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COMMON FIXED POINT THEOREMS OF RAN-REURINGS
TYPE IN --METRIC SPACES

LILIANA GURAN AND MONICA-FELICIA BOTA

ABSTRACT. The purpose of this paper is to give new common fixed point theo-
rems of Ciri¢ type operators on complete b-metric space endowed with a partial
order relation. Our results extend and generalize the results of Ran and Reurings
and some other recent results in the literature. An example and an application
are stated to sustain the main results.

1. INTRODUCTION AND PRELIMINARIES

The multivalued extension of the well-known Banach-Cacciopoli contraction prin-
ciple was established by Nadler in 1969, [19]. In the following year, Covitz and
Nadler proved that this contraction principle remains valid even without the as-
sumption that the values of the multivalued operator are bounded. Since then,
numerous extensions of this principle have been developed in various directions.

The concept of metric space has many generalizations. One of them, which is
quite essential for applications, is that of b-metric space. This notion can also be
found in the literature as quasi-metric space. The contraction principle, a corner-
stone of fixed point theory, has been extended to b-metric spaces too. This extension
allows for the establishment of fixed point theorems in settings where traditional
metrics may not apply. For instance, Czerwik’s work on contraction mappings ( [10])
in b-metric spaces has paved the way for further research in this area.

Research has shown that fixed point results can be derived in b-metric spaces,
which are applicable to both single-valued and multivalued mappings. This has
implications for solving equations and optimization problems in various fields, in-
cluding economics and engineering. Further generalizations, such as strong partial
b-metric spaces, have been introduced, enhancing the utility of b-metric spaces in
fixed point theory. These generalizations facilitate the exploration of more complex
mathematical structures and their properties.

We begin this section with the definition of the b-metric space.

Definition 1.1 (Bakhtin [3], Berinde [4], Czerwik [10]). Consider €2 be a nonempty

set and let b > 1 be a given real number. The function d:Ox0— R, is called a
b-metric if and only if for all p,w, v € € the following assertions hold:

~

(1) d(p,w) =0 if and only if p = w;
(2) d(p,w) = d(w, p);

(3) d(p,9) < b- [Ap,w) + dlw, D).
The pair (€,d) is called a b-metric space.
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The notion of b-metric space is a generalization of traditional metric spaces that
relax the triangle inequality, allowing for more flexibility in various mathematical
contexts. They have emerged as significant tools in fixed point theory, which is
crucial for solving existence problems in analysis and applied mathematics. Thus,
the difference between the two notions: metric and b-metric appears in the third
axiom. There the right hand side contains the given real number b > 1. Obviously,
the b-metric is a usual metric by taking b = 1. However, it does not require the
triangle inequality to hold strictly. This flexibility enables the exploration of new
types of convergence and continuity, which are essential in various mathematical
analyses.

Example 1.2 ([4]). The space LP[0,1] (where 0 < p < 1) of all real functions
p(t) te [0 1] such that fo |p(t)|Pdt < oo, together with the functional d(p,w) =
fo |p(t) \pdt)l/p is a b-metric space. Notice that b = 21/7,

Example 1.3 ([4]). For 0 < p < 1, the set
PR) = {(pn) CRID 2, |pnlP < oo} together with the functional

~

d: P(R) x IP(R) — R, d( w) = (320, |pn — walP)V/P, is a b-metric space with
coefficient b = 21/7 > 1. Notice that the above result holds for the general case
IP(Q2) with 0 < p < 1, where 2 is a Banach space.

The classical notions of mathematical analysis are similar in this new context.
For the next notions and related ones see Berinde [4], Czerwik [10], Miculescu-
Mihail [18].

Let (€, 8) be a metric space. We will use the following standard notations:

P(Q) - the set of all nonempty subsets of §2;

Pa(QQ) - the set of all nonempty closed subsets of Q;

Pep(2) - the set of all nonempty compact subsets of €2

Fiz(®) :={peQ|pecP(p)} - the set of the fixed points of ®;

SFix(®):={pe Q| {p}=P(p)} - the set of the strict fized points of P.

Denote by N be the set of all natural numbers and by N* := NU {0}.

Let us introduce the following generalized functionals on a b-metric space (€2, H)

The gap functional:

(1) D: M(Q) x P(Q) — Ry U {+0o0}

N inf{d(f,p)| L€ L, pe P}, LAD#P
D(L,P) =< 0, L=0=P
400, otherwise.

