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APPROXIMATING TECHNIQUE INSPIRED BY THE
CUTTING-PLANE METHOD FOR CONVEX MINIMIZATION
PROBLEM OVER A FIXED POINT SET

YASUNORI KIMURA

ABSTRACT. The cutting-plane method is a technique for solving mixed integer
linear programming problems and can be applied to continuous convex optimiza-
tion. Motivated by this fact, we obtain an iterative sequence generated by a
new method analogous to the cutting-plane method and prove its convergence
to a solution to a convex minimization problem over a fixed point set of a given
mapping defined on a complete geodesic space.

1. INTRODUCTION

Convex minimization problems over the set of fixed points of a specific mapping
are hot topics in nonlinear analysis. It is formulated as follows: Let X be a space
having a convexity structure and f: X — ]—o00,00] be a convex function. Find a
point zg € X which minimizes the value of f on the set of fixed points of given
mapping 7: X — X.

We often consider nonexpansive mappings for this problem because they have
some advantages to study in nonlinear and convex analysis. Since the set of fixed
points of such mappings is closed and convex, we may apply various techniques
in convex analysis and the approximation theory of fixed points; see [4,13,17] for
instance. We use many kinds of iterative schemes to generate an approximate
sequence for solving these problems, such as the Mann type method, the Halpern
type method, and several variations of projection methods; for the recent works,
see [5,10,11,15,16,19] and references therein.

The shrinking projection method, proposed as an approximation method for a
family of nonexpansive mappings, strongly relates to the main result of this work.
The following is a simplified version of this method.

Theorem 1.1 (Takahashi-Takeuchi-Kubota [18]). Let H be a real Hilbert space and
C a nonempty closed convex subset of H. Let T" be a nonexpansive mapping of C
into itself such that the set F(T') of fized points of T is nonempty. Let {ay} be a
sequence in [0, a], where 0 < a < 1. For an arbitrarily chosen point x € H, generate
a sequence {x,} by the following iterative scheme: x1 € C, C; = C, and

Yn = QpTp + (1 - Oén)TJJn,

Cnp1={z € Cn: |z —ynl < |z — zall},

Tpgl = Pcn+1:v
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forn € N. Then, {x,} converges strongly to Pppyx € C, where Pk is the metric
projection of H onto a nonempty closed conver subset K of H.

These techniques have been generalized to some complete geodesic spaces with
particular geometrical structures. Among them, we adopt Hadamard spaces for this
work.

The cutting-plane method [6] is mainly known as a technique for solving mixed
integer linear programming problems, and this method has been widely applied to
many kinds of optimization problems, including continuous convex optimization [9].

In this paper, we propose a new iterative method to generate a sequence approx-
imating a solution to a convex minimization problem over the set of fixed points
of nonexpansive mapping. This approach is inspired by the cutting-plane method,
and the generating procedure of the sequence is original compared to the known
algorithms. Moreover, from this result, we obtain some new results generalizing
known theorems, such as a convergence theorem of a sequence generated by the
shrinking projection method in the setting of Hadamard spaces. We also consider
the case that the constraint set is the set of common fixed points of finitely many
nonexpansive mappings.

2. PRELIMINARIES

Let X be a metric space and T: X — X. We call T a nonexpansive mapping if
d(Tz,Ty) < d(x,y) for any z,y € X. We denote by Fix T the set of all fixed points
of T', that is,

FixT'={z¢€ X |Tz = z}.

Let X be a metric space. We say X is a geodesic space if for any z,y € X
with [ = d(z,y), there exists an isometry c;y: [0,!] = X such that ¢;,,(0) = = and
Cey(1) = y. In what follows, we always assume that such a mapping ¢, is unique
for each choice of x,y € X. The image of ¢y is called a geodesic segment between
x and y, and we denote it by [z,y]. For z,y € X with [ = d(z,y) and t € [0, 1], we
define a convex combination tx @ (1 — t)y of x and y with a coefficient ¢ by

(1 - t)l’ Dty = Czy(tl)a

that is, (1 — t)x @ ty is a unique point z satisfying that d(z,z) = tl and d(z,y) =
(1—1)l.

