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The notion of b-metric space is a generalization of traditional metric spaces that
relax the triangle inequality, allowing for more flexibility in various mathematical
contexts. They have emerged as significant tools in fixed point theory, which is
crucial for solving existence problems in analysis and applied mathematics. Thus,
the difference between the two notions: metric and b-metric appears in the third
axiom. There the right hand side contains the given real number b ≥ 1. Obviously,
the b-metric is a usual metric by taking b = 1. However, it does not require the
triangle inequality to hold strictly. This flexibility enables the exploration of new
types of convergence and continuity, which are essential in various mathematical
analyses.

Example 1.2 ( [4]). The space Lp[0, 1] (where 0 < p < 1) of all real functions

ρ(t), t ∈ [0, 1] such that
∫ 1
0 |ρ(t)|pd̂t < ∞, together with the functional d̂(ρ, ω) :=

(
∫ 1
0 |ρ(t)− ω(t)|pd̂t)1/p, is a b-metric space. Notice that b = 21/p.

Example 1.3 ([4]). For 0 < p < 1, the set
lp(R) := {(ρn) ⊂ R|

∑∞
n=1 |ρn|p < ∞} together with the functional

d̂ : lp(R) × lp(R) → R, d̂(ρ, ω) := (
∑∞

n=1 |ρn − ωn|p)1/p, is a b-metric space with

coefficient b = 21/p > 1. Notice that the above result holds for the general case
lp(Ω) with 0 < p < 1, where Ω is a Banach space.

The classical notions of mathematical analysis are similar in this new context.
For the next notions and related ones see Berinde [4], Czerwik [10], Miculescu-
Mihail [18].

Let (Ω, d̂) be a metric space. We will use the following standard notations:
P(Ω) - the set of all nonempty subsets of Ω;
Pcl(Ω) - the set of all nonempty closed subsets of Ω;
Pcp(Ω) - the set of all nonempty compact subsets of Ω;
Fix(Φ) := {ρ ∈ Ω | ρ ∈ Φ(ρ)} - the set of the fixed points of Φ;
SFix(Φ) := {ρ ∈ Ω | {ρ} = Φ(ρ)} - the set of the strict fixed points of Φ.
Denote by N be the set of all natural numbers and by N∗ := N ∪ {0}.
Let us introduce the following generalized functionals on a b-metric space (Ω, d̂).
The gap functional:

(1) ̂̄D : M(Ω)× P(Ω) → R+ ∪ {+∞}

̂̄D(L,P ) =

 inf{d̂(ℓ, ℘)| ℓ ∈ L, ℘ ∈ P}, L ̸= ∅ ̸= P
0, L = ∅ = P
+∞, otherwise.

In particular, if ρ0 ∈ Ω then ̂̄D(ρ0, P ) := ̂̄D({ρ0}, P ).
The excess generalized functional:

(2) α : M(Ω)×M(Ω) → R+ ∪ {+∞}

α(L,P ) =

 sup{ ̂̄D(ℓ, P )| ℓ ∈ L}, L ̸= ∅ ̸= P
0, L = ∅
+∞, P = ∅ ̸= L.
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Pompeiu-Hausdorff generalized functional:

(3) H : M(Ω)×M(Ω) → R+ ∪ {+∞}

H(L,P ) =

 max{α(L,P ), α(P,L)}, L ̸= ∅ ̸= P
0, L = ∅ = P
+∞, othewise.

δ functional:
(4) δ : M(Ω)×M(Ω) → R+ ∪ {+∞}

δ(L,P ) =

 sup{d̂(ℓ, ℘)| ℓ ∈ L, ℘ ∈ P}, L ̸= ∅ ̸= P
0, L = ∅ = P
+∞, otherwise.

If L = P we have δ(L,L) := δ(L).
It is known (Czerwik [9]) that (M℘,ζl(Ω),H) is a complete b-metric space provided

(Ω, d̂) is a complete b-metric space.
The following lemmas are useful in the proof of main results (see [9]).

Lemma 1.4. Let (Ω, d̂) be a b-metric space, L ∈ M(Ω) and ρ ∈ Ω. Then

(i) ̂̄D(ρ, L) = 0 if and only if ρ ∈ L,

(ii) ̂̄D(ρ, L) ≤ σ[d̂(ρ, ω) + ̂̄D(ω,L)], for all ρ, ω ∈ Ω and L ⊂ Ω,

(iii) d̂(ρn, ρ0) ≤ σd̂(ρ0, ρ1) + · · ·+ σn−1d̂(ρn−2, ρn−1) + σn−1d̂(ρn−1, ρn).
(iv) H(L,Z) ≤ σ[H(L,P ) + H(P,Z)], for all L,P, Z ∈ M(Ω).

Lemma 1.5. Let (Ω, d̂) be a b-metric space and L,P ∈ M(Ω). For each υ > 1 and
for all ℓ ∈ L there exists ℘ ∈ P such that

d̂(ℓ, ℘) ≤ υH(L,P ).

Definition 1.6. Let (Ω, d̂) be a b-metric space. Then a sequence (ρn)n∈N in Ω is
called:

(i) Cauchy if and only if for all ε > 0 there exists n(ε) ∈ N such that for each

n,m ≥ n(ε) we have d̂(ρn, ρm) < ε.
(ii) convergent if and only if there exists ρ ∈ Ω such that for all ε > 0 there

exists n(ε) ∈ N such that for all n ≥ n(ε) we have d̂(ρn, ρ) < ε. In this case
we write lim

n→∞
ρn = ρ.

Definition 1.7. Let (Ω, d̂) be a b-metric space. Then, a subset Y of Ω is called:

(i) compact if and only if for every sequence of elements of Y there exists a
subsequence that converges to an element of Y.