In particular, if pg €  then D(pg, P) := @({po}, P).
The excess generalized functional:

(2) a: M(Q) x M(Q) = Ry U{+oo}

sup{D(,P)| L€ L}, L#0#P
a(L,P)=1{ o, L=
+00, P=0#L.
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Pompeiu-Hausdorff generalized functional:
(3) H: M(2) x M(2) = Ry U {+o0}
max{a(L, P),a(P,L)}, L#0#P
H(L,P)={ 0, L=0=P
400, othewise.
0 functional:
(4) 6: M(Q) x M(Q) - Ry U {400}
sup{d(¢, p)| L€ L, p € P}, L#D#P
5(L.P) =14 0, LZolp
400, otherwise.
If L =P we have (L, L) :=0(L).
It is known (Czerwik [9]) that (M, ¢, (€2), H) is a complete b-metric space provided
(©,d) is a complete b-metric space.
The following lemmas are useful in the proof of main results (see [9]).

Lemma 1.4. Let (Q,a) be a b-metric space, L € M(Q2) and p € Q. Then
(i) D(p,L) =0 ifand only if p€ L,
D(p, L) < a[d( w) + P(w, L)], for all p,w € QX and L C Q,

ii)
(ii) d(pn, po) < od(po, p1) + -+ + 0" d(pn-2, pu-1) + 0" d(pn-1, pn)-
) H(L,Z) < o[H(L,P) + H(P, Z)], for all L, P, Z € M(Q).

Lemma 1.5. Let (Q,d) be a b-metric space and L, P € M(S). For each v > 1 and
for all £ € L there exists p € P such that

d(¢,p) < vH(L, P).

Definition 1.6. Let (Q,a) be a b-metric space. Then a sequence (p,)nen in £ is
called:
(i) Cauchy if and only if for all € > 0 there exists n(e) € N such that for each
n,m > n(e) we have a(pn,pm) <e.
(ii) convergent if and only if there exists p € € such that for all € > 0 there
exists n(e) € N such that for all n > n(e) we have a(pn, p) < e. In this case
we write nh_)n(}o Pn = p.

Definition 1.7. Let (Q,a) be a b-metric space. Then, a subset Y of Q is called:

(i) compact if and only if for every sequence of elements of Y there exists a
subsequence that converges to an element of Y.

(i) closed if and only if for each sequence (pp)nen in Y which converges to an
element p, we have p € Y

The b-metric space (€2, 8) is complete if every Cauchy sequence from €2 converges
in €.
Lemma 1.8. Notice that in a b-metric space (Q,a) the following assertions hold:

(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;
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In general, a b-metric is not continuous and the open ball B(pg;r) := {p € Q :
d(po, p) < r} in a b-metric space (€2, d) is not necessary an open set, while the closed
ball B(pg;r) :== {p € Q: a(po, p) < r} is not necessary a closed set. Related notions,
results and examples can be found in [2,16] and [18].

Let €2 be a nonempty set, < be a partial order relation on 2 and dbea complete
b-metric on ) with the constant b > 1. Then, the triple (Q,a, =) is said to be:

(1) i-regular if for any increasing sequence (p,)nen which is convergent to p* as
n — 0o, we have that p, < p*, for all n € N;

(2) d-regular if for any decreasing sequence (p,)nen Which is convergent to p*
as n — 0o, we have that p, > p*, for all n € N.

Common fixed points are a significant concept in mathematical analysis, partic-
ularly in the study of mappings in metric spaces. When considering two or more
mappings, a common fixed point is a point that serves as a fixed point for all the
mappings involved. Various theorems have been developed to establish conditions
involved, such as continuity and commutativity of the mappings, under which com-
mon fixed points exist for two or more mappings (see [1,7,11,26]). Common fixed
point results are used in various fields, including differential equations, optimization
problems, and even in the analysis of iterative methods used in numerical compu-
tations. The existence of common fixed points often leads to solutions of complex
mathematical problems by ensuring that certain iterative processes converge to a
stable solution.

The purpose of this paper is to give new common fixed point for Ciri¢ type
operators where (€2, <,d) is a complete b-metric space endowed with a partial order
relation. Our results extend and generalize Ran-Reurings results and some other
results in the recent literature too.(see [6,20,21,29,32], etc.). Moreover, we give an
example and an application to strength the main theorems of our paper.