For a geodesic space X, we say X to be a CAT(0) space if for every z,y,z € X
and t € [0, 1], the inequality

d(1 —t)x @ ty, 2)? < td(z,2)* + (1 — t)d(y, 2)* — t(1 — t)d(z,y)*

We note that we usually define a CAT(0) space by using the concept of model space.
In this work, we adopt the equivalent definition mentioned above. In particular, a
complete CAT(0) space is called a Hadamard space. A nonempty closed convex
subset of a Hilbert space is a simple example of a Hadamard space. For more
details of Hadamard space, see [1, 3] for instance.

Let f: X — ]|—o00, 0] be a function on a Hadamard space X. We say f is proper
if the effective domain

Domf={ze X | f(zx) e R}
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of f is not empty. For such f, we may naturally define lower semicontinuity and
convexity. Namely, f is said to be lower semicontinuous if

f(xp) < liminf f(z,)
n—oo
whenever a sequence {z,} C X is convergent to z¢g € X; f is said to be convex if

f(A=troty) <(1—1t)f(z)+1f(y)
for any z,y € X and ¢t € ]0,1[. The set of all minimizers of f on X is denoted by
argmin,¢ x f(y), or simply, argminy f.
Let C be a nonempty closed convex subset of X. The indicator function ic: X —
|—00, 00] for C' is defined by
. 0 xzel),
ic(x) = { ( )

0 (z¢0)

for x € X. From the assumptions of C, we easily see that ic is proper, lower
semicontinuous, and convex.

Let {x,,} be a bounded sequence of a metric space X. Then, zy € X is called
an asymptotic center of {x,} if zy is a minimizer of a function g: X — R defined
by ¢(y) = limsup,,_,. d(z,,y) for y € X. We know that any bounded sequence
has a unique asymptotic center if X is a Hadamard space. We say {z,} to be A-
convergent to zg € X if every subsequence {zy, } of {z,} has an identical asymptotic
center xg.

The following lemma will be used in the main result.

Lemma 2.1. Let X be a Hadamard space and let f: X — |—o00,00] be a proper
lower semicontinuous convex function. Then, for a bounded sequence {y,} C X
with its asymptotic center yg,

f(yo) < limsup f(yn).

n—oo

Proof. Let s = limsup,,_, f(yn) € RU {£oo}. If s = oo, then the inequality
obviously holds. If s = —oo, then {f(y,)} is divergent to —oco. Considering that
f(yo) may have the value oo, we let

C={ze€ X | [f(z) <min{f(yo),0} — 1}.

Then, y, € C for sufficiently large n € N. Since C is closed and convex, the
asymptotic center yo of {y,} belongs to C. It implies that

f(yo) < min{f(yo),0} — 1 < min{f(y0),0} < f(yo),

a contradiction. Thus we may assume s € R. For an arbitrary e € ]0, 0], let
Ce={z€e X | f(z) <s+e}.
Then, y, € C. for sufficiently large n € N. Thus we get yg € C., that is,

flyo) < s+e.

Since € is arbitrary, we have f(yo) < s, the desired result. O
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Let f: X — |—o00,00| be a proper lower semicontinuous convex function on a
Hadamard space X. Then, for z € X, a function g,: X — |—00, 00| defined by

9:(6) = F(9) + (g, 2)’

for y € X has a unique minimizer z,. Using this point, we define a resolvent
operator Ry: X — X by Ryx = z, for each x € X; see [8,14]. We know that Ry is
a nonexpansive mapping and Fix Ry = argminy f.

In a Hadamard space, we can define a metric projection Ppo as a single-valued
mapping of X onto a nonempty closed convex subset C' by Pc = R;,. Since Pox is
a unique minimizer of the function d(-,z) on C, we have

1
R, x = argmin <zc(y) + =d(y, a:)2>
yeX 2

1
= argmin ~d(y, x)?
yeC 2
= argmind(y, x) = Pox.
yeC

Therefore Po is also nonexpansive and Fix Po = C.

3. MAIN RESULT

The cutting-plane method can be regarded as an iterative process generating an
approximating sequence of a solution to the problem. We first solve a problem
without any constraint, and then we add a new constraint by using a hyperplane
generated by the previous solution and define the next subproblem. Repeating
this process, we obtain an approximating sequence converging to a solution to the
original problem. In our method, we use a point defined by a resolvent operator
instead of the solution to each subproblem.

