the lp metric and Hausdorff distance concepts to intro-
duce a novel similarity measure for IFSs. Identifying limitations in existing IFS
similarity measures, Liang and Shi [15] proposed a specific measure tailored for ad-
dressing pattern recognition problems. Chen [5] introduced various measures for
assessing the similarity between vague sets and their elements. Hong and Kim [12]
illustrated instances where Chen’s similarity measures [5] are not always effective,
suggesting modified measures in such scenarios. Cagman and Deli [4] developed
a decision-making method for addressing medical diagnosis problems using IFSSs.
More recently, Muthukumar and Krishnan [22] introduced a distinct type of simi-
larity measure and a weighted similarity measure based on IFSSs, along with a dis-
cussion on their mathematical properties. Hung and Yang (2004) [13] established a
link between similarity and distance measures, demonstrating their complementary
nature. Similarly, Wang and Xin [30] scrutinized the equality between similar-
ity and distance measures, proposing alternative distance measures by presenting
counterexamples that rendered the distance measures in [25] impractical. More-
over, numerous distance measures for IFSs have been formulated by employing the
classical lp metric, paralleling the advancements in similarity measures. However,
in the field of Intuitionistic fuzzy soft sets, no similarity measure has been proposed
utilizing the properties of lp matrices. The reflective symmetry of the lp metric
ensures that similarity measures between sequences of IFSS remain invariant un-
der rearrangements. Furthermore, introducing weights to the elements of lp-based
measures can alter the geometry while preserving its topology. The consideration of
such scenarios has revealed unreliable outcomes in computing similarity measures,
emphasizing the need for further development.

In response to this, we introduce the concept of intuitionistic fuzzy soft bounded
variation (IFSBV) to address distances between IFSSs. IFSBV is employed to ap-
proximate the features of IFSSs through the intuitionistic fuzzy soft-valued function
(IFSVF). This paper presents a modified distance measure, combining an IFSBV-
based measure and a distance measure based on the lp metric. Consequently, a new
similarity measure is developed in this study. The effectiveness of the proposed sim-
ilarity measure is verified through comprehensive numerical simulations, addressing
a clustering problem in software data. Additionally, a thorough comparison with
recently reported measures is conducted. The findings suggest that the proposed
similarity measure effectively addresses the shortcomings of current approaches.

This paper contributes significantly in the following aspects:

• Proposing a novel intuitionistic fuzzy soft metric by combining IFSBV and
the intuitionistic fuzzy soft lp metric to demonstrate a similarity measure
for comparing IFSSs.

• Employing the proposed similarity measure to solve the clustering problem.
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• Analyzing and discussing the performance of the modified similarity mea-
sure.

• Comparative analysis demonstrating the superior performance of the pro-
posed similarity measure compared to current similarity measures.

The subsequent sections of the paper are organized as follows: In Section 2, we
provide mathematical definitions pertinent to our research. Our novel intuitionistic
fuzzy soft metric and similarity measure, along with a mathematical demonstra-
tion of their properties are demonstrated in Section 3. It also explores the logical
reasoning behind the IFSBV-based distance measure between IFSSs. Section 4 ad-
dresses a clustering problem, and a comprehensive analysis of the results is carried
out, comparing them with established similarity measures. To conclude, Section 5
summarizes the paper and outlines potential avenues for future research.

2. Preliminaries

In this section, we introduce the essential definitions relevant to the current study.

We designate W as the universe of discourse, A as the parameter set, and P̃ (W )
represents the power set of W . Additionally, within this context, we have I being
a subset of A.

Definition 2.1 ([21]). Consider a mapping S : A → P̃ (W ). A soft set, denoted as
(S,A), is defined over the set W

(S,A) = {(S(a), a) : S(a) ∈ P̃ (W ), a ∈ A}

Definition 2.2 ([1]). A set I defined on the universal set W is termed an intuition-
istic fuzzy set when

I = {(w, µI(w), νI(w)) : w ∈ W}
Here, µI : W → [0, 1] and νI : W → [0, 1] represent the membership and non-
membership functions, respectively. Additionally, it holds that 0 ≤ µI(w)+νI(w) ≤
1 for every element w ∈ W .

Definition 2.3 ([22]). An intuitionistic fuzzy soft set is represented as the ordered
pair (S, I), defined by the relation:

(S, I) = {(λI(a), a) : λI(a) ∈ S(W ), a ∈ A}.