2. COMMON FIXED POINTS RESULTS

Starting with theorem of Ran and Reurings (see [35]) a new research direction in
the field of fixed point theory is given. The authors considered the following fixed
point inclusion p € ®(p),p € 2, where the set  is endowed with a partial order
relation < and the metric d is a complete metric. The function ® : Q — P(Q)
satisfies the contraction condition only for comparable elements (with respect to <)
of the space. For other results on this topic (see [36]).

For the convenience of the reader let us recall the following theorem.

Theorem 2.1 ([35]). Let (2,=) be a partially ordered set such that every pair
p,w € Q has a lower bound and an upper bound. Furthermore, let d be a metric
on §2 such that (Q,a) is a complete metric space. Suppose that ® : Q@ — Q is a
continuous and monotone (i.e., either increasing or decreasing) operator, for which
there exists ¢ € (0,1) such that the following conditions are satisfied:

(2.1) a(@(p), d(w)) < ca(p,w), for every p = w,

(2.2) there exists pg € Q2 such that pg < ®(pg) or po = ®(po)-
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Then ® is a Picard operator, i.e., ® has a unique fixed point p* € € and
lim,, oo ®"(p) = p*, for every p € Q.

Next, we recall the following lemma.

Lemma 2.2 ([18]). Every sequence (pn)nen of elements from a b-metric space
(Q,d) with constant b > 1 having the property that there exists v € [0,1) such that

d(pn+1,pn) < ’ya(pn,pn_l), n € N is a Cauchy sequence. Moreover, the following
estimation holds
n

1—

a(pn—l—l,pn—l—p) < ,_Ya(p0>pl)7 fO’f’ all n,pe Na

) i—1
where B 1= 221 721 log,, b+2/1

We give our first main result, a Ran-Reurings type theorem for Ciri¢ type oper-
ators.

Theorem 2.3. Let ) be a nonempty set, let < be a partial order on € and let d
be a complete b-metric on Q with the constant b > 1. Let U, ® : Q — Py(Q) be two
increasing multivalued operators with respect to <, for which there exists q € (0, %)
such that:

(i) there is po, p1 € p with po = ¥(pop), respectz'vely p1 = P(p1);
(ii) ¥ and ® have closed gmph with respect to d or the space (2, d, <) isi- Tegular
(i) H(¥(p), D(w)) < gmax{d(p,w), D(p, ¥(p)), D(w, B(w)), %(79( ®(w))+D(w,

U(p)))} for all p,w € Q with p < w.
Then the mappings ¥ and ® have a common fixed point.
Proof. Let po,p1 € Q with pg < U(po) and p1 = ®(p1). If pg = p1 we obtain the
conclusion. Let pg # p1 and p1 ¢ ®(p1) we define a sequence {p,} as follows
(2.3) pan+1 € Y(p2n) and poni2 € ®(p2n11), n=0,1,2,....

By the monotonicity of the mappings ¥ and ®, we get that (p,)nen is increasing.
For p1 € ¥(py), by the properties of the functional H there exists p > 1 and
p2 € ®(p1) such that:

d(p1, p2) < PH(W(po), ®(p1)) < pgmax{d(po, p1). D(po, ¥(po)), D(p1, ®(p1)),

%(@(po, D(p1) + @(,017 ¥(po))))}

1

5 @(po, p2) +Alpr, )}

< pmax {(po, p1), (o, p2), 2 (Alpo, p1) + Apr, p2)) }-

Further we shall prove that (p,)nen is a Cauchy sequence. Then for p € (1,b) U
[b, 00) we have pg € (0,1) U[1,00).
(I) If pg € (0,1) we have the following cases:

Case 1. If max{d(po, 1), d(p1,p2), 5(d(po, p1) + d(p1,p2)))} = d(p1,p2), then
we have:

< pbgmax {a(p()v pl)aa\(p()? ;01) a(plv p2)7
b

d(p1, p2) < pq-d(p1, pa),
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which contradicts pg € (0,1).

Case 2. If max{d(po, p1).d(p1,p2), §(d(po.p1) + d(p1.p2)))} = d(po,p1), then
we have:

d(p1, p2) < pq - d(po, p1);
By Lemma 2.2 we get that the sequence (pn)neN is a Cauchy sequence

~ Case 3. If max{d(po, p1),d(p1, p2). 5(d(po, p1) + dlpr, p2))} = §(dpo, p1) +
d(p1,p2)), then we obtain:

qb ~

d(p1,p2) < E(d(Po, p1) +d(p1, p2))

which is equivalent to
qb

d .
2 _gb (,007/?1)

d(pla p2) <

Hence we have:
d(p1, p2) < vd(po, p1),
where v = max{q, 23—%} <1
By induction we get that
d(ﬂn, pn+1) < ’Yd(Pm pn—l)avn € N*.

