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The minimization problem of the sum of two functions is to find a solution of

min
x∈Rn

{F (x) := f(x) + g(x)},(1.1)

where g : Rn → R ∪ {∞} is proper convex and lower semi-continuous function,
and f : Rn → R is convex differentiable function with gradient ∇f being L-
Lipschitz constant for some L > 0. The solution of (1.1) can be characterized
by using Fermat’s rule, Theorem 16.3 of Bauschke and Combettes [10] as follows:
x∗ is a minimizer of (f + g) ⇔ 0 ∈ ∂g(x∗) +∇f(x∗),
where ∂g is the subdifferential of g and ∇f is the gradient of f . The subdiffer-
ential of g at x∗, denoted by ∂g(x∗), is defined by ∂g(x∗) := {u : g(x) − h(x∗) ≥
⟨u,x− x∗⟩ , ∀x}. It is also well-known that the solution of (1.1) is characterized by
the following fixed point problem:

x∗ is a minimizer of (f + g) ⇔ x∗ = proxψg(I − ψ∇f)(x∗),

where ψ > 0, proxg is the proximity operator of h defined by proxg := argmin{g(y)+
1
2 ∥x− y∥22}, see [23] for more details. It is also known that proxψg(I − ψ∇f) is a
nonexpansive mapping when ψ ∈

(
0, 2

L

)
.We denote the fixed point set of a mapping

T : H → H by F(T ) = {x ∈ H : T x = x} . If we set T x = proxψg(x − ψ∇f(x)),
where ψ ∈

(
0, 2

L

)
and L is the Lipschitz constant of the gradient of functions f , then

T is nonexpansive. It is known that if T is nonexpansive, then T is G-nonexpansive.
This is the reason that why we interested in studying G-nonexpansive mapping.

In 1922, Banach [9] proved the existence of unique fixed point for contractions
in a complete metric space. The most recent version of the theorem was proved
in Banach spaces endowed with a graph G, where G = (V (G), E(G)) is a directed
graph such that the set V (G) of its vertices of a graph and the set E(G) of its
edges contains all loops. By combination of the concepts in fixed point theory and
graph theory, Banach G-contraction was introduced by Jachymaski [18] in complete
metric space accompanied with the graph G where the set of vertex matches with
the metric space, also see e.g. [7, 11–13,21,24,26,35].

In the last few decades investigations of fixed points by some iterative schemes
for G-contraction, G-nonexpansive and G-monotone nonexpansive mappings have
been studied extensively by various authors (see [1–3, 34, 36] and the references
cited therein). In 2017, Sridarat et al. [27] introduced the SP-iteration process and
gave some weak and strong convergence theorems of such iterations for three G-
nonexpansive mappings under proper conditions. The use of a three-step iterative
process results in superior numerical results compared to estimations based on two-
step or one-step iterations (see [16,17]).

Inertial extrapolation, initially introduced by Polyak [25], is an acceleration tech-
nique for convex minimization inspired by the heavy ball method. This approach,
involving two iterative steps derived from previous iterates, has proven effective in
enhancing the convergence rates of various iterative algorithms, especially those us-
ing projection-based methods, as confirmed by multiple studies [4,8,14,22,32,33,37].

In a recent study, Suantai and colleagues [30, 31], building upon the work of
Anh and Hieu (references [5,6]), introduced a convergence analysis of an algorithm
that combines the shrinking projection method with the parallel monotone hybrid
method. This algorithm is devised to approximate common fixed points of a finite
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family of G-nonexpansive mappings. Moreover, they applied this algorithm to ad-
dress signal recovery in scenarios where the noise type is unknown. This research
contributes to advancing methods for signal processing under uncertain conditions.