Here, S(W ) encompasses all IFSs over W , and λI acts as an approximation function
given by:

λI : A → S(W ) such that λI(a) = ∅ if a /∈ I

In this context, the intuitionistic fuzzy empty set is symbolized as ∅, and λI(a) is
an IFS represented as:

λI(a) = {(w, µλI(a)(w), νλI(a)(w)) : w ∈ W}

for all a ∈ A. Moreover, µλI
: W → [0, 1] and νλI

: W → [0, 1] denote the member-
ship and non-membership degree values, respectively, satisfying the condition:

0 ≤ µλI(a)(w) + νλI(a)(w) ≤ 1

for all w ∈ W to the intuitionistic fuzzy set λI(a).
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Definition 2.4 ([32]). An association matrix T = (xij)m×m is a matrix in which
each entry xij denotes the association coefficient between Si and Sj , where Si, Sj ∈
IFSS.

Definition 2.5 ([32]). The operation of composition, denoted as (o), is applied to
an association matrix T and is defined as T o T = T 2 = (xij), where each element
xij is determined by xij = max

k
{min {xik, xkj}} for i, j = 1, 2, . . . , ,m. If T 2 ⊂ T ,

indicating that xij ≥ max
k

{min {xik, xkj}} holds for i, j = 1, 2, . . . , ,m, then T is

termed an equivalent association matrix.

Definition 2.6 ([32]). The matrix Tϑ = (ϑxij)m×m is known as the ϑ-cutting matrix
derived from T , where T is an equivalent association matrix. The computation of
each element in Tϑ, represented as the (i, j)th element, is determined by the following
expression:

ϑAij =

{
0 Aij < ϑ
1 Aij ≥ ϑ

i, j = 1, 2, . . . , ,m

Definition 2.7 ( [25]). Let IFSSs S1, S2, and S3 be defined within W . A met-
ric/distance measure, labelled as D : IFSS × IFSS → [0, 1], is a function between
IFSSs that satisfies the following criteria:

1. 0 ≤ D(S1, S2) ≤ 1.
2. D(S1, S2) = 0 ⇔ S1 = S2.
3. D(S1, S2) = D(S2, S1).
4. If S1 ⊆ S2 ⊆ S3 then D(S1, S3) ≥ D(S1, S2) and D(S1, S3) ≥ D(S2, S3).

The relationship between the distance measure and similarity measure is denoted
as, S(S1, S2) = 1−D(S1, S2).

Definition 2.8 ([32]). Let’s consider two IFSSs, S1 and S2, defined in the universe
of discourse W . A similarity measure, represented as S : IFSS × IFSS → [0, 1], is
a function that adheres to the following four conditions:

1. 0 ≤ S(S1, S2) ≤ 1.
2. S(S1, S2) = 1 ⇔ S1 = S2.
3. S(S1, S2) = S(S2, S1).
4. If S1 ⊆ S2 ⊆ S3 then S(S1, S3) ≥ S(S1, S2) and S(S1, S3) ≥ S(S2, S3).

3. Proposed similarity measure

In classical mathematics, bounded variation (BV) is an essential notion that
helps approximate the length of the arc of a real-valued function. Researchers have
investigated the theoretical aspects of BV in [24], working within the framework
of the FS theory. For fuzzy-valued functions (FVF), Gong and Wu [10] explained
the relationship between absolute continuity and BV, and Talo [27] explained the
p−BV sequence space of fuzzy numbers (FN). The characteristics of the BV double
sequence space of fuzzy real numbers, including solidity, symmetry, and convergence,
were examined by Tripathy et al. [28]. Narukawa et al. [23] defined the Choquet
integral by using a non-monotonic fuzzy measure of BV to determine the weighted
distance of two IFSs. The concept of BV functionality was first introduced by K.
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Hirota [11], and effectively applied it to the analysis of pattern recognition. Some
essential definitions related to these works are given as follows:

Definition 3.1 ([34]). In an interval [x, y] ⊂ R, a partition n signifies a collection
of points w0, w1, . . . , ., wn where x = w0 < w1 < w2... < wn = y.

Definition 3.2 ([7]). The definition of p-summable total variation Vp for a function

ḟ with respect to the partition n is given below:

Vp(ḟ) =

(
|ḟ(w1)|p +

n∑
i=2

|∆ḟ(wi)|p
) 1

p

where, ∆ḟ(wi) = ḟ(wi)− ḟ(wi−1).