Applying Lemma 2.2 we obtain that the sequence (p,)nen is Cauchy.
(II) If pg € [1,00) we have the following cases.

Case 1. If max{d(po, p1),d(p1, p2), 8(d(po, p1) + d(p1, p2)))} = d(p1, p2), then
we have:

d(p1,p2) < pg-d(p1, p2)-
If we let p — 1 we get ¢ > 1. Contradiction. R

Case 2. If max{d(po, p1),d(p1, p2), &(d(po, p1) + d(p1, p2)))} = d(po,p1), then
we have:

d(p1, p2) < pq - d(po, p1).

In this way we find that a(pn, Pnt+1) < (pq)”a(po, p1)-
For m,n € N, with m > n, we have

b[d(pns prt1) + APt pm)]
< b(d(pn, pn+1)) + B[A(pnt1 pnr2) + A(pnt2, o]
< b(d(pn, pr41)) + B2 (APt prr2)) + 03 (@A(Pns2, prss))
+o BT (A (2, pet) + 0T A1, o).
Moreover, we have
d(pns pm) < b(pg)™(d(po, p1)) + b2 (pg)™* (d(po, p1)) + b*(pa)"**(d(po, p1))
+o T (pg)™ 2 (d(po, p1)) + 6™ (pg)™ L (d(po, p1))

Zbl ) (d(pos p1)-
=1

A(pns pm) <
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Therefore,

m—n
A(pns pm) < Y b (pg) ™ 1d(po, p1) Z b (pg)'d(po, p1)
i=1

> - (bpq)™ ~
bpq)'d = d .
;n( pg)'d(po, p1) = 1= bpa (po, p1)
If we let p — 1 and n — oo we obtain
bq)" ~
d(pnvpm) ( ) d(vapl) — 0.

—1—bq
Therefore {p,} is a v Cauchy sequence in ).

~_ Case 3. If max{d(po, p1), d(p1, p2), 5(d(po, p1) + d(p1,p2)))} = 5(d(po, p1) +
d(p1, p2)), then we obtain:

pgb

d(p1, p2) < T2 (@po, 1) + Ao p2)

which is equivalent to

bq
d d .
(p1,p2) < 5 b (po; p1)
Hence we have:

~

d(p1, p2) < ~d(po, p1),

where v = max{q, f‘g’qb} < 1.

By induction we get that

d(pns prs1) < VA(pn, pu—1), ¥n € N*.

For m,n € N, with m > n, we have

(P> 1) + A(pni1, pm)]

(Pns prr1)) + U2t 1, prsz) + d(prsz, pm

(P Pnt1)) + b (APt 1, prt2)) + 0% (A(pns2, puts))
e 0 (AP, pn1)) B (o1 pm)-

Moreover, we have

d(pn, pm) < 07" (d(po, 1) + 67" (d(po, p1)) + 6™ 2 (d(po, 1))

o U2 (d (g, 1)) + BT (A (o, 1))

=" iy (d(po, 1)
=1

A(pny pm) < b[d
< b(d
< b(d

Therefore,

A(pn, pm) < Zb”" Ly =1 (o, p1) th td(po, p1)
=1
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_ ()" =
d .

oo
<> (y)d(po, p1)
t=n

If we let n — oo we obtain d(pn,pm) — 0.

Therefore {p,} is a Cauchy sequence in €.

Since (pn)nen is Cauchy in all the presented cases, by the completeness of the
b—metric space, we have that the sequence converges in (2, H) to an element p*(pg) €
Q2. We prove that p*(pg) is a common fixed point for the mappings ¥ and ®. For
convenience we will write p* instead of p*(po).

If ¥ and ® have closed graph then the conclusion is obvious.