(ii) closed if and only if for each sequence (ρn)n∈N in Y which converges to an
element ρ, we have ρ ∈ Y

The b-metric space (Ω, d̂) is complete if every Cauchy sequence from Ω converges
in Ω.

Lemma 1.8. Notice that in a b-metric space (Ω, d̂) the following assertions hold:

(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;
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In general, a b-metric is not continuous and the open ball B(ρ0; r) := {ρ ∈ Ω :

d̂(ρ0, ρ) < r} in a b-metric space (Ω, d̂) is not necessary an open set, while the closed

ball B̃(ρ0; r) := {ρ ∈ Ω : d̂(ρ0, ρ) ≤ r} is not necessary a closed set. Related notions,
results and examples can be found in [2, 16] and [18].

Let Ω be a nonempty set, ⪯ be a partial order relation on Ω and d̂ be a complete

b-metric on Ω with the constant b ≥ 1. Then, the triple (Ω, d̂,⪯) is said to be:

(1) i-regular if for any increasing sequence (ρn)n∈N which is convergent to ρ∗ as
n → ∞, we have that ρn ⪯ ρ∗, for all n ∈ N;

(2) d-regular if for any decreasing sequence (ρn)n∈N which is convergent to ρ∗

as n → ∞, we have that ρn ⪰ ρ∗, for all n ∈ N.
Common fixed points are a significant concept in mathematical analysis, partic-

ularly in the study of mappings in metric spaces. When considering two or more
mappings, a common fixed point is a point that serves as a fixed point for all the
mappings involved. Various theorems have been developed to establish conditions
involved, such as continuity and commutativity of the mappings, under which com-
mon fixed points exist for two or more mappings (see [1, 7, 11, 26]). Common fixed
point results are used in various fields, including differential equations, optimization
problems, and even in the analysis of iterative methods used in numerical compu-
tations. The existence of common fixed points often leads to solutions of complex
mathematical problems by ensuring that certain iterative processes converge to a
stable solution.

The purpose of this paper is to give new common fixed point for Ćirić type

operators where (Ω,⪯, d̂) is a complete b-metric space endowed with a partial order
relation. Our results extend and generalize Ran-Reurings results and some other
results in the recent literature too.(see [6,20,21,29,32], etc.). Moreover, we give an
example and an application to strength the main theorems of our paper.

2. Common fixed points results

Starting with theorem of Ran and Reurings (see [35]) a new research direction in
the field of fixed point theory is given. The authors considered the following fixed
point inclusion ρ ∈ Φ(ρ), ρ ∈ Ω, where the set Ω is endowed with a partial order

relation ⪯ and the metric d̂ is a complete metric. The function Φ : Ω → P(Ω)
satisfies the contraction condition only for comparable elements (with respect to ⪯)
of the space. For other results on this topic (see [36]).

For the convenience of the reader let us recall the following theorem.

Theorem 2.1 ( [35]). Let (Ω,⪯) be a partially ordered set such that every pair

ρ, ω ∈ Ω has a lower bound and an upper bound. Furthermore, let d̂ be a metric

on Ω such that (Ω, d̂) is a complete metric space. Suppose that Φ : Ω → Ω is a
continuous and monotone (i.e., either increasing or decreasing) operator, for which
there exists c ∈ (0, 1) such that the following conditions are satisfied:

(2.1) d̂(Φ(ρ),Φ(ω)) ≤ cd̂(ρ, ω), for every ρ ⪰ ω,

(2.2) there exists ρ0 ∈ Ω such that ρ0 ⪯ Φ(ρ0) or ρ0 ⪰ Φ(ρ0).
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Then Φ is a Picard operator, i.e., Φ has a unique fixed point ρ∗ ∈ Ω and
limn→∞Φn(ρ) = ρ∗, for every ρ ∈ Ω.

Next, we recall the following lemma.

Lemma 2.2 ( [18]). Every sequence (ρn)n∈N of elements from a b-metric space

(Ω, d̂) with constant b ≥ 1 having the property that there exists γ ∈ [0, 1) such that

d̂(ρn+1, ρn) ≤ γd̂(ρn, ρn−1), n ∈ N is a Cauchy sequence. Moreover, the following
estimation holds

d̂(ρn+1, ρn+p) ≤
γnB

1− γ
d̂(ρ0, ρ1), for all n, p ∈ N,

where B :=
∑∞

i=1 γ
2i logγ b+2i−1

.

We give our first main result, a Ran-Reurings type theorem for Ćirić type oper-
ators.

Theorem 2.3. Let Ω be a nonempty set, let ⪯ be a partial order on Ω and let d̂
be a complete b-metric on Ω with the constant b ≥ 1. Let Ψ,Φ : Ω → Pcl(Ω) be two
increasing multivalued operators with respect to ⪯, for which there exists q ∈ (0, 1b )
such that:

(i) there is ρ0, ρ1 ∈ ρ with ρ0 ⪯ Ψ(ρ0), respectively ρ1 ⪯ Φ(ρ1);

(ii) Ψ and Φ have closed graph with respect to d̂ or the space (Ω, d̂,⪯) is i-regular;

(iii) H(Ψ(ρ),Φ(ω)) ≤ qmax{d̂(ρ, ω), ̂̄D(ρ,Ψ(ρ)), ̂̄D(ω,Φ(ω)), 12(
̂̄D(ρ,Φ(ω))+ ̂̄D(ω,

Ψ(ρ)))} for all ρ, ω ∈ Ω with ρ ⪯ ω.

Then the mappings Ψ and Φ have a common fixed point.

Proof. Let ρ0, ρ1 ∈ Ω with ρ0 ⪯ Ψ(ρ0) and ρ1 ⪯ Φ(ρ1). If ρ0 = ρ1 we obtain the
conclusion. Let ρ0 ̸= ρ1 and ρ1 /∈ Φ(ρ1) we define a sequence {ρn} as follows

(2.3) ρ2n+1 ∈ Ψ(ρ2n) and ρ2n+2 ∈ Φ(ρ2n+1), n = 0, 1, 2, . . . .