Definition 3.3 ([7]). If the total variation of a function ḟ on a given interval [x, y]

is finite, then ḟ is said to be a bounded variation (BV) function, meaning that

ḟ ∈ BVp([x, y]) ⇔ sup
n

Vp(ḟ) < +∞

Definition 3.4 ([31]). Score function α̂ : Σ → [−1, 1] is defined as

α̂(wi) = µ(wi)− ν(wi).

In this context, Σ represents the set comprising all intuitionistic fuzzy values, which
can be defined as Σ = {⟨w, µ, ν⟩|w ∈ W}.

Definition 3.5. An IFSS S = {((µS(wi), νS(wi)), aj), wi ∈ W, a ∈ A, i =
1, 2, . . . , n, j = 1, 2, . . . ,m} is said to be a partition of Σ if

α̂(w1, µ(w1), ν(w1)) < α̂(w2, µ(w2), ν(w2)) < · · · < α̂(wnµ(wn), ν(wn)) [for each
parameter aj ]

where α̂ is the score function.

Now, let the partition of Σ, represented by Sα̂ = {{(wi, µi, νi), aj}|i = 1, 2, . . . ,
n, j = 1, 2, . . . ,m}, defines an IFSS in which α̂ is used as a score function as defined
in Definition (3.4). For the partition Sα̂ and by taking p ≤ 1, we define the IFSBV

bvp of ḞSα̂
in this way:

bvp(ḞSα̂
) =

1

2nm

m∑
j=1

[ l∑
i=1

|ḞSα̂
{(wi, µi, νi), aj}|p +

n∑
k=l+1

|∆ḞSα̂
{(wk, µk, νk), aj}|p

]
< +∞(3.1)

where, ∆ḞSα{(wk, µk, νk), aj} = ḞSα̂
{(wk, µk, νk), aj}−ḞSα̂

{(wk−1, µk−1, νk−1), aj}.

bvp(ḞSα̂
) is used in Equation (3.1) to calculate the lengths of arc of the func-

tion ḞSα̂
across the partition Sα̂ of the domain Σ. Different values of p in bvp

and different scenarios of Sα̂ can be used to characterise the unknown intuition-
istic fuzzy soft-valued function (IFSVF) Ḟ . Let us assume two IFSSs as S =
{((µS(wi), νS(wi)), aj); wi ∈ W, a ∈ A, i = 1, 2, . . . , n, j = 1, 2, . . . ,m} and
T = {((µT (wi), νT (wi)), aj); wi ∈ W, a ∈ A, i = 1, 2, . . . , n, j = 1, 2, . . . ,m}.
Hence, ḞS and ḞT are considered to be IFSVFs corresponding to the partitions S
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and T of the domain Σ. Then, we define the distance measure between S and T as
follows:

Dbvp(S, T ) =
1

2nm

m∑
j=1

[ l∑
i=1

(
|ḞS{(wi, µi, νi), aj} − ḞT {(wi, µi, νi), aj}|p

)
+

n∑
k=l+1

(
|∆ḞS{(wk, µk, νk), aj} −∆ḞT {(wk, µk, νk), aj}|p

) ]
(3.2)

In Equation (3.2), the operator ∆ computes the difference between the corre-

sponding elements of the IFSSs. The continuous function Ḟ over ḞS and ḞT is ap-
proximated component-wise by the distance measure Dbvp(S, T ) based on IFSBV.

The length of Ḟ is estimated by the IFSBVs bvp(ḞS) and bvp(ḞT ) of the IFSVFs

ḞS and ḞT . The IFSVFs ḞS and ḞT are sub-functions of Ḟ with domain Σ since
S and T are partitions of the domain Σ. In summary, for every p value in bvp,
the components of the partitions S and T are positioned on different graphs of the
IFSVF Ḟ . To illustrate, let us consider a graph of Ḟ . For each {(w1, µ1, ν1), aj}, we
have Ḟ{(w1, µ1, ν1), aj}, meaning that Ḟ{(w1, µ1, ν1), aj} = {(w1, µ1, ν1), aj}. As a
result, the distance generated by IFSBV between S and T is defined as :

Dbvp(S, T ) =
1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)−µT (aj)(wi)|p+|νS(aj)(wi)−νT (aj)(wi)|p

)
+

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µT (aj)(wk)|p+|∆νS(aj)(wk)−∆νT (aj)(wk)|p

) ]
(3.3)

Theorem 3.6. Dbvp is a distance measure.