The scheme is defined as follows: x1 ∈ C,C0 = C,

(1.2)


vin = αinxn + (1− αin)Tixn, i = 1, 2, . . . , N,

in = argmax{
∥∥vin − xn

∥∥ : i = 1, 2, . . . , N}, vn := vinn ,

Cn+1 = {v ∈ Cn : ∥v − vn∥ ≤ ∥v − xn∥},
xn+1 = PCn+1x1, n ≥ 1,

where {αin} ⊂ [0, 1] and lim infn→∞ αin(1 − αin) > 0 for all i = 1, 2, . . . , N. vn
is chosen by the optimization all vin with xn. After that, the closed convex set
Cn+1 was constructed by vn. Finally, the next approximation xn+1 is defined as
the projection of x1 on to Cn+1. More recently, Cholamjiak et al. [15] proposed
an inertial forward-backward splitting algorithm for finding the solution of common
variational inclusion problems based on the inertial technique and parallel mono-
tone hybrid methods. They proved strong convergence results under some suitable
conditions in Hilbert spaces. Here in this paper, the algorithm was very useful in
image restoration. For given initial points x0, x1 ∈ C1 = H,

(1.3)



yn = xn + θn(xn − xn−1),

zin = (1− αin)yn + αinJ
B
rn(I − rnAi)yn, i = 1, 2, . . . , N,

i = argmax{
∥∥zin − xn

∥∥ : i = 1, 2, . . . , N}, zn := zin,

Cn+1 = {v ∈ Cn : ∥zn − v∥2 ≤ ∥xn − v∥2 + θ2n ∥xn − xn−1∥2

− 2θn ⟨xn − v, xn−1 − xn⟩},
xn+1 = PCn+1x1, n ≥ 1,

where Ai : H → H and B : H → 2H are monotone operator with JBrn = (I+rnB)−1,

{rn} ⊂ (0, 2α), {θn} ⊂ [0, θ] for some θ ∈ [0, 1] and
{
αin

}
is a sequence in [0, 1]

for all i = 1, 2, . . . , N. It has been notable that if {rn} ⊂ (0, 2α), where α is a
constant of inverse strongly monotone operator A, then the mapping JBrn(I − rnA)
is nonexpansive.

Jun-on et al. [20] proposed the inertial parallel algorithm for finding a common
fixed point of a finite family of G-nonexpansive mappings as follows:

(1.4)


wn = xn + θn(xn − xn−1),

yin = (1− βin)wn + βinTiwn,
zin = (1− αin)Tiwn + αinTiyin,

xn+1 = argmax{∥zin − wn∥, i = 1, 2, . . . , N},

where {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αin}, {βin} ⊂ [0, 1]. They proved a weak
convergence theorem under some suitable conditions in the setting of Hilbert space
endowed with graphs. Also, they applied the inertial parallel algorithm (1.4) for
solving signal recovery problems.
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This paper aims to develop a modified parallel inertial monotone hybrid three-
step algorithm to approximate the common fixed points of a finite family of G-
nonexpansive mappings within a Hilbert space endowed with a graph. We also
apply our algorithm to a signal recovery problem with multiple blurring filters.

2. Graph basic definitions

In this section, we recall a few basic notions concerning the connectivity of graphs.
All of these notions can be found, e.g., in [19].

Suppose that x and y are vertices in a graph G. A path in G from x to y of
length N (N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1 vertices such that x0 = x,
xN = y and (xi, xi+1) ∈ E(G) for i = 0, 1, . . . N − 1. A graph G is connected if
there is a path between any two vertices. A directed graph G = (V (G), E(G))
is said to be transitive if, for any x, y, z ∈ V (G) such that (x, y) and (y, z) are
in E(G), we have (x, z) ∈ E(G). The set of edges E(G) is said to be convex if

(xi, yi) ∈ E(G) for all i = 1, 2, . . . , N and αi ∈ (0, 1) such that
∑N

i=1 αi = 1, then

(
∑N

i=1 αixi,
∑N

i=1 αiyi) ∈ E(G). We denote G−1 the conversion of a graph G and
E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.

Let x0 ∈ V (G) and A a subset of V (G). We say that A is dominated by x0 if
(x0, x) ∈ E(G) for all x ∈ A. A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

In this manuscript, we utilize ⇀ to represent weak convergence. We will require
the following lemmas in the sequel to prove our main results.