By the monotonicity of the mappings Ψ and Φ, we get that (ρn)n∈N is increasing.
For ρ1 ∈ Ψ(ρ0), by the properties of the functional H there exists p > 1 and
ρ2 ∈ Φ(ρ1) such that:

d̂(ρ1, ρ2) ≤ pH(Ψ(ρ0),Φ(ρ1)) ≤ pqmax{d̂(ρ0, ρ1), ̂̄D(ρ0,Ψ(ρ0)), ̂̄D(ρ1,Φ(ρ1)),

1

2
( ̂̄D(ρ0,Φ(ρ1) + ̂̄D(ρ1,Ψ(ρ0))))}

≤ pqmax
{
d̂(ρ0, ρ1), d̂(ρ0, ρ1), d̂(ρ1, ρ2),

1

2
(d̂(ρ0, ρ2) + d̂(ρ1, ρ1)))

}
≤ pqmax

{
d̂(ρ0, ρ1), d̂(ρ1, ρ2),

b

2
(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))

}
.

Further we shall prove that (ρn)n∈N is a Cauchy sequence. Then for p ∈ (1, b) ∪
[b,∞) we have pq ∈ (0, 1) ∪ [1,∞).

(I) If pq ∈ (0, 1) we have the following cases:

Case 1. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = d̂(ρ1, ρ2), then

we have:
d̂(ρ1, ρ2) ≤ pq · d̂(ρ1, ρ2),
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which contradicts pq ∈ (0, 1).

Case 2. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = d̂(ρ0, ρ1), then

we have:

d̂(ρ1, ρ2) ≤ pq · d̂(ρ0, ρ1),
By Lemma 2.2 we get that the sequence (ρn)n∈N is a Cauchy sequence.

Case 3. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = b

2(d̂(ρ0, ρ1) +

d̂(ρ1, ρ2)), then we obtain:

d̂(ρ1, ρ2) ≤
qb

2
(d̂(ρ0, ρ1) + d̂(ρ1, ρ2))

which is equivalent to

d̂(ρ1, ρ2) ≤
qb

2− qb
d̂(ρ0, ρ1).

Hence we have:

d̂(ρ1, ρ2) ≤ γd̂(ρ0, ρ1),

where γ = max{q, qb
2−qb} < 1.

By induction we get that

d̂(ρn, ρn+1) ≤ γd̂(ρn, ρn−1), ∀n ∈ N∗.

Applying Lemma 2.2 we obtain that the sequence (ρn)n∈N is Cauchy.
(II) If pq ∈ [1,∞) we have the following cases.

Case 1. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = d̂(ρ1, ρ2), then

we have:

d̂(ρ1, ρ2) ≤ pq · d̂(ρ1, ρ2).
If we let p → 1 we get q ≥ 1. Contradiction.

Case 2. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = d̂(ρ0, ρ1), then

we have:

d̂(ρ1, ρ2) ≤ pq · d̂(ρ0, ρ1).
In this way we find that d̂(ρn, ρn+1) ≤ (pq)nd̂(ρ0, ρ1).
For m,n ∈ N, with m > n, we have

d̂(ρn, ρm) ≤ b[d̂(ρn, ρn+1) + d̂(ρn+1, ρm)]

≤ b(d̂(ρn, ρn+1)) + b2[d̂(ρn+1, ρn+2) + d̂(ρn+2, ρm]

≤ b(d̂(ρn, ρn+1)) + b2(d̂(ρn+1, ρn+2)) + b3(d̂(ρn+2, ρn+3))

+ · · ·+ bm−n−1(d̂(ρm−2, ρm−1)) + bm−n(d̂(ρm−1, ρm).

Moreover, we have

d̂(ρn, ρm) ≤ b(pq)n(d̂(ρ0, ρ1)) + b2(pq)n+1(d̂(ρ0, ρ1)) + b3(pq)n+2(d̂(ρ0, ρ1))

+ · · ·+ bm−n−1(pq)m−2(d̂(ρ0, ρ1)) + bm−n(pq)m−1(d̂(ρ0, ρ1))

=
m−n∑
i=1

bi(pq)i+n−1(d̂(ρ0, ρ1)).



COMMON FIXED POINT THEOREMS OF RAN-REURINGS TYPE IN b-METRIC SPACES 843

Therefore,

d̂(ρn, ρm) ≤
m−n∑
i=1

bi+n−1(pq)i+n−1d̂(ρ0, ρ1) =
m−1∑
t=n

bt(pq)td̂(ρ0, ρ1)

≤
∞∑
t=n

(bpq)td̂(ρ0, ρ1) =
(bpq)n

1− bpq
d̂(ρ0, ρ1).

If we let p → 1 and n → ∞ we obtain

d̂(ρn, ρm) ≤ (bq)n

1− bq
d̂(ρ0, ρ1) → 0.

Therefore {ρn} is a Cauchy sequence in Ω.

Case 3. If max{d̂(ρ0, ρ1), d̂(ρ1, ρ2), b
2(d̂(ρ0, ρ1) + d̂(ρ1, ρ2)))} = b

2(d̂(ρ0, ρ1) +

d̂(ρ1, ρ2)), then we obtain:

d̂(ρ1, ρ2) ≤
pqb

2
(d̂(ρ0, ρ1) + d̂(ρ1, ρ2))

which is equivalent to

d̂(ρ1, ρ2) ≤
pqb

2− pqb
d̂(ρ0, ρ1).

Hence we have:

d̂(ρ1, ρ2) ≤ γd̂(ρ0, ρ1),

where γ = max{q, pqb
2−pqb} < 1.