Theorem 3.1. Suppose that X is a Hadamard space and a subset {z € X | d(z,y) <
d(z,xz)} is convex for any x,y € X. Let f: X — |—o00,00] be a proper lower
semicontinuous conver function, and let T: X — X be a nonexpansive mapping.
Let {\,} C]0,00[ be a positive real sequence such that inf,en Ay, > 0. Suppose that
argminy fNFixT # (). Generate a sequence {x,} C X as follows: 1 € X is given,

fi=f, and
Xn={z€ X |d(z,Txy) <d(z,zp)},
frt1 = fn +ix,,
Tnt1 = By, y1fui1Tn
forn € N. Then {x,} is A-convergent to xy € argminy f NFixT'.
Proof. Let v € argminy f N FixT. We know that R}, , is quasinonexpansive with
Fix Ry, f, = argminy A\, f,, = argminy f, for every n € N. On the other hand, since

T is nonexpansive, we have d(u,Tz,) = d(Tu,Tz,) < d(u,z,), and thus v € X,
for every n € N. Therefore we have

frr1(w) = fa(u) +ix, (w) = fu(u) = - = fi(u)
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= = 1 f = 1 f n s
f(u) = inf f(y) = inf foia(v)
which implies u € argminy f, = Fix Ry, for every n € N. It follows that
0 < d(xpt1,u) = d(Ry ZTn,u) < d(zp,u),

and hence the sequence {d(x,,u)} has a limit ¢, € [0,00[. We also have {z,} is
bounded. From the definition of resolvent, we have

n+1fn+1

1
At fr1(Tngr) + §d(l‘n+1’ Tn)®
1
= )‘n+1fn+1 (R)\n+1fn+1xn) + id(Rananxnv xn)z

<m0 ® (1= nar) + gdltu® (1 ) 11,70)?
< tAngrfrt1(w) + (1 = O Angr frgr (Tng1)
+ % (td(u, 7,)* + (1 — t)d(Tns1, 7)) — (1 — t)d(u, Tps1)?)
for t €]0, 1[. Dividing by t/2 and letting t — 0, we get
(3.1) 21 (fas1(@nt1) = For1 (W) + d(@ng1, 20)? < d(u, 20)* — d(u, Tn41)>

From this inequality, we have

0< d(xn+1>$n)2 < 2241 (frt1 (@) = frag1(@ng1)) + d(u,xn)2 - d(u,xn_,_l)z
< D () = B0f fora) ) + o ) 01"
yeX

= d(u, z,)? — d(u, Tpi1)>
—cd -2 =0
Hence d(zn41,2,) — 0 as n — oo. Since xp41 = Ry, fo 0 € Dom fri =
Dom f, N Domiy, C X,, we have d(xn+1,T2,) < d(zp+1,2y,) and thus
0 < d(xn,Try) < d(n, Tnt1) + d(@ny1, Try) < 2d(xp41,2,) — 0.
It follows that d(zy,Tx,) — 0 as n — co.
Let zp € X be an asymptotic center of {z,}, and let {z,,} be an arbitrary

subsequence of {z,} with its asymptotic center w. We show w = xy. Let A\g =
inf,en Ay, > 0. By (3.1), we have

d(u, xnk—l)Q - d(u, $nk)2 > 2)\nk (fnk (xnk) - fnk (u)) + d(a:nk?xnk—l)z
2 2)\0(fnk (xnk) - fnk (u)) + d(xnk’xnk—l)Q
> 2)\0(fnk (xnk) - f(u)),

and thus )
ﬁ (d(u,xnk_l)Q — d(u,ﬂfnk)Z) > f(wnk) — f(u).

Letting k — oo, we have 0 > limsupy,_, . f(2n,)—f(u) and it follows from Lemma 2.1
that

f(w) < limsup f(an,) < f(u) = inf f(y).
k—o0 yeX
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Thus we have w € argminy f. We also have w € FixT'. Indeed, we have
limsup d(zy,, Tw) < limsup(d(xy,, Tzy, ) + d(Tzy,, Tw))
k—o0 k—00
<limsupd(zy,, Ty, ) + limsup d(T'zy, , Tw)
k—o0 k—o0

<limsupd(zy,, Tz, ) + limsup d(x,,, w)
k—o0 k—o0

= limsup d(zy, , w).
k—o00
It shows that T'w is also an asymptotic center of {x,, }. Since the asymptotic center
of a bounded sequence is unique, we get Tw = w and thus w € argminy f NFix T
Then it follows that

lim sup d(xy, , o) < limsup d(zy,, zo)

k—o0 n—oo
< Jiy o ) = = i ).