Lemma 2.1 ([4]). Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that
ψn+1 ≤ ψn + αn(ψn − ψn−1) + δn, for all n ≥ 1,

∑∞
n=1 δn < +∞ and there exists a

real number a with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the followings hold:

(i)
∑

n≥1[ψn − ψn−1] < +∞ where [t] = max{t, 0};
(ii) There exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.

Lemma 2.2 ([28]). Let X be a Banach space satisfying Opial’s condition and
let {xn} be a sequence in X . Let u, v ∈ X be such that limn→∞ ∥xn − u∥ and
limn→∞ ∥xn − v∥ exist. If {xnk

} and {xmk
} are subsequences of {xn} which con-

verge weakly to u and v, respectively, then u = v.

Lemma 2.3 ([29]). Let C be a nonempty, closed and convex subset of a Hilbert space
H and G = (V (G), E(G)) a directed graph such that V (G) = C. Let T : C → C be a
G-nonexpansive mapping and {un} be a sequence in C such that un ⇀ u for some
u ∈ C. If there exists a subsequence {unk

} of {un} such that (unk
, u) ∈ E(G) for all

k ∈ N and {un − T un} → v for some v ∈ H. Then (I − T )u = v.

3. Main results

In this section, we are now ready to prove the theorem of weak convergence of
a modified parallel inertial monotone hybrid three-step iteration (MPIMHT) to a
common fixed point for a finite family of G-nonexpansive mappings in Hilbert spaces
endowed with a graph.

Theorem 3.1. Let H be a real Hilbert space and G = (V (G), E(G)) a transi-
tive directed graph such that E(G) is convex. Let Ti : H → H be a family of
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G-nonexpansive mappings for all i = 1, 2, . . . , N such that F = ∩Ni=1F (Ti) ̸= ∅.
Suppose that {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αin}, {βin}, {γin} ⊂ [0, 1].

Algorithm 1: Modified parallel inertial monotone hybrid three-step iter-
ation (MPIMHT)

initialization: Take x0, x1 ∈ H. For n ≥ 1:
Compute

wn = xn + θn(xn − xn−1),

zin = (1− γin)wn + γinTiwn,
yin = (1− βin)w

i
n + βinTizin,

hin = (1− αin)Tizin + αinTiyin,
xn+1 = argmax{∥hin − wn∥, i = 1, 2, . . . , N}.

Let {xn} and {wn} be the sequences generated by Algorithm 1 such that the following
additional conditions hold:

(i)
∑∞

n=1 θn ∥xn − xn−1∥ <∞ ;
(ii) {wn} is dominated by t and {wn} dominates t for all t ∈ F , and if there exists

a subsequence {wnk
} of {wn} such that {wnk

} ⇀ u ∈ H, then ({wnk
}, u) ∈

E(G);
(iii) lim supn→∞ αin < 1;
(iv) 0 < lim infn→∞ γin ≤ lim supn→∞ γin < 1.

Then the sequence {xn} converges weakly to an element in F.

Proof. Let t ∈ F . Since {wn} dominates t and Ti is edge-preserving, we get
(Tiwn, t) ∈ E(G) for all i = 1, 2, . . . , N . Implying there by (zin, t) = ((1 − γin)wn +
γinTiwn, t) ∈ E(G) by E(G) is convex. Again, by edge-preserving of Ti(i = 1, 2, . . . , N)
and (zin, t) ∈ E(G), we have (Tizin, t) ∈ E(G), then (yin, t) = ((1 − βin)w

i
n +

βinTizin, t) ∈ E(G), since E(G) is convex. For all i = 1, 2, . . . , N , we get∥∥zin − t
∥∥ =

∥∥(1− γin)(wn − t) + γin(Tiwn − t)
∥∥

≤ (1− γin) ∥wn − t∥+ γin ∥Tiwn − t∥
≤ (1− γin) ∥wn − t∥+ γin ∥wn − t∥
≤ ∥wn − t∥ ,∥∥yin − t

∥∥ =
∥∥(1− βin)(wn − t) + βin(Tizin − t)