By induction we get that

d̂(ρn, ρn+1) ≤ γd̂(ρn, ρn−1), ∀n ∈ N∗.

For m,n ∈ N, with m > n, we have

d̂(ρn, ρm) ≤ b[d̂(ρn, ρn+1) + d̂(ρn+1, ρm)]

≤ b(d̂(ρn, ρn+1)) + b2[d̂(ρn+1, ρn+2) + d̂(ρn+2, ρm]

≤ b(d̂(ρn, ρn+1)) + b2(d̂(ρn+1, ρn+2)) + b3(d̂(ρn+2, ρn+3))

+ · · ·+ bm−n−1(d̂(ρm−2, ρm−1)) + bm−n(d̂(ρm−1, ρm).

Moreover, we have

d̂(ρn, ρm) ≤ bγn(d̂(ρ0, ρ1)) + b2γn+1(d̂(ρ0, ρ1)) + b3γn+2(d̂(ρ0, ρ1))

+ · · ·+ bm−n−1γm−2(d̂(ρ0, ρ1)) + bm−nγm−1(d̂(ρ0, ρ1))

=
m−n∑
i=1

biγi+n−1(d̂(ρ0, ρ1)).

Therefore,

d̂(ρn, ρm) ≤
m−n∑
i=1

bi+n−1γi+n−1d̂(ρ0, ρ1) =
m−1∑
t=n

btγtd̂(ρ0, ρ1)
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≤
∞∑
t=n

(bγ)td̂(ρ0, ρ1) =
(bγ)n

1− bγ
d̂(ρ0, ρ1).

If we let n → ∞ we obtain d̂(ρn, ρm) → 0.
Therefore {ρn} is a Cauchy sequence in Ω.
Since (ρn)n∈N is Cauchy in all the presented cases, by the completeness of the

b−metric space, we have that the sequence converges in (Ω, d̂) to an element ρ∗(ρ0) ∈
Ω. We prove that ρ∗(ρ0) is a common fixed point for the mappings Ψ and Φ. For
convenience we will write ρ∗ instead of ρ∗(ρ0).

If Ψ and Φ have closed graph then the conclusion is obvious.

If the space (Ω, d̂,⪯) is i−regular, for operator Ψ we havê̄D(ρ∗,Ψ(ρ∗)) ≤ b ̂̄D(ρ∗,Ψ(ρ2n)) + bH(Ψ(ρ2n),Ψ(ρ∗))

≤ b ̂̄D(ρ∗,Ψ(ρ2n)) + bqmax{d̂(ρ2n, ρ∗), ̂̄D(ρ2n,Ψ(ρ2n)), ̂̄D(ρ∗,Ψ(ρ∗)),

1

2
( ̂̄D(ρ2n,Ψ(ρ∗)) + ̂̄D(ρ∗,Ψ(ρ2n)))}

≤ bd̂(ρ∗, ρ2n+1) + pbqmax
{
d̂(ρ2n, ρ

∗), d̂(ρ2n, ρ2n+1), ̂̄D(ρ∗,Ψ(ρ∗)),

b

2
(d̂(ρ2n, ρ

∗) + ̂̄D(ρ∗,Ψ(ρ∗))),
1

2
d̂(ρ∗, ρ2n+1)

}
= bd̂(ρ∗, ρ2n+1) + pbqmax

{
d̂(ρ2n, ρ

∗), d̂(ρ2n, ρ2n+1), ̂̄D(ρ∗,Ψ(ρ∗)),

b

2
(d̂(ρ2n, ρ

∗) + ̂̄D(ρ∗,Ψ(ρ∗))),
1

2
d̂(ρ∗, ρ2n+1)

}
≤ bd̂(ρ∗, ρ2n+1) + pbqmax

{
bd̂(ρ2n, ρ

∗), d̂(ρ2n, ρ2n+1), b ̂̄D(ρ∗,Ψ(ρ∗)),

1

2
d̂(ρ∗, ρ2n+1)

}
.

By letting n → ∞, we get̂̄D(ρ∗, S(ρ∗)) ≤ bq ̂̄Dd̂(ρ∗,Ψ(ρ∗)),

which implies that ̂̄D(ρ∗,Ψ(ρ∗)) = 0. Since Ψ is closed ρ∗ ∈ Ψ(ρ∗).
In the same way we prove that ρ∗ is a fixed point for Φ. Then we have:̂̄D(ρ∗,Φ(ρ∗)) ≤ b ̂̄D(ρ∗,Φ(ρ2n+1)) + bH(Φ(ρ2n+1),Ψ(ρ∗))

≤ b ̂̄D(ρ∗,Φ(ρ2n+1)) + bqmax
{
d̂(ρ2n+1, ρ

∗), ̂̄D(ρ2n+1,Φ(ρ2n+1)), ̂̄D(ρ∗,Φ(ρ∗)),

1

2
( ̂̄D(ρ2n+1,Φ(ρ

∗)) + ̂̄D(ρ∗,Φ(ρ2n+1)))
}

≤ bd̂(ρ∗, ρ2n+2) + pbqmax
{
d̂(ρ2n+1, ρ

∗), d̂(ρ2n+1, ρ2n+2), ̂̄D(ρ∗,Φ(ρ∗)),

b

2
(d̂(ρ2n+1, ρ

∗) + ̂̄D(ρ∗,Φ(ρ∗))),
1

2
d̂(ρ∗, ρ2n+2)

}
= bd̂(ρ∗, ρ2n+2) + bqmax

{
d̂(ρ2n+1, ρ

∗), d̂(ρ2n+1, ρ2n+2), ̂̄D(ρ∗,Φ(ρ∗)),
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b

2
(d̂(ρ2n+1, ρ

∗) + ̂̄D(ρ∗,Φ(ρ∗))),
1

2
d̂(ρ∗, ρ2n+2)

}
≤ bd̂(ρ∗, ρ2n+2) + pbqmax

{
bd̂(ρ2n+1, ρ

∗), d̂(ρ2n+1, ρ2n+2),

bd̂(ρ∗,Φ(ρ∗)),
1

2
d̂(ρ∗, ρ2n+2)

}
.