This shows that z is also an asymptotic center of {z,, }, and therefore zyp = w €
argminy f N FixT. Since every subsequence of {x,} has the identical asymptotic
center zg, {x,} is A-convergent to xy € argminy f N Fix 7T, which is the desired
result. O

Suppose T is the identity mapping on X. In that case, FixT = X, and each X,
in Theorem 3.3 coincides with X. Thus, the sequence in Theorem 3.3 is reduced to
the proximal point algorithm, whose A-convergence was proved by Bacdk [2].

As mentioned in the previous section, we know that the resolvent R;, of the
indicator function i¢ for a nonempty closed convex subset C' of X coincides with
the metric projection Po: X — C. Using this fact, we get the following result,
which was obtained in [12].

Theorem 3.2 (Kimura [12]). Suppose that X is a Hadamard space and a subset
{z € X |d(z,y) <d(z,2)} is convex for any v,y € X. Let T: X — X a nonexpan-
sive mapping with Fix T # (. Generate a sequence {x,} C X as follows: 1 € X is
given, C1 = X, and
Xn={z€X|dzTx,) <d(z,zn)},
Cn+1 = Cn N Xn7
Tnt+l = LCrp1Tn

for n € N. Then {xy,} is A-convergent to xp € FixT.

At the end of this section, we consider the case that the constraint set is the set
of common fixed points of finitely many nonexpansive mappings.

For two nonexpansive mappings S; and So of X into itself such that Fix S; N
Fix Sy #0,1let T: X — X by

Tr=1S @ (1 —1)S,

for z € X, where ¢t € |0,1][. Then, we may prove the following in the same way in
the case of Hilbert spaces: T is also nonexpansive and FixT = Fix S7 N Fix Ss.
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Let {S1,S52,...,Sn} be a finite family of nonexpansive mappings of X into itself,
and suppose that ()], Fix Sy # 0. Define a mapping T': X — X by the following
way: let T1 = Sy,

Tir1 = %SkJrl @ (1 - %) T
fork=1,2,...,m—1,and T = T,,. Then, from the fact mentioned above, we have
T is nonexpansive and

FixT = FixT,, = Fix S,, N FixT,,_1
= Fix S,, NFix S,,_1 NFixT;,_o
=Fix S,, NFix S,,_1 NFix S,,_o N Fix T, _3

m
k=1

Using this mapping 7" with Theorem 3.3, we obtain an iterative sequence {x,,} which
is A-convergent to zo € argmin f N[, Fix Sy.

We can also use the balanced mapping [7] to define a nonexpansive mapping
U such that the set FixU of its fixed points coincides with (", FixSy. For a
finite family of nonexpansive mappings {S1, Sa, ..., Sy, } with (-, Fix Si # 0, their
balanced mapping U: X — X is defined by

1 m
Ux = argmin — d(y, Spx)?

for € X. Then, we know from [7] that U is also a nonexpansive mapping and
FixU =, Fix S.

We remark that if the underlying space is a nonempty closed convex subset of a
Hilbert space, then both mappings coincide with each other, and can be expressed
by a convex combination of given mappings {S1,S2,...,Sy,}, that is,

1 m
T=U==Y 5.

Consequently, we obtain the following new result in the setting of Hilbert spaces.

Theorem 3.3. Let H is a Hilbert space and let f: H — ]—o0,00] be a proper

lower semicontinuous convex function. Let {S1,Sq,...,Sn} be a finite family of
nonexpansive mappings on H, and let
1 m
T=— Sk.

Let {\,} C]0,00[ be a positive real sequence such that inf ey Ay, > 0. Suppose that
argming f N, Fix Sy # 0. Generate a sequence {z,} C H as follows: 1 € H
s giwen, f1 = f, and
Xn={2€ H ||z =Tzl <[z — zall},
Jnv1 = fa +ix,,
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xn‘i“l = R>\n+1fn+1xn

forn € N. Then {x,} is A-convergent to xy € argming f N[, Fix Sk.
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