∥∥
≤ (1− βin) ∥wn − t∥+ βin

∥∥Tizin − t
∥∥

≤ (1− βin) ∥wn − t∥+ βin
∥∥zin − t

∥∥
≤ (1− βin) ∥wn − t∥+ βin ∥wn − t∥
≤ ∥wn − t∥ ,

and so ∥∥hin − t
∥∥ =

∥∥(1− αin)(Tizin − t) + αin(Tiyin − t)
∥∥
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≤ (1− αin)
∥∥Tizin − t

∥∥+ αin
∥∥Tiyin − t

∥∥
≤ (1− αin)

∥∥zin − t
∥∥+ αin

∥∥yin − t
∥∥

≤ (1− αin) ∥wn − t∥+ αin ∥wn − t∥
≤ ∥wn − t∥
≤ ∥xn − t∥+ θn ∥xn − xn−1∥ .

This implies that ∥xn+1 − t∥ ≤ ∥xn − t∥+θn ∥xn − xn−1∥ . From Lemma 2.1 and the
assumption (i), we obtain limn→∞ ∥xn − t∥ exists, in particular, {xn} is bounded
and also {zin}, {yin} and {hin}. By the properties in a real Hilbert space H, we have∥∥hin − t

∥∥2 = ∥∥((1− αin)Tizin + αinTiyin)− t
∥∥2

≤ (1− αin)
∥∥Tizin − t

∥∥2 + αin
∥∥Tiyin − t

∥∥2
− (1− αin)α

i
n

∥∥Tizin − Tiyin
∥∥2

≤ (1− αin)
∥∥Tizin − t

∥∥2 + αin
∥∥Tiyin − t

∥∥2
≤ (1− αin)

∥∥zin − t
∥∥2 + αin

∥∥yin − t
∥∥2

≤ (1− αin)
∥∥zin − t

∥∥2 + αin ∥wn − t∥2

≤ (1− αin)((1− γin) ∥wn − t∥2 + γin ∥Tiwn − t∥2

− (1− γin)γ
i
n ∥wn − Tiwn∥2) + αin ∥wn − t∥2

≤ (1− αin)((1− γin) ∥wn − t∥2 + γin ∥wn − t∥2

− (1− γin)γ
i
n ∥Tiwn − wn∥2) + αin ∥wn − t∥2

= ∥wn − t∥2 − γin ∥wn − t∥2 − αin ∥wn − t∥2

+ αinγ
i
n ∥wn − t∥2 + γin ∥wn − t∥2 − αinγ

i
n ∥wn − t∥2

− (1− αin)(1− γin)γ
i
n ∥Tiwn − wn∥2 + αin ∥wn − t∥2

= ∥wn − t∥2 − (1− αin)(1− γin)γ
i
n ∥Tiwn − wn∥2

≤ ∥xn − t∥2 + 2θn ⟨xn − xn−1, wn − t⟩

− (1− αin)(1− γin)γ
i
n ∥Tiwn − wn∥2 .(3.1)

This implies that there exist in ∈ {1, 2, . . . , N} such that

(1− αinn )(1− γinn )γinn ∥Tinwn − wn∥2 ≤ ∥xn − t∥2 − ∥xn+1 − t∥2

+ 2θn ⟨xn − xn−1, wn − t⟩ .(3.2)

By the assumption (i), (iii) and (iv), from (3.1), (3.2) and limn→∞ ∥xn − t∥ exist,
we have

lim
n→∞

∥Tinwn − wn∥ = 0.(3.3)

In addition, ∥∥zinn − wn
∥∥ ≤ γinn ∥Tinwn − wn∥ .(3.4)
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Using (3.3) and (3.4), we have

lim
n→∞

∥∥zinn − wn
∥∥ = 0.(3.5)

Since (wn, t), (t, z
in
n ) ∈ E(G), so (wn, z

in
n ) ∈ E(G). From (3.3) and (3.5), we have∥∥yinn − Tinwn

∥∥ ≤ (1− βinn ) ∥wn − Tinwn∥+ βinn
∥∥Tinzinn − Tinwn

∥∥
≤ (1− βinn ) ∥wn − Tinwn∥+ βinn

∥∥zinn − wn
∥∥

→ 0 (as n→ ∞).(3.6)