Also, if n → ∞, we get ̂̄D(ρ∗,Φ(ρ∗)) ≤ pbq ̂̄D(ρ∗,Φ(ρ∗)),

which implies that ̂̄D(ρ∗,Φ(ρ∗)) = 0. Since Φ is closed we get ρ∗ ∈ Φ(ρ∗).
Then ρ∗ is a common fixed point for the mappings Ψ and Φ. □

Remark 2.4. A similar result we can be obtained if we replace the condition
ρ0 ⪯ Φ(ρ0) with Φ(ρ0) ⪯ ρ0, respectively ρ0 ⪯ Ψ(ρ0) with Ψ(ρ0) ⪯ ρ0 and the

i-regularity of the space (Ω, d̂) with its d-regularity.

Corollary 2.5. If all the conditions of Theorem 2.3 are satisfied then the common
fixed point of the multivalued operators Ψ and Φ is unique.

Proof. We assume that ω∗ ∈ Ω is another common fixed point for the mappings Ψ
and Φ. Then we get

d̂(ρ∗, ω∗) ≤ pH(Ψρ∗,Φω∗)

≤ pqmax
{
d̂(ρ∗, ω∗), ̂̄D(ρ∗,Ψρ∗), ̂̄D(ω∗,Φω∗),

1

2
( ̂̄D(ρ∗,Φω∗) + ̂̄D(ω∗,Ψρ∗))

}
≤ pqmax

{
d̂(ρ∗, ω∗), d̂(ρ∗, ρ∗), d̂(ω∗, ω∗),

1

2
(d̂(ρ∗, ω∗) + d̂(ω∗, ρ∗))

}
.

≤ pqd̂(ρ∗, ω∗).

This implies that ρ∗ = ω∗, which completes the proof. □

Remark 2.6. One can obtain a similar result by replacing the condition ρ0 ⪯ Ψ(ρ0)
with Ψ(ρ0) ⪯ ρ0 and the i-regularity of the space with its d-regularity.

Example 2.7. Let Ω = [0,∞) and let us define the order relation as follows:

ρ ≤ ω if and only if ρ ≤ Φρ and ω ≤ Ψω.

Let us also define the b-metric d̂ : Ω × Ω → R+ by d̂(ρ, ω) = (ρ − ω)2. We can
notice that the constant from the definition of the b-metric is b = 2.

It is obvious that (Ω, d̂,≤) is a complete b-metric space.
Let us consider the following operators Ψ,Φ : Ω → PclΩ defined by Ψρ = {1

2ρ}
and Φρ = {1

4ρ}.
Next we must check the Ćirić-type contraction condition

d̂(ρ, ω) ≤ pH(Φρ,Ψω)

≤ pqmax
{
d̂(ρ, ω), ̂̄D(ρ,Ψρ), ̂̄D(ω,Φω),

1

2
( ̂̄D(ρ,Φω) + ̂̄D(ω,Ψρ))

}
,

for all ρ, ω ∈ ρ with ρ ≤ ω.
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For q < 1
2 let p ∈ (1, 2). For ρ ≤ ω we have:

d̂
(1
2
ρ,

1

4
ω
)
≤ pqmax

{
d̂(ρ, ω), d̂

(
ρ,

1

2
ρ
)
, d̂
(
ω,

1

4
ω
)
,
1

2

(
d̂
(
ρ,

1

4
ω
)
+ d̂

(
ω,

1

2
ρ
))}

.

Using the b-metric we obtain:(1
2
ρ− 1

4
ω
)2

≤ pqmax
{
(ρ− ω)2,

(
ρ− 1

2
ρ
)2

,
(
ω − 1

4
ω
)2

,

1

2

(
d̂
(
ρ− 1

4
ω
)2

+
(
ω − 1

2
ρ
)2)}

.

After computations we get:

1

16
ω2 ≤ pqmax

{
0,

1

4
ω2,

1

4
ω2,

13

32
ω2

}
.

Then 1
16 ≤ pq 13

32 . This yields for pq ≥ 2
13 .

Since all the hypothesis of Corollary 2.5 are accomplished we get that Ψ(0) =
Φ(0) = 0 is the unique fixed point of Ψ and Φ.

If we get Ψ=Φ in Theorem 2.3 we give the following Ran-Reurings type fixed
points theorem for Ćirić type operators.

Theorem 2.8. Let Ω be a nonempty set, ⪯ be a partial order on Ω and d̂ be
a complete b-metric on Ω with the constant b ≥ 1. Let Φ : Ω → Pcl(Ω) be an
increasing mapping with respect to ⪯, for which there exists q ∈ (0, 1b ) such that:

(i) there is ρ0 ∈ Ω with ρ0 ⪯ Φ(ρ0);

(ii) Φ has closed graph with respect to d̂ or the space (Ω, d̂,⪯) is i-regular;

(iii) H(Φρ,Φω) ≤ qmax{d̂(ρ, ω), ̂̄D(ρ,Φρ), ̂̄D(ω,Φω), 12(
̂̄D(ρ,Φω) + ̂̄D(ω,Φρ))}

for all ρ, ω ∈ Ω with ρ ⪯ ω.

Then the multivalued operator Φ has a unique fixed point.

Remark 2.9. A similar result holds if we replace the condition ρ0 ⪯ Φ(ρ0) with
Φ(ρ0) ⪯ ρ0 and the i-regularity of the space with its d-regularity.

Let us give the singlevalued version of the previous result.