If the space (Q,a, =) is i—regular, for operator ¥ we have

D(p*, W(p")) < bD(p*, W(p2n)) + bH(T(p2n), ¥(p*))
< bD(p*, W(p2n)) + bgmax{d(pzn, p*), D(p2n, ¥(p2n)), D(p*, ¥ (p")),

—

~

(D(p2n, ¥(p")) + D(p*, ¥(p20)))}

< bd(p*, p2n+1) + pbgmax {a(pzn, "), d(p2n, p2011),

N |
v}

(0", (p),
(@, )+ D", W), 50" ponin) )

= bd(p*7 PQn—i—l) + pbq max {a(P2n7 p*)a a(PQm p2n+1)7 @(P*, \Ij(p*))

~

* N * 1~ *
5 @(p2a ") + D" W(0"))), 500", P2 |
< bd(p*, pan+1) + pbgmax {ba(pzn, p"), d(p2n: pans1), BD(p*, U (p")),

1~
~A(p*, pon }
5d(p", p2n+1)
By letting n — oo, we get
D(p*, S(p*)) < bgDd(p*, ¥(p")),

which implies that @(p*, U (p*)) = 0. Since ¥ is closed p* € ¥(p*).
In the same way we prove that p* is a fixed point for ®. Then we have:

D(p*, ®(p*)) < 0D(p", D(p2n+1)) + BH(P(p2ns1), ¥(p"))
< bD(p*, ®(pan+1)) + bg max {a(P2n+17 p*), D(p2ni1, ®(p2011)), D(p*, @ (p")),

bd(p", pan+2) + pbgmax {d(pans1, 9°), d(pan 41, p2n12), Do, @(")),

IN

b~ * N/ * * 1~ *
5 @(p2011,6) + D" 2(p"), 56", p2ns2) }

bd(p*, pan+2) + bgmax {a(PQn—l-h p*), d(p2nt1, pant2), D(p*, B(p")),
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b~ * N, * * 1~ *
5 @201, %) + D(p", 2(5), 3d(6", p2nsa) }
< bd(p*, pant2) + pbgmax {ba(anH, "), d(p2nt1s P2nt2),
3 * * 1/\ *
bd(5", @(5")), 54(6", p2ns2) .
Also, if n — oo, we get

D(p*, @(p")) < pbgD(p", (p*)),
which implies that @(p*, ®(p*)) = 0. Since P is closed we get p* € ®(p*).

Then p* is a common fixed point for the mappings ¥ and . O
Remark 2.4. A similar result we can be obtained if we replace the condition
po = ®(po) with ®(po) < po, respectively pg = ¥(po) with ¥(py) = po and the
i-regularity of the space (£2,d) with its d-regularity.

Corollary 2.5. If all the conditions of Theorem 2.8 are satisfied then the common
fized point of the multivalued operators ¥ and ® is unique.

Proof. We assume that w* € () is another common fixed point for the mappings ¥
and ®. Then we get

~

d(p*,w") < pH(¥p", dw™)

< pgmax {d(p*, "), D(p*, Wp*), Dlw", @w),

< pgd(p*,w").
This implies that p* = w*, which completes the proof. U

Remark 2.6. One can obtain a similar result by replacing the condition pg =< ¥(pp)
with WU(pg) = po and the i-regularity of the space with its d-regularity.

Example 2.7. Let Q = [0,00) and let us define the order relation as follows:
p < w if and only if p < ®p and w < Yw.

Let us also define the b-metric d : Q x © — R, by a(p,w) = (p — w)? We can
notice that the constant from the definition of the b-metric is b = 2.

It is obvious that (2,d, <) is a complete b-metric space.

Let us consider the following operators ¥, ® : Q — P, defined by ¥p = {%p}
and ®p = {1p}.

Next we must check the Cirié—type contraction condition

o~

d(p,w) < pH(®p, Yw)

< pgmax {d(p,w), D(p, ¥p), D(w, dw), - (D(p, dw) + D(w, ¥p)) },

N

for all p,w € p with p < w.
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For ¢ < % let p € (1,2). For p < w we have:

A0 3%) = pamax {1, 3(p 39) (s 1) 5 (A 3) + (v 50)) }

Using the b-metric we obtain:
1 1 42 9 1 \2 1 y\2
(= 1) <o (- o~ 3" - o)
1
2

o3+ oo
2 4
After computations we get:
1
16
Then E < pq 33 This yields for pg > 3

Since all the hypothesis of Corollary 2 5 are accomplished we get that ¥(0) =
®(0) = 0 is the unique fixed point of ¥ and .

1 1
w2§pqmax{0 w2 w2 3—; 2}

If we get =@ in Theorem 2.3 we give the following Ran-Reurings type fixed
points theorem for Ciri¢ type operators.