Proof. In order to designate Dbvp as a metric, it is essential to confirm that it obeys
the properties specified in the provided Definition (2.7).

Condition 1. To prove 0 ≤ Dbvp(S, T ) ≤ 1.
Proof. Here,

(3.4) 0 ≤
m∑
j=1

l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |νS(aj)(wi)− νT (aj)(wi)|p

)
≤ 2m

also,

0 ≤
m∑
j=1

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µT (aj)(wk)|p+|∆νS(aj)(wk)−∆νT (aj)(wk)|p

)
≤ 2m(n− 1)(3.5)

Then from eq. (3.4) and (3.5) we have

0 ≤
m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |νS(aj)(wi)− νT (aj)(wi)|p

)
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+

n∑
k=l+1

(
|∆µS(aj)(wk)∆µT (aj)(wk)|p + |∆νS(aj)(wk)−∆νT (aj)(wk)|p

) ]
≤ 2m+ 2m(n− 1) = 2nm

⇒ 0 ≤
m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |νS(aj)(wi)− νT (aj)(wi)|p

)
+

n∑
k=l+1

(
|∆µS(aj)(wk)∆µT (aj)(wk)|p + |∆νS(aj)(wk)−∆νT (aj)(wk)|p

) ]
≤ 1

Therefore, 0 ≤ Dbvp(S, T ) ≤ 1.

Condition 2. To prove Dbvp(S, T ) = 0 ⇔ S = T.
Proof. Let Dbvp(S, T ) = 0

⇔ 1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |νS(aj)(wi)− νT (aj)(wi)|p

)
+

n∑
k=l+1

(
|∆µS(aj)(wk)∆µT (aj)(wk)|p + |∆νS(aj)(wk)−∆νT (aj)(wk)|p

) ]
= 0

Therefore,

(3.6) |µS(aj)(wi)− µT (aj)(wi)| = 0 ⇔ µS(aj)(wi) = µT (aj)(wi)

(3.7) |νS(aj)(wi)− νT (aj)(wi)| = 0 ⇔ νS(aj)(wi) = νT (aj)(wi)

(3.8) |∆µS(aj)(wk)−∆µT (aj)(wk)| = 0

(3.9) |∆νS(aj)(wk)−∆νT (aj)(wk)| = 0

From equation (3.8) we have,

µS(aj)(wk+1)− µS(aj)(wk)− µT (aj)(wk+1) + µT (aj)(wk) = 0

Now, suppose k = 1 then from eq. (3.6) we have, µS(aj)(w1) = µT (aj)(w1). Then

by using mathematical induction we can easily proof that µS(aj)(wk) = µT (aj)(wk)
and hence,

(3.10) µS(aj)(wk+1)− µT (aj)(wk+1) = 0 ⇔ µS(aj)(wk+1) = µT (aj)(wk+1)
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Similarly, From Equation (7) we have,

(3.11) νS(aj)(wk+1)− νT (aj)(wk+1) = 0 ⇔ νS(aj)(wk+1) = νT (aj)(wk+1)

Now, we can conclude that for all i ∈ N,

Dbvp(S, T ) = 0 ⇔ µS(aj)(wi) = µT (aj)(wi), νS(aj)(wi) = νT (aj)(wi) ⇔ S = T

Condition 3. To prove Dbvp(S, T ) = Dbvp(T, S).
Proof. It is straightforward to demonstrate for any IFSSs that, from the definition
of Dbvp

Dbvp(S, T ) = Dbvp(T, S)

Condition 4. To prove, if S ⊆ T ⊆ R, then Dbvp(S,R) ≥ Dbvp(S, T ). and
Dbvp(S,R) ≥ Dbvp(T,R).
Proof. In order to prove the fourth requirement, it is same as demonstrating
transitivity. Assuming that three IFSSs are given as S, T , and, R, then

Dbvp(S,R) =
1

2nm

m∑
j=1

[ l∑
i=1

(|µS(aj)(wi)− µR(aj)(wi)|p + |νS(aj)(wi)− νR(aj)(wi)|p)