Corollary 2.10. Let Ω be a nonempty set, ⪯ be a partial order on Ω and d̂ be
a complete b-metric space on Ω with the constant b ≥ 1. Let Φ : Ω → Ω be an
increasing mapping with respect to ⪯, for which there exists q ∈ (0, 1b ) such that

(i) there exists ρ0 ∈ Ω with ρ0 ⪯ Φ(ρ0);

(ii) Φ have closed graph with respect to d̂ or the space (Ω, d̂,⪯) is i-regular;

(iii) d̂(Φ(ρ),Φ(ω)) ≤ qmax{d̂(ρ, ω), d̂(ρ,Φρ), d̂(ω,Φω), 12(d̂(ρ,Φω) + d̂(ω,Φρ))},
for all ρ, ω ∈ Ω with ρ ⪯ ω.

Then the mapping Φ has a unique fixed point.

Another fixed point result for multivalued operators case is the following.

Theorem 2.11. Let Ω be a nonempty set, ⪯ be a partial order on Ω and d̂ be
a complete b-metric on Ω with the constant b ≥ 1. Let Φ : Ω → Pcl(Ω) be an
increasing multivalued operator with respect to ⪯, for which there exists q ∈ (0, 1b )
such that:
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(i) there is ρ0 ∈ Ω with ρ0 ⪯ Φ(ρ0);

(ii) Φ has closed graph with respect to d̂ or the space (ρ, d̂,⪯) is i-regular;
(iii) H(ΦnΩ,Φnω)

≤ qmax{d̂(ρ, ω), ̂̄D(ρ,Φnρ), ̂̄D(ω,Φnω), 12(
̂̄D(ρ,Φnω) + ̂̄D(ω,Φnρ))}

for all ρ, ω ∈ Ω with ρ ⪯ ω.

Then the operator Φ has a unique fixed point.

Proof. By Theorem 2.8 we obtain ρ∗ ∈ Ω such that

ρ∗ ∈ Φnρ∗.

There exists p¿1 such that:̂̄D(Φρ∗, ρ∗) ≤ pH(Φ(Φn(ρ∗)),Φn(ρ∗)) = pH(Φn(Φ(ρ∗)),Φn(ρ∗))

≤ pqmax
{̂̄D(Φ(ρ∗), ρ∗),H(Φ(ρ∗),Φn(Φ(ρ∗))), ̂̄D(ρ∗,Φn(ρ∗)),

1

2
(H(Φ(ρ∗),Φn(ρ∗)) + ̂̄D(ρ∗,Φn(Φ(ρ∗))))

}
≤ pqmax

{̂̄D(Φρ∗, ρ∗),H(Φ(ρ∗),Φ(ρ∗)), d̂(ρ∗, ρ∗),

1

2
( ̂̄D(Φ(ρ∗), ρ∗) + ̂̄D(ρ∗,Φ(ρ∗)))

}
≤ pq ̂̄D(Φρ∗, ρ∗).

Then Φn(ρ∗) ∈ Φ(ρ∗) and ρ∗ ∈ Φ(ρ∗). □

The next result represents the relation between the fixed point and strict fixed
point sets. Also the well-posedness of the fixed point problem with respect to the

functionals ̂̄D, respectively H will be given.

Theorem 2.12. Let (Ω, d̂) be a complete b-metric space with constant b > 1. Sup-
pose that all the hypotheses of Theorem 2.8. Suppose also that SFix(Φ) ̸= ∅ then
we have:

(i) Fix(Φ) = SFix(Φ) = {ρ∗}.
(ii) (Well-posedness of the fixed point problem with respect to ̂̄D)

If (ρn)n∈(N) is a sequence in Ω such that ̂̄D(ρn,Φ(ρn)) → 0 as n → ∞, then

ρn
d̂→ ρ∗ as n → ∞.

(iii) (Well-posedness of the fixed point problem with respect to H)
If (ρn)n∈(N) is a sequence in Ω such that H(ρn,Φ(ρn)) → 0 as n → ∞, then

ρn
d̂→ ρ∗ as n → ∞.

Proof. (ii) From Theorem 2.8, we get that Fix(Φ) ̸= ∅. Let ρ∗ ∈ SFix(Φ). Notice
first that SFix(Φ) = {ρ∗}. We will prove that Fix(Φ) = {ρ∗}. Let ω ∈ Fix(Φ), i.e.
ω ∈ Φ(ω) with ω ⪯ Φ(ω) and ω ̸= ρ∗. We estimate the following distance

d̂(ρ∗, ω) = ̂̄D(Φ(ρ∗), ω) ≤ H(Φ(ρ∗),Φ(ω))

≤ qmax
{
d̂(ρ∗, ω), ̂̄D(ρ∗,Φ(ρ∗)), ̂̄D(ω,Φ(ω)),

1

2
( ̂̄D(ρ∗,Φ(ω)) + ̂̄D(ω,Φ(ρ∗)))

}
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≤ qd̂(ρ∗, ω).

Contradiction. Then d̂(ρ∗, ω) = 0, so ρ∗ = ω. Hence Fix(Φ) ⊂ SFix(Φ). Since
SFix(Φ) ⊂ Fix(Φ) we obtain that SFix(Φ) = Fix(Φ).

The uniqueness condition for the strict fixed point can be proved using same
method.
(ii) Let ρ∗ ∈ SFix(Φ) and let (ρn)n∈N be a sequence in Ω such that̂̄D(ρn,Φ(ρn)) → 0, as n → ∞. Then for vn ∈ Φ(ρn) with vn ⪯ Φ(ρn), such that

d̂(ρn, vn) = ̂̄D(ρn,Φ(ρn)), n ∈ N, we have:

d̂(ρn, ρ
∗) ≤ b[d̂(ρn, vn) + d̂(vn, ρ

∗)] = b[d̂(ρn, vn) + ̂̄D(vn,Φ(ρ
∗))]

≤ b[d̂(ρn, vn) + H(Φ(ρn),Φ(ρ
∗))]

≤ b
[ ̂̄D(ρn,Φ(ρn)) + qmax

{
d̂(ρn, ρ

∗), ̂̄D(ρn,Φ(ρn)), ̂̄D(ρ∗,Φ(ρ∗)),

1

2
( ̂̄D(ρ∗,Φ(ρn)) + ̂̄D(ρn,Φ(ρ

∗)))
}]

≤ b[ ̂̄D(ρn,Φ(ρn)) + qd̂(ρn, ρ
∗)].