Theorem 2.8. Let ) be a nonempty set, < be a partial order on € and d be
a complete b-metric on Q with the constant b > 1. Let ® : Q — Py(Q) be an
increasing mapping with respect to <, for which there exists q € (0, %) such that:

(1) there is po € Q with pg < ®(po);
(ii) @ has closed graph with respect to d or the space (Q,d, <) is i- -regular;

(i) H(®p, dw) < gmax{d(p,w), D(p, Bp), D(w, Pw), }(P < Pw) + D(w, Pp))}
for all p,w € Q with p < w.

Then the multivalued operator ® has a unique fixzed point.

Remark 2.9. A similar result holds if we replace the condition py < ®(py) with
®(po) =< po and the i-regularity of the space with its d-regularity.

Let us give the singlevalued version of the previous result.

Corollary 2.10. Let ) be a nonempty set, = be a partial order on  and d be
a complete b-metric space on £ with the constant b > 1. Let ® : 0 — Q be an
increasing mapping with respect to <, for which there exists q € (0, %) such that

(i) there eists po € 2 with po = ®(po);
(ii) ® have closed graph with respect tod or the space

¢ (€
(iii) d(®(p), ®(w)) < gmax{d(p,w),d(p, ®p),d(w, dw), 3(d
for all p,w € Q with p < w.

Then the mapping ® has a unique fixed point.

a <) is i-reqular;
(P, Pw) + d(w, ®p))},

Another fixed point result for multivalued operators case is the following.

Theorem 2.11. Let Q be a nonempty set, = be a partial order on ) and d be
a complete b-metric on Q with the constant b > 1. Let ® : Q@ — Py(Q) be an
increasing multivalued operator with respect to =<, for which there exists q € (0, b)
such that:
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(i) there is pg € Q with py < P(po);
(ii) @ has closed graph with respect to d or the space (p,a, =) is i-regular;
(iii) H(®"Q, "w)
< gmax{d(p,w), B(p, ®"p), D(w, ®"w), }(D(p, ®"w) + D(w, D" p))}
for all p,w € Q with p 2 w.
Then the operator ® has a unique fixed point.

Proof. By Theorem 2.8 we obtain p* € ) such that
pt e d"pt.
There exists p; 1 such that:

D(@p*,p%) < pH(R("(p")), 9" (p")) = pH(®"(2(p")), 2" (p"))

o~ o~

< pgmax {ﬂ(q’(f?*)a p*), H(®(p"), 2" (2(p"))), D(p", 2" (p%)),

< pgD(®p*, p*).
Then ®"(p*) € ®(p*) and p* € P(p*). O

The next result represents the relation between the fixed point and strict fixed
point sets. Also the well-posedness of the fixed point problem with respect to the
functionals D, respectively H will be given.

Theorem 2.12. Let (Q,a) be a complete b-metric space with constant b > 1. Sup-
pose that all the hypotheses of Theorem 2.8. Suppose also that SFix(®) # 0 then
we have:
(i) Fiz(®) = SFiz(®) = {p*}.
(ii) (Well-posedness of the fixed point problem with respect to 23)
If (pn)ne(ny s a sequence in 2 such that P(pn, ®(pn)) — 0 asn — oo, then

Pn 4 p*asn — .
(iii) (Well-posedness of the fized point problem with respect to H)
If (Pn)ne(ny is a sequence in ) such that H(py, ®(pn)) — 0 as n — oo, then

d
Pn — p*as n — oo.

Proof. (ii) From Theorem 2.8, we get that Fix(®) # 0. Let p* € SFiz(®). Notice
first that SFiz(®) = {p*}. We will prove that Fiz(®) = {p*}. Let w € Fiz(®), i.e.
w € ®(w) with w < ¢(w) and w # p*. We estimate the following distance

d(p*,w) = D(B(p*),w) < H(P(p"), D(w))

~

d(p*, @), D(p", @(p")), Dlw, @(w)), 5 (D(p*, D(w)) + Dlew, @(p))) }

—_

< qmax{

[\
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< qd(p";w).
Contradiction. Then d(p*,w) = 0, so p* = w. Hence Fiz(®) C SFiz(®). Since
SFix(®) C Fiz(P) we obtain that SFix(®) = Fix(P).
The uniqueness condition for the strict fixed point can be proved using same

method.
(ii) Let p* € SFix(®) and let (p,)nen be a sequence in € such that

~

D(pn, ®(pn)) — 0, as n — oo. Then for v, € ®(p,) with v, = ®(p,), such that

~ o~

d(pn,vn) = D(pn, ®(pn)), n € N, we have:
a(/’mp*) < b[a(pn, Un) + a(vn,p*)] = bﬁ(ﬂﬂv”ﬂ) + D(vn, 2(p*))]

~

< [d(pn, vn) + H(P(pn), 2(p*))]
< b|D(pn, ®(pn)) + qmax {a(Pm "), D(pn, ®(pn)), D(p*, ®(p")),

(D", ®(pn)) + Dlpu, ®(6")) }
< B[D(pn, D(pn)) + qd(pn, p*))-

Then we obtain a(pn,p*) < ﬁ@(pn, ®(py)) — 0 as n — 0.