+
n∑

k=l+1

(
|∆µS(aj)(wk)−∆µR(aj)(wk)|p+|∆νS(aj)(wk)−∆νR(aj)(wk)|p

)]

=
1

2nm

m∑
j=1

[ l∑
i=1

(|µS(aj)(wi)− µT (aj)(wi) + µT (aj)(wi)− µR(aj)(wi)|p

+ |νS(aj)(wi)− νT (aj)(wi) + νT (aj)(wi)− νR(aj)(wi)|p)

+

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µT (aj)(wk) + ∆µT (aj)(wk)−∆µR(aj)(wk)|p

+ |∆νS(aj)(wk)−∆νT (aj)(wk) + ∆νT (aj)(wk)−∆νR(aj)(wk)|p
)]

≤ 1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |µT (aj)(wi)− µR(aj)(wi)|p

+ |νS(aj)(wi)νT (aj)(wi)|p + |νT (aj)(wi)− νR(aj)(wi)|p
)

+

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µT (aj)(wk)|p+|∆µT (aj)(wk)−∆µR(aj)(wk)|p

+ |∆νS(aj)(wk)−∆νT (aj)(wk)|p + |∆νT (aj)(wk)−∆νR(aj)(wk)|p
)]

[By triangle inequality]
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Dbvp(S,R) ≤ Dbvp(S, T ) +Dbvp(T,R)

Therefore, Dbvp satisfies all the conditions of metric. □
Theorem 3.7. The proposed metric is normable.

Proof. To proof this theorem we need to show that Dbvp satisfies translation invari-
ant and homogeneity conditions.
1. Translation invariant: Let,

S = {(µS(wi), νS(wi)), aj}
T = {(µT (wi), νT (wi)), aj}
R = {(µR(wi), νR(wi)), aj}

Then,

S + T = {(µS(wi) + µT (wi), νS(wi) + µT (wi)), aj}
T +R = {(µT (wi) + µR(wi), νT (wi) + µR(wi)), aj}

Therefore,

Dbvp(S + T, T +R)

=
1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi) + µT (aj)(wi)− µT (aj)(wi)− µR(aj)(wi)|p

+ |νS(aj)(wi) + νT (aj)(wi)− νT (aj)(wi)− νR(aj)(wi)|p
)

+

n∑
k=l+1

(
|∆µS(aj)(wk) + ∆µT (aj)(wk)−∆µT (aj)(wk)−∆µR(aj)(wk)|p

+ |∆νS(aj)(wk) + ∆νT (aj)(wk)−∆νT (aj)(wk)−∆νR(aj)(wk)|p
)]

=
1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µR(aj)(wi)|p + |νS(aj)(wi)− νR(aj)(wi)|p

)
+

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µR(aj)(wk)|p + |∆νS(aj)(wk)−∆νR(aj)(wk)|p

) ]
∴ Dbvp(S + T, T +R) = Dbvp(S,R)

2. Homogeneity: To prove, Dbvp(κS, κT ) = κDbvp(S, T ).
Here,

Dbvp(κS, κT )

=
1

2nm

m∑
j=1

[ l∑
i=1

(
|κµS(aj)(wi)− κµT (aj)(wi)|p + |κνS(aj)(wi)− κνT (aj)(wi)|p

)
+

n∑
k=l+1

(
|∆(κµS(aj)(wk))−∆(κµT (aj)(wk))|p
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+|∆(κνS(aj)(wk))−∆(κνT (aj)(wk))|p
) ](3.12)

Here,

∆(κµS(aj)(wk)) = (κµS(aj)(wk+1)− κµS(aj)(wk))

= κ(µS(aj)(wk+1)− µS(aj)(wk))

= κ∆(µS(aj)(wk))(3.13)

Similarly,

∆(κµT (aj)(wk)) = κ∆(µT (aj)(wk))(3.14)

∆(κνS(aj)(wk)) = κ∆(νS(aj)(wk))(3.15)

∆(κνT (aj)(wk)) = κ∆(νT (aj)(wk))(3.16)

Then from Eq. (3.18) we have,

Dbvp(κS, κT )

=
1

2nm

m∑
j=1

[ l∑
i=1

(
|κ||µS(aj)(wi)− µT (aj)(wi)|p + |κ||νS(aj)(wi)− νT (aj)(wi)|p

)
+

n∑
k=l+1

(
|κ||∆(µS(aj)(wk))−∆(µT (aj)(wk))|p

+|κ||∆(νS(aj)(wk))−∆(νT (aj)(wk))|p
) ]