Then we obtain d̂(ρn, ρ
∗) ≤ b

1−bq
̂̄D(ρn,Φ(ρn)) → 0 as n → ∞.

Then d̂(ρn, ρ
∗) → 0 as n → ∞ which means the fixed point problem is well posed

with respect to ̂̄D.
(iii) Let ρ∗ ∈ SFix(Φ) and let (ρn)n∈N be a sequence in Ω such that H(ρn,Φ(ρn)) →
0, as n → ∞. Then for vn ∈ Φ(ρn) with vn ⪯ Φ(ρn), such that d̂(ρn, vn) =
pH(ρn,Φ(ρn)), for p > 1 and n ∈ N, we have:

d̂(ρn, ρ
∗) ≤ b[d̂(ρn, vn) + d̂(vn, ρ

∗)] = b[d̂(ρn, vn) + ̂̄D(vn,Φ(ρ
∗))]

≤ b[pH(ρn,Φ(vn)) + H(Φ(ρn),Φ(ρ
∗))]

≤ b
[
pH(ρn,Φ(ρn)) + qmax

{
d̂(ρn, ρ

∗), ̂̄D(ρn,Φ(ρn)), ̂̄D(ρ∗,Φ(ρ∗)),

1

2
( ̂̄D(ρ∗,Φ(ρn)) + ̂̄D(ρn,Φ(ρ

∗)))
}]

≤ b[pH(ρn,Φ(ρn)) + qd̂(ρn, ρ
∗)].

Then we obtain d̂(ρn, ρ
∗) ≤ bp

1−qbH(ρn,Φ(ρn)) → 0 as n → ∞.

Then d̂(ρn, ρ
∗) → 0 as n → ∞ which means the fixed point problem is well posed

with respect to H. □

3. Applications in integral type contractions

Further, let us give some applications of our results in integral type contractions.
Then, we recall next the definition for altering distance function.

Definition 3.1. The function φ : [0,∞) → [0,∞) is called an altering distance
function, if the following assertions hold:

(i) φ is continuous and nondecreasing,
(ii) φ(t) = 0 if and only if t = 0.
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Let us give the following definition.

Definition 3.2. Let F be the set of the function f : [0,∞) → [0,∞) that satisfies
the following conditions:

(i) f is Lebesgue Integrable on each compact subset of [0,∞);
(ii)

∫ ε
0 f(t)dt > 0 for every ε > 0.

Remark 3.3. It is obvious that a mapping Ψ : [0,∞) → [0,∞) given by

Ψ(t) =

∫ ε

0
f(t)dt > 0,

is an altering distance function.

Our first integral type theorem is the following.

Theorem 3.4. Let Ω be a nonempty set, ⪯ be a partial order on Ω, and d̂ be a
complete b-metric on Ω with the constant b ≥ 1. Let Ψ,Φ : Ω → Pcl(Ω) be two
increasing mappings with respect to ⪯, for which there exists q ∈ (0, 1b ) such that:

(i) there is ρ0, ρ1 ∈ Ω with ρ0 ⪯ Ψ(ρ0), respectively ρ1 ⪯ Φ(ρ1);

(ii) Ψ and Φ have closed graph with respect to d̂ or the space (Ω, d̂,⪯) is i-regular;

(iii)
∫ d̂(Ψρ,Φω)
0 f(t)dt ≤ q

∫M(ρ,ω)
0 f(t)dt, for all ρ, ω ∈ Ω with ρ ⪯ ω, 0 < q < 1

and f ∈ F with

M(ρ, ω) = max{d̂(ρ, ω), ̂̄D(ρ,Ψρ), ̂̄D(ω,Φω),
1

2
( ̂̄D(ρ,Φω) + ̂̄D(ω,Ψρ))}.

Then the mappings Ψ and Φ have a unique common fixed point.

Proof. Using Theorem 2.3 for Ψ(t) =
∫ t
0 f(u)du we get the conclusion. □

For Ψ = Φ we get another fixed point of integral type result.

Theorem 3.5. Let Ω be a nonempty set, ⪯ be a partial order on Ω, and d̂ be a
complete b-metric on v with the constant b ≥ 1. Let Ψ,Φ : Ω → Pcl(Ω) be two
increasing mappings with respect to ⪯, for which there exists q ∈ (0, 1b ) such that:

(i) there is ρ0 ∈ Ω with ρ0 ⪯ Φ(ρ0);

(ii) Φ have closed graph with respect to d̂ or the space (Ω, d̂,⪯) is i-regular;

(iii)
∫ d̂(Φρ,Φω)
0 f(t)dt ≤ q

∫ N (ρ,ω)
0 f(t)dt, for all ρ, ω ∈ Ω with ρ ⪯ ω, 0 < q < 1

and f ∈ F with

N (ρ, ω) = max
{
d̂(ρ, ω),

̂̄̂D(ρ,Φρ), ̂̄D(ω,Φω),
1

2
( ̂̄D(ρ,Φω) + ̂̄D(ω,Φρ))

}
.

Then Φ have a unique fixed point.