Using (3.3) and (3.6), we have∥∥yinn − wn
∥∥ =

∥∥yinn − Tinwn + Tinwn − wn
∥∥

≤
∥∥yinn − Tinwn

∥∥+ ∥Tinwn − wn∥
→ 0 (as n→ ∞).(3.7)

Since (wn, t), (t, y
in
n ) ∈ E(G), so (wn, y

in
n ) ∈ E(G). It follows from (3.5) and (3.7)

that

∥xn+1 − Tinwn∥ ≤ (1− αinn )
∥∥Tinzinn − Tinwn

∥∥+ αinn
∥∥Tinyinn − Tinwn

∥∥
≤ (1− αinn )

∥∥zinn − wn
∥∥+ αinn

∥∥yinn − wn
∥∥

→ 0 (as n→ ∞).(3.8)

In addtion,

∥xn+1 − wn∥ ≤ ∥xn+1 − Tinwn∥+ ∥Tinwn − wn∥ .

From (3.3) and (3.8), we have

lim
n→∞

∥xn+1 − wn∥ = 0.(3.9)

It follows from (3.9) that ∥∥hin − wn
∥∥ ≤ ∥xn+1 − wn∥ → 0(3.10)

as n→ ∞ for all i = 1, 2, . . . , N . From (3.1), we have

(1− αin)(1− γin)γ
i
n ∥Tiwn − wn∥2 ≤ ∥wn − t∥2 −

∥∥hin − t
∥∥2 .(3.11)

By our assumption (iii) and (iv), it follows from (3.10) and (3.11) that

lim
n→∞

∥Tiwn − wn∥ = 0(3.12)

for all i = 1, 2, . . . , N . Since {wn} is bounded and H is reflexive, ωw(wn) = {x ∈
H : wnk

⇀ p, {wnk
} ⊂ {wn}} is nonempty. Let p ∈ ωw(wn) be an arbitrary

element. Then there exists a subsequence {wnk
} ⊂ {wn} converging weakly to p.

Let q ∈ ωw(wn) and {wnm} ⊂ {wn} be such that wnm ⇀ q. From Lemma 2.3 and
(3.12), we have p, q ∈ F . Applying Lemma 2.2, we obtain p = q. □

Note that if T is nonexpansive, then T is G-nonexpansive. As a direct conver-
gence of Theorem 3.1, we can get the following result.
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Corollary 3.2. Let H be a real Hilbert space and Ti : H → H a family of nonexpan-
sive mappings for all i = 1, 2, . . . , N such that F = ∩Ni=1F (Ti) ̸= ∅. Let {xn}, {wn}
generated by x0, x1 ∈ H and

(3.13)



wn = xn + θn(xn − xn−1),

zin = (1− γin)wn + γinTiwn,
yin = (1− βin)w

i
n + βinTizin,

hin = (1− αin)Tizin + αinTiyin,
xn+1 = argmax{∥hin − wn∥, i = 1, 2, . . . , N},

where {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αin}, {βin}, {γin} ⊂ [0, 1]. Assume that
the following additional conditions hold:

(i)
∑∞

n=1 θn ∥xn − xn−1∥ <∞ ;
(ii) lim supn→∞ αin < 1;
(iii) 0 < lim infn→∞ γin ≤ lim supn→∞ γin < 1.

Then the sequence {xn} converges weakly to an element in F.

4. Signal recovery problems

In this section, we apply the MPIMHT to solve signal recovery under situations
without knowing the type of noises. In signal processing, compressed sensing can
be modeled as the following under determinated linear equation system y = Ax +
n, where A ∈ Rm×n is a degraded matrix, x ∈ Rn is an original signal with n
components to be recovered and n,y ∈ Rm are noise and the observed signal with
noisy form components respectively. Finding the solutions of previous determinated
linear equation system can be seen as solving the LASSO problem

(4.1) min
x∈RN

1

2
∥y −Ax∥22 + λ∥x∥1,

where λ > 0. As a result various techniques and iterative schemes have been
developed to solve the Lasso problem. We can apply the minimization prob-
lem of the sum of two functions for solving the LASSO problem (4.1) by set-
ting T (x) = proxψh (x− ψ∇f(x)) , where f(x) = ∥y − Ax∥22/2, h(x) = λ∥x∥1,
∇f(x) = AT (Ax− y).