= |κ| 1

2nm

m∑
j=1

[ l∑
i=1

(
|µS(aj)(wi)− µT (aj)(wi)|p + |νS(aj)(wi)− νT (aj)(wi)|p

)
+

n∑
k=l+1

(
|∆µS(aj)(wk)−∆µT (aj)(wk)|p + |∆νS(aj)(wk)−∆νT (aj)(wk)|p

) ]
= |κ|Dbvp(S, T )

Hence proved.
□

Eq. (3.3) provides the metric, which we can use to evaluate the similarity mea-
sures between IFSSs. This is because metric/distance and similarity measures are
dual concepts in terms of fuzzy complement. Therefore,

Sbvp(S, T ) = 1−Dbvp(S, T )

= 1− 1

2nm

m∑
j=1

[ l∑
k=1

(
|µS(aj)(wk)− µT (aj)(wk)|p

+ |νS(aj)(wk)− νT (aj)(wk)|p
)

+
n∑

i=l+1

(
|∆µS(aj)(wi)−∆µT (aj)(wi)|p + |∆νS(aj)(wi)−∆νT (aj)(wi)|p

) ]
(3.17)
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4. IFSS-based clustering

Clustering serves as a technique for partitioning data into discrete clusters or
groups and similarity measures hold pivotal importance in tackling clustering prob-
lems ([17,32]). The efficacy of clustering methods is heavily reliant on these similar-
ity measures, as the elements that show higher similarity values ideally find place-
ment within the same cluster. Xu introduced the Intuitionistic Fuzzy Set based
Clustering (IFSC) algorithm, which is an influential algorithm in fuzzy clustering,
in his work [32]. This algorithm has been extensively used in a variety of clustering
problems. In a similar vein, a pythogonal fuzzy soft set clustering algorithm has
been proposed in [2]. This paper aims to present an approach termed Intuitionis-
tic Fuzzy Soft Set based Clustering (IFSSC), wherein this clustering algorithm is
seamlessly integrated into a hierarchical fuzzy clustering technique by incorporating
the proposed similarity measure. The IFSSC algorithm arranges data points into a
hierarchical structure resembling a tree, organized according to the extent of their
similarity.

We have substituted the initial similarity measure in the IFSSC algorithm with
our newly developed modified similarity measure (Sbvp), and we show its poten-
tial for use in clustering problems. Algorithm-1 provides a detailed, step-by-step
technique that outlines the whole IFSSC algorithm. A detailed description of the
clustering problems presented in [2] is provided in the part that follows. We have
utilised the innovative IFSSC algorithm to tackle these problems.

4.0.1. Clustering Example. We use the dataset given in [2], which consists of 10
datasets (Table 2), to run the clustering algorithm. a1, a2, a3, a4, and a5 are the five
parameters that make up the data set. Each dataset is categorised based on the
following criteria: w1 = Image processing, w2 = Measurement equipment, w3 =
Digital surface models, and w4 = Production of 3D modelling. By considering
p = 1, the steps of the IFSSC algorithm are as follows:

Algorithm 1 Proposed IFSSC algorithm

Input: Provided a number of IFSSs represented by the notation {S1, S2, . . . , Sn}.
Output: Results of clustering are correlated with different levels of confidence.
1: Compute the association coefficients xi,j using the similarity measure Sbvp for

all pairings (Si, Sj), where i, j = 1, 2, . . . , n.
2: Calculate the association matrix T using the values of xi,j .
3: If T is considered to be an equivalent association matrix according to the

Definition 2.4.
4: Determine the ϑ-cutting matrix by using Definition 2.6 to determine the confi-

dence level ϑ.
5: Else
6: Determine the equivalence of T by using the composition operation (◦) as given

in Definition 2.5.
7: End
8: Get the final resulting equivalent association matrix T .
9: Set up clusters with different levels of confidence. ϑ.
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Step 1. The association coefficients are computed and the association coefficients
matrix T is constructed based on the provided data set, taking into account the
proposed similarity measure Sbvp .