Then a(pn, p*) — 0 as n — oo which means the fixed point problem is well posed

o~

with respect to D.

(iii) Let p* € SFiz(®) and let (p,)nen be a sequence in Q such that H(p,, ®(pn)) —
0, as n — oo. Then for v, € ®(p,) with v, < ®(p,), such that d(p,,v,) =
PH(pn, ®(pp)), for p > 1 and n € N, we have:

d(pas p*) < bld(pns vn) + d(vns p*)) = Bld(pns vn) + D0, D(p°))]
< b[pH (pn, ®(vn)) + H(®(pn), 2(p"))]

< b[pH(pn, ®(pn)) + qmasx {A(pn, p*), D(pn, @(pn)), D", @(5")),

3B, ®(p)) + Dlpn, 2(5))) )]
< b[pH(pn, ®(pn)) + qd(pn, p*)]-

Then we obtain d(p,, p*) < li—sz(pn, ®(pp)) — 0 as n — co.

Then a(pn, p*) — 0 as n — oo which means the fixed point problem is well posed
with respect to H. O

3. APPLICATIONS IN INTEGRAL TYPE CONTRACTIONS

Further, let us give some applications of our results in integral type contractions.
Then, we recall next the definition for altering distance function.

Definition 3.1. The function ¢ : [0,00) — [0,00) is called an altering distance
function, if the following assertions hold:

(i) ¢ is continuous and nondecreasing,
(ii) ¢(t) = 0 if and only if t = 0.
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Let us give the following definition.

Definition 3.2. Let § be the set of the function f : [0,00) — [0,00) that satisfies
the following conditions:

(i) fis Lebesgue Integrable on each compact subset of [0, 00);
(i) [y f(t)dt > 0 for every € > 0.

Remark 3.3. It is obvious that a mapping ¥ : [0,00) — [0, 00) given by
£
:/ f(t)dt >0,
0

Our first integral type theorem is the following.

is an altering distance function.

Theorem 3.4. Let  be a nonempty set, = be a partial order on §, and d be a
complete b-metric on 0 with the constant b > 1. Let ¥, ® : Q — Py(Q) be two
increasing mappings with respect to <, for which there exists q € (0, %) such that:

(1) there is po, p1 € Q with po < V(pg), respectively p1 < ®(p1);
(ii) ¥ and ® have closed graph with respect to d or the space (2, d, <) is i-reqular;

(i) [SP%) ptyde < g M) f(e)ds, for all pw € Q with p < w, 0< g <1
and f € § with

M(p, ) = max{d(p, ), Blp, Wp), Blw, 0w), 3 (Blp, ) + Bl Wp))}.
Then the mappings ¥ and ® have a unique common fized point.
Proof. Using Theorem 2.3 for ¥(t fo u)du we get the conclusion. O
For ¥ = ® we get another fixed point of integral type result.

Theorem 3.5. Let Q be a nonempty set, = be a partial order on 2, and d be a
complete b-metric on v with the constant b > 1. Let U, ® : Q — Py(Q) be two
increasing mappings with respect to <, for which there exists q € (0, %) such that:
(i) there is po € Q with pg < ®(po);
(ii) @ have closed graph with respect to d or the space (2, d, <) is i-reqular;
(i) [P p(t)de < g [N f(b)de, for all pow € Q with p < w, 0 < ¢ <1
and f € § with

(B(p, dw) + Dlw, o)) }.

~ o~ ~ 1
N(p,w) = max {d(p,w), Dlp, Bp), Dlw, Dw), 5

Then ® have a unique fized point.
Proof. Using Theorem 2.8 for W(t fo u)du we get the conclusion. ([l

Remark 3.6. Similar results with the previous integral type fixed point results,
Theorem 3.4, respectively Theorem 3.5, can be obtain if we replace the condition
po = D(po) with ®(pg) < po, respectively pg < ¥(po) with ¥(pg) =< po, and the
space (Q,a, <) is d-regular.
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4. EXISTENCE RESULT OF A SOLUTION OF AN INTEGRAL EQUATION

In this section we will give an application of our fixed points results to integral
equations. then, let us consider the following integral equation.