Now, we present the parallel iterative method in recovering the original signal x
when the observed signals y1,y2, . . . ,yM can be recovered by using the degraded
matrices A1, A2, . . . , AM , repectively in which

(4.2) yi = Aix+ ni, i = 1, 2, . . . ,M.

That is, the original signal x is a common solution of the M -determinated system
of linear equations (4.2). Let us consider the following M -LASSO problems which
is called as the LASSO system introduced by Suantai et al. [30]:
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min
x∈RN

1

2
∥A1x− y1∥22 + λ1∥x∥1,

min
x∈RN

1

2
∥A2x− y2∥22 + λ2∥x∥1,

...

min
x∈RN

1

2
∥AMx− yM∥22 + λM∥x∥1,

(4.3)

where the original signal x is common solution of LASSO system (4.3). We will
find the true signal x through the common solution of LASSO system. Let Ti(x) =
proxψigi

(
x + ψiA

t
i(Aix − yi)

)
. We apply the MPIMHT in finding the common so-

lution x for the LASSO system:

wn = xn + θn(xn − xn−1)

zin = (1− γin)w
n + γinTi(wn),

yin = (1− βin)w
i
n + βinTi(zin),

hin = (1− αin)Ti(zin) + αinTi(yin),
xn+1 = argmax

{
||hin −wn||, i = 1, 2, . . . ,M

}
,

(4.4)

where gi(x) = λi ∥x∥1, ψi = 2/∥ATi Ai∥2. The following stopping criterion is used
∥xn+1 − xn∥2 < ϵl, and after that set xn−1 = xn and xn = xn+1. The default
parameters θn and {αin}, {βin}, {γin} are set as follows:

αin =
n

n+ 1
, βin = αin, γin = αin,

θn =

min

{
1

n2∥xn − xn−1∥22
, 0.1

}
if (xn ̸= xn−1) & (1 ≤ n < Ñ),

0.15 otherwise,

when Ñ is a number of iterations that we want to stop with ϵl = 10−7. And, we
called the algorithm (4.4) as the MPIMHT with degraded matrices Ai, i = 1 . . .M .

Next, some experiments are provided to illustrate the convergence and the ef-
fectiveness of the MPIMHT (4.4) and compare with the FISTA algorithm [14],
Suantai et al. [30], Cholamjiak et al. [15] and Jun-on et al. [20]. The original
signal x with n = 1024 generated by the uniform distribution in the interval [−2, 2]
with 70 nonzero elements is used to create the observation signal with m = 512 and
yi = Aix+ ni where i ≤ 3.

0 100 200 300 400 500 600 700 800 900 1000
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Figure 1. Original Signal (x) with m = 70.

The observation signal yi, i = 1, 2, 3 show on Figure 2.
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Figure 2. Degraded Signals y1, y2, and y3, respectively.
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Figure 3. Noise Signals n1, n2, and n3 respectively.

The matrices Ai generated by the normal distribution with mean zero and vari-
ance one and the white Gaussian noise ni (See on Figure 3).

Both theoretical and experimental results for the convergence properties of the
MPIMHT with the permutation of the blurring matrices A1, A2 and A3 are demon-
strated and discussed on the following cases:

Case I: The MPIMHT with T1. Case II: The MPIMHT with T2. Case III: The
MPIMHT with T3. Case IV: The MPIMHT with T1−T2. Case V: The MPIMHT
with T1−T3. Case VI: The MPIMHT with T2−T3. Case VII: The MPIMHT with
T1−T2−T3.

The process is started when the signal initial data x0 and x1 with n = 1024 is
picked randomly.
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Figure 4. Initial Signals x0 and x1.