T =

1.0000 0.9107 0.8641 0.8444 0.8566 0.8012 0.8578 0.8076 0.7671 0.7692
0.9107 1.0000 0.8538 0.8277 0.8326 0.7970 0.8341 0.8055 0.7661 0.7468
0.8641 0.8538 1.0000 0.8092 0.8056 0.7670 0.8156 0.7803 0.7833 0.7596
0.8444 0.8277 0.8092 1.0000 0.8388 0.7719 0.8609 0.8000 0.7604 0.8107
0.8566 0.8326 0.8056 0.8388 1.0000 0.7748 0.8278 0.7522 0.7552 0.7712
0.8012 0.7970 0.7670 0.7719 0.7748 1.0000 0.7647 0.8231 0.7456 0.7523
0.8578 0.8341 0.8156 0.8609 0.8278 0.7647 1.0000 0.7542 0.7260 0.7862
0.8076 0.8055 0.7803 0.8000 0.7522 0.8231 0.7542 1.0000 0.7941 0.7597
0.7671 0.7661 0.7833 0.7604 0.7552 0.7456 0.7260 0.7941 1.0000 0.7884
0.7692 0.7468 0.7596 0.8107 0.7712 0.7523 0.7862 0.7597 0.7884 1.0000


Step 2. We must compute T 2j for j = 2, 3, . . . in order to ascertain the equiva-

lence of T . According to Definition (2.5), T 2 = T oT . We can evaluate whether or
not T satisfies the equivalence condition with this computation.

T 2 =

1.0000 0.9107 0.8641 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.9107 1.0000 0.8641 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.8641 0.8641 1.0000 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.8578 0.8578 0.8578 1.0000 0.8566 0.8076 0.8609 0.8076 0.7941 0.8107
0.8566 0.8566 0.8566 0.8566 1.0000 0.8076 0.8566 0.8076 0.7941 0.8107
0.8076 0.8076 0.8076 0.8076 0.8076 1.0000 0.8076 0.8231 0.7941 0.8076
0.8578 0.8578 0.8578 0.8609 0.8566 0.8076 1.0000 0.8076 0.7941 0.8107
0.8076 0.8076 0.8076 0.8076 0.8076 0.8231 0.8076 1.0000 0.7941 0.8076
0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 1.0000 0.7941
0.8107 0.8107 0.8107 0.8107 0.8107 0.8076 0.8107 0.8076 0.7941 1.0000


Step 3. In this case, T 2 is not an equivalent matrix; thus, we must keep computing

T 2j for increasing values of j (e.g., j = 2, 3, . . . ) until it’s equivalent.

T 4 =

1.0000 0.9107 0.8641 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.9107 1.0000 0.8641 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.8641 0.8641 1.0000 0.8578 0.8566 0.8076 0.8578 0.8076 0.7941 0.8107
0.8578 0.8578 0.8578 1.0000 0.8566 0.8076 0.8609 0.8076 0.7941 0.8107
0.8566 0.8566 0.8566 0.8566 1.0000 0.8076 0.8566 0.8076 0.7941 0.8107
0.8076 0.8076 0.8076 0.8076 0.8076 1.0000 0.8076 0.8231 0.7941 0.8076
0.8578 0.8578 0.8578 0.8609 0.8566 0.8076 1.0000 0.8076 0.7941 0.8107
0.8076 0.8076 0.8076 0.8076 0.8076 0.8231 0.8076 1.0000 0.7941 0.8076
0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 0.7941 1.0000 0.7941
0.8107 0.8107 0.8107 0.8107 0.8107 0.8076 0.8107 0.8076 0.7941 1.0000


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Step 4. As can be observed, T 2 is an equivalent association matrix since T 2 = T 4.
Step 5. To illustrate the relationships between components in the equivalent

matrix T 2, the obtained clusters for the classification problem on the ten provided
data sets can be derived by selecting different confidence levels ϑ.

Table 1. The obtained clusters of the data sets for various confi-
dence levels ϑ as generated by the Improved IFSSC algorithm

Table 1 presents the clustering results for different confidence levels ϑ, illustrating
the clusters that were generated for the data sets. Further, based on Table 1, we
perform a sensitivity analysis to observe how various confidence levels ϑ impact the
resulting clusters for the given data as follows:
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Figure 1. Hierarchical clustering tree through the proposed IFSSC
algorithm.

(a) If 0.0000 ≤ ϑ ≤ 0.7941, all the given data sets belong to a single cluster,
such as, C1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

(b) If 0.7941 < ϑ ≤ 0.8076, then the data sets are categorized into two different
types of clusters same as before, such as, C1 = {1, 2, 3, 4, 5, 6, 7, 8, 10} and
C2 = {9}.