(4.1) ) = [ Kt pls))ds + g(0), v [tgl

The aim of this section is to give an existence result for the equation (4.1),
applying Corollary 2.10.

Theorem 4.1. Let us consider the integral equation (4.1). Assume the following
conditions are satisfied:
(i) K: [, 0] x [(,0] x R" = R™ and g : [{, p] — R™ are continuous.
(il) K(t,s,-): R™ — R™ is increasing for each t,s € [{, p]
(ili) there ezists g € (0,3) such that
K(t,s,u) — K(t,s,v) < qQ(¢, p),
where Q(€, p) = max{[( — pl, |0 — L], |p — Ppl, 5(|¢ — Pp| + o — ©L|)} for
each t,s € [(, ], u,v € R", u < v.
(iv) there exists po € C([¢, o], R™) such that py < f; K(t,s, p(s))ds+g(t) for any
te [l p).
Then the integral equation (4.1) has a unique solution in C([¢, p], R™).

Proof. Let p = C([¢, p],R™) be a b-metric space endowed with the b-metric

d(p,w) =l p—w llec= sup |p(t) —w(t)]’,
tet,p]
with p = 2P~ 1,

Consider on € the partial order defined by p,w € C([¢, p],R"), p < w if and only
if p(t) < w(t) for any t € [¢, p].

Then (€2, - |loo, <) is an ordered and complete b-metric space. Then, for any
increasing sequence {p,} in € converging to an p* € 2, we have p,(t) < p*(t), for
any t € [¢, p]. Then, the space (€2, - |0, <) is i-regular. Let us define the following
function:

®: C([4, 0], R") = C(l¢, 9], R")
by the formula

B(t) = [ Kltos.p(s)ds +(0). v€ 6.6

From (i) we get that ® has a closed graph.
From (iz) we have that @ is increasing. Also, for each Q,w € p with p < w we get

[Bp(t) - Dw(t)|P < /g K (t, 5, p(s)) — K(t, 5,00(s))[Pds

< /e 1Q(p(t), w(t))[Pds



COMMON FIXED POINT THEOREMS OF RAN-REURINGS TYPE IN b-METRIC SPACES 851

< qp/é [max{|p(s) —w(s)],[p(s) = Pp(s)], |w — Puw(s)],
%(!p — Qw(s)| + [w(s) — Pp(s)])["}ds
< qp/e max{[p(s) = w(s)|’, [p(s) = Pp(s)[”; |w — Puw(s)]”,

1
o = @w(s)P +|w(s) — @p(s)|P) }ds
t
<¢” [ max{ sup |p(s) —w(s)]",
/ te[l,p]
sup ’p(S) - (I)p(s)’pv Sup ’w - q)w(s)‘pa
teft, ] teft, o]

1
5( sup |p — Pw(s)|P + sup |w(s) — @p(s)P)}ds
tell,p] tefl,p]

~ ~ ~ 1 ~ ~
< ¢’ max{d(p,w),d(p, ©p), d(w, Pw), 5 (d(p, Tw) + d(w, ©p))}
< ¢ M(p,w), for any t € [¢, p].

Hence for 0 < a =¢? < % we obtain:

| @p = Pw [0 < aM(p,w),
for each p,w € 2 with p < w.
From (iv) we get that pg < ®po. The conclusion follows from Corollary 2.10. [

5. CONCLUSIONS

In [6] Bota at al. gave some interesting results of fixed points theorems Ran-
Reurings type in b-metric space. Our paper extend and improve these results,
giving new aspects considering the case of multivalued operators. The b-metric
spaces are instrumental in establishing fixed point theorems, which are crucial for
proving the existence and uniqueness of solutions to equations. This is particularly
relevant in applied mathematics, where such solutions are often needed in modeling
and problem-solving scenarios.

Also, the fixed point results in the case of b-metric spaces are also applied in solv-
ing integral equations, where the properties of these spaces facilitate the derivation
of existence and uniqueness results for solutions. This has implications in mathe-
matical modeling and simulations in various scientific fields. In this view, we gave
here an application of our result for the case of an integral equation.

As future research directions, will be interesting to find applications of our results
in the field of ordinary or partial differential equations, and respectively, for the case
of fractional differential equations.
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