The relative signal error is measured by the following formula ∥xn − x∥2/∥x∥2 in
order to check the convergence of all comparative algorithms. The performance of
the tested methods at nth iteration is measured quantitatively by the means of the
the signal-to-noise ratio (SNR), which is defined by

SNR(xn) = 20 log10

(
∥xn∥2

∥xn − x∥2

)
,

where xn is the recovered signal at nth iteration by using the considered method.
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The signal relative error and SNR quality of all comparative methods for recov-
ering the degraded signal are shown on Figures 5 and Figure 6.
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Non-Parallell situation (MPIMHT with case I-III).
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Parallell situation (MPIMHT with case IV-VII).

Figure 5. The relative error norm of all comparative methods.
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Non-Parallell situation (MPIMHT with case I-III).
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Figure 6. The SNR plots of all comparative methods (MPIMHT with case IV-VII).

Figure 5 shows that the relative error plots of all algorithms are decreased as the
iteration number increases and after that they converge to some constants. The rel-
ative error plot demonstrates the validity of all comparative algorithms and confirms
their convergence. The first three figures in Figure 5 show that when the number
of iterations is large enough, the FISTA method provides us the least relative er-
ror. It should also be highlighted that within the first 500 iterations, the MPIMHT
and Jun-on et al. methods approaches converge similarly and faster than the other
comparable methods. With the exception of FISTA techniques, the remaining fig-
ures of Figure 5 depict the convergence behavior of all comparison approaches (all
methods that can be parallel computing). The other parallel approaches converge
significantly better than the proposed method, as can be seen. However, after 100
iterations the proposed method converges better.
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Figure 6 shows that the SNR quality of the restored signal using all comparative
methods increases until it converges to some constant value. The FISTA method
outperforms the other approaches when the quality of the recovered signal is at-
tained using only one of the dregraded matrices, as seen in the first three figures of
Figure 6. The remaining figures of Figure 6 show the SNR quality of all compar-
ative methods excepted FISTA methods. It can be seen that the SNR quality of
the restored image for all parallel algorithms are improved and better than FISTA
method. And, when all degrading matrices are used in finding the common so-
lutions of the signal recovery problem, we get the best quality of the recovering
signal. With the exception of FISTA techniques, the remaining figures of Figure 6
illustrate the SNR quality of all comparing methods. All parallel methods improve
and outperform the FISTA method in terms of SNR quality of the restored image.
We acquire the best quality of the recovered signal when all degrading matrices are
applied in discovering the common solutions of the signal recovering challenge.

Figure 7 displays the SNR plots for the best case of FISTA technique and all
comparative parallel methods that use all degradation matrices within 100th itera-
tions. We discovered that all parallel approaches outperform the FISTA method in
terms of quality. And, after 50 iterations, the MPIMHT approach provides us the
best quality. Moreover, the highest SNR quality can be achieved within the first
100 iterations.
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Figure 7. The SNR plots of FISTA method and all comparative parallel meth-
ods in which all degrading matrices within 100th iterations.

Figure 8 shows that the proposed technique, which uses all degradation matrices,
takes the longest average time on each iteration step and also consumes the greatest
CPU time during the procedure. That’s the one of the disadvantage of the proposed
method.

The last figure shows the best quality of the restored signals at 90th step of
iterations for all comparative methods.

5. Conclusions

In this manuscript, we present a modified version of the parallel inertial monotone
hybrid three-step iteration algorithm (referred to as MPIMHT) to solve the common
fixed point problem for a finite family of G-nonexpansive mappings in a Hilbert
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Figure 8. The CPU time consumption through out the process for
FISTA and all parallel methods within 100th iterations.
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Suantai et al. [30] with T 1− T 2−T 3 (SNR = 60)
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Cholamjiak et al. [15] with T 1− T 2−T 3 (SNR = 60)
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Jun-on et al. [20] with T 1− T 2−T 3 (SNR = 80)
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Figure 9. Recovering signals being used the FISTA method and all compar-
ative parallel methods in which all degrading matrices at 90th iterations.

space with a directed graph. We have proved weak convergence of the sequence
generated by MPIMHT to an element of the problem’s solution set under certain
conditions. As an application, the algorithm is then used to solve the signal recovery
problem involving several filters. We discovered that the numerical experiment on a
signal recovery problem outcome of MPIMHT is better than that of some previous
algorithms.
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