(c) If 0.8076 < ϑ ≤ 0.8107, then the data sets are categorized into three different
types, such as, C1 = {1, 2, 3, 4, 5, 7, 10}, C2 = {6, 8}, and C3 = {9} clusters.

(d) If 0.8107 < ϑ ≤ 0.8231 and 0.8231 < ϑ ≤ 0.8566, then the data sets are
categorized into five different types, such as, C1 = {1, 2, 3, 4, 5, 7}, C2 = {6},
C3 = {8}, C4 = {9}, and C5 = {10} clusters.

(e) If 0.8566 < ϑ ≤ 0.8578 and 0.8578 < ϑ ≤ 0.8690, then the data sets are
categorized into seven different types, such as, C1 = {1, 2, 3}, C2 = {4, 7},
C3 = {5}, C4 = {6}, , C5 = {8}, C6 = {9}, and C7 = {10} clusters.

(f) If 0.8690 < ϑ ≤ 0.8641, then the data sets are categorized into eight different
types, such as, C1 = {1, 2, 3}, C2 = {4}, C3 = {5}, C4 = {6}, , C5 = {7},
C6 = {8}, C7 = {9}, and C8 = {10} clusters.

(g) If 0.8641 < ϑ ≤ 0.9107, then the data sets are categorized into nine different
types, such as, C1 = {1, 2}, C2 = {3}, C3 = {4}, C4 = {5}, , C5 = {6},
C6 = {7}, C7 = {8}, C8 = {9}, and C9 = {10} clusters.

(h) If 0.9107 < ϑ ≤ 1.0000, then the data sets are categorized into ten different
types, such as, C1 = {1}, C2 = {2}, C3 = {3}, C4 = {4}, C5 = {5}, C6 = {6},
C7 = {7}, C8 = {8}, C9 = {9}, and C10 = {10} clusters.

Figure 1 shows the hierarchical clustering diagram for the equivalent matrix T 2,
which was obtained using our proposed IFSSC algorithm using Sbvp on the IF-
SSs data sets. It is clear from looking at the data in Table 1 and Figure 1 that
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our improved IFSSC algorithm with Sbvp classifies the IFSS data sets. The result-
ing clusters are consistent with the clustering results presented in the paper [2].
For example, the results with five clusters {1, 2, 3, 4, 5, 7}, {6}, {8}, {9}, {10}, eight
clusters {1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} and the results with nine clusters
{1, 2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} are same as the clusters of [2]. On the
other hand, our suggested method is more efficient than the current one since our
clustering process terminates at T 2, while the clustering process in [2] terminates
at T 8.

The effectiveness of the suggested similarity measure is evident in its performance
for the clustering problem mentioned above. However, a notable limitation of our
proposed measure is the need to select the input parameter l. Typically, setting
l = Number of data

2 proves effective. Therefore, further refinement of this measure,
specifically in tuning this parameter, is necessary for optimal performance in han-
dling any type of dataset.

5. Conclusion

In this study, a modified metric/distance measure, referred to as the novel in-
tuitionistic fuzzy soft metric to demonstrate a similarity measure, was introduced
for IFSSs. This metric was developed by modifying the existing measure based on
IFSBV and the intuitionistic fuzzy soft lp metric. The resulting modified similar-
ity/distance measures were demonstrated to meet essential mathematical criteria
and display comprehensive connections with both IFSBV and lp metric measures
in diverse situations. Moreover, a comparative demonstration has been shown in a
clustering problem of software data, with other existing measures. The proposed
measure outperforms the existing measures in terms of classification accuracy for
clustering problems.

In our future endeavour, we aspire to extend the utilization of the fuzzy soft BV
approach to include other precisely defined fuzzy soft sets, such as interval-valued
intuitionistic fuzzy soft sets, interval type-2 fuzzy soft sets, and general type-2 fuzzy
soft sets. Moreover, we plan to investigate the effectiveness of the suggested modified
similarity measures across diverse domains where uncertainty is a critical consid-
eration, encompassing areas like image processing, feature classification, decision-
making, and partition clustering. A particularly noteworthy application potential
for our proposed measure lies in the classification of big data, warranting in-depth
exploration.
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