Proof. Using Theorem 2.8 for Ψ(t) =
∫ t
0 f(u)du we get the conclusion. □

Remark 3.6. Similar results with the previous integral type fixed point results,
Theorem 3.4, respectively Theorem 3.5, can be obtain if we replace the condition
ρ0 ⪯ Φ(ρ0) with Φ(ρ0) ⪯ ρ0, respectively ρ0 ⪯ Ψ(ρ0) with Ψ(ρ0) ⪯ ρ0, and the

space (Ω, d̂,⪯) is d-regular.
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4. Existence result of a solution of an integral equation

In this section we will give an application of our fixed points results to integral
equations. then, let us consider the following integral equation.

(4.1) ρ(t) =

∫ t

ℓ
K(t, s, ρ(s))ds+ g(t), t ∈ [ℓ, ℘].

The aim of this section is to give an existence result for the equation (4.1),
applying Corollary 2.10.

Theorem 4.1. Let us consider the integral equation (4.1). Assume the following
conditions are satisfied:

(i) K : [ℓ, ℘]× [ℓ, ℘]× Rn → Rn and g : [ℓ, ℘] → Rn are continuous.
(ii) K(t, s, ·) : Rn → Rn is increasing for each t, s ∈ [ℓ, ℘]
(iii) there exists q ∈ (0, 1b ) such that

K(t, s, u)−K(t, s, v) ≤ qQ(ℓ, ℘),

where Q(ℓ, ℘) = max{|ℓ− ℘|, |ℓ− Φℓ|, |℘− Φ℘|, 12(|ℓ− Φ℘|+ |℘− Φℓ|)} for
each t, s ∈ [ℓ, ℘], u, v ∈ Rn, u ⪯ v.

(iv) there exists ρ0 ∈ C([ℓ, ℘],Rn) such that ρ0 ≤
∫ t
ℓ K(t, s, ρ(s))ds+g(t) for any

t ∈ [ℓ, ℘].

Then the integral equation (4.1) has a unique solution in C([ℓ, ℘],Rn).

Proof. Let ρ = C([ℓ, ℘],Rn) be a b-metric space endowed with the b-metric

d̂(ρ, ω) =∥ ρ− ω ∥∞= sup
t∈[ℓ,℘]

|ρ(t)− ω(t)|p,

with ℘ = 2p−1.
Consider on Ω the partial order defined by ρ, ω ∈ C([ℓ, ℘],Rn), ρ ≤ ω if and only

if ρ(t) ≤ ω(t) for any t ∈ [ℓ, ℘].
Then (Ω, ∥ · ∥∞,≤) is an ordered and complete b-metric space. Then, for any

increasing sequence {ρn} in Ω converging to an ρ∗ ∈ Ω, we have ρn(t) ≤ ρ∗(t), for
any t ∈ [ℓ, ℘]. Then, the space (Ω, ∥ · ∥∞,≤) is i-regular. Let us define the following
function:

Φ : C([ℓ, ℘],Rn) → C([ℓ, ℘],Rn)

by the formula

Φρ(t) =

∫ t

ℓ
K(t, s, ρ(s))ds+ g(t), t ∈ [ℓ, ℘].

From (i) we get that Φ has a closed graph.
From (ii) we have that Φ is increasing. Also, for each Ω, ω ∈ ρ with ρ ≤ ω we get

|Φρ(t)− Φω(t)|p ≤
∫ t

ℓ
|K(t, s, ρ(s))−K(t, s, ω(s))|pds

≤ qp
∫ t

ℓ
|Q(ρ(t), ω(t))|pds
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≤ qp
∫ t

ℓ
|max{|ρ(s)− ω(s)|, |ρ(s)− Φρ(s)|, |ω − Φω(s)|,

1

2
(|ρ− Φω(s)|+ |ω(s)− Φρ(s)|)|p}ds

≤ qp
∫ t

ℓ
max{|ρ(s)− ω(s)|p, |ρ(s)− Φρ(s)|p, |ω − Φω(s)|p,

1

2
(|ρ− Φω(s)|p + |ω(s)− Φρ(s)|p)}ds

≤ qp
∫ t

ℓ
max{ sup

t∈[ℓ,℘]
|ρ(s)− ω(s)|p,

sup
t∈[ℓ,℘]

|ρ(s)− Φρ(s)|p, sup
t∈[ℓ,℘]

|ω − Φω(s)|p,

1

2
( sup
t∈[ℓ,℘]

|ρ− Φω(s)|p + sup
t∈[ℓ,℘]

|ω(s)− Φρ(s)|p)}ds

≤ qpmax{d̂(ρ, ω), d̂(ρ,Φρ), d̂(ω,Φω), 1
2
(d̂(ρ,Φω) + d̂(ω,Φρ))}

≤ qpM(ρ, ω), for any t ∈ [ℓ, ℘].

Hence for 0 < α = qp < 1
b we obtain:

∥ Φρ− Φω ∥∞≤ αM(ρ, ω),

for each ρ, ω ∈ Ω with ρ ≤ ω.
From (iv) we get that ρ0 ≤ Φρ0. The conclusion follows from Corollary 2.10. □

5. Conclusions

In [6] Bota at al. gave some interesting results of fixed points theorems Ran-
Reurings type in b-metric space. Our paper extend and improve these results,
giving new aspects considering the case of multivalued operators. The b-metric
spaces are instrumental in establishing fixed point theorems, which are crucial for
proving the existence and uniqueness of solutions to equations. This is particularly
relevant in applied mathematics, where such solutions are often needed in modeling
and problem-solving scenarios.

Also, the fixed point results in the case of b-metric spaces are also applied in solv-
ing integral equations, where the properties of these spaces facilitate the derivation
of existence and uniqueness results for solutions. This has implications in mathe-
matical modeling and simulations in various scientific fields. In this view, we gave
here an application of our result for the case of an integral equation.

As future research directions, will be interesting to find applications of our results
in the field of ordinary or partial differential equations, and respectively, for the case
of fractional differential equations.
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