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where ϕ is a map from Y to X, and W (y), denoted by Wy for simplicity, is a linear
operator from E to F .

Weighted composition operators are intimately connected with isometries. It is
known that for many vector-valued function spaces, the surjective linear isometries
are of the form (1.1), see [5, 7, 11]. The study of isometries between Banach spaces
is one of the most important research areas in functional analysis.

Moreover, such operators arise in a very natural way in many situations. Given
Banach spaces, E, F , B(E,F ) denotes the space of all bounded linear operators
from E to F , E∗ denotes the dual space of E, and ext(E) denotes the set of
extreme points of the unit ball of E. An operator T ∈ B(E,F ) is said to be
nice if T ∗(ext(F ∗)) ⊆ ext(E∗). Nice operators between continuous function spaces
are weighted composition operators [3, 6, 11].

Furthermore, weighted composition operators are also zero product preserving
maps. Zero product preserving maps on operator algebras have become the sub-
ject of a systematic study for quite some time [2, 18, 19]. On function algebras
these maps are usually called disjointness preserving maps or separating maps.
A linear map T : Lip(X,E) → Lip(Y, F ) is called disjoint preserving or sepa-
rating if ||Tf(y)||||Tg(y)|| = 0 for all y ∈ Y , whenever f, g ∈ Lip(X,E) satisfy
||f(x)||||g(x)|| = 0 for all x ∈ X. The map T is said to be biseparating if it is bijec-
tive and both T and T−1 are separating. It was shown in [1] that biseparating maps
from Lip(X,E) to Lip(Y, F ) are weighted composition operators. Similar results
were proved in [12, 15] for continuous vector-valued function spaces. For related
results on second-order Cesàro function spaces, we refer the reader to the papers [4]
and [14].

The boundedness, compactness, weak compactness and spectral properties of
composition and weighted composition operators on scaler and vector-valued Lip-
schitz spaces have been studied extensively by many authors recently. In [16],
the authors characterized compact composition operators on Lip(X) and Lip0(X).
In [13], Golbaharan and Mahyar described compact weighted composition operators
on Lip(X). They also obtain necessary and sufficient conditions for the injectiv-
ity and surjectivity of these operators. In [10], the authors characterized compact
weighted composition operators on Lip0(X). They also give necessary and sufficient
conditions for the injectivity and surjectivity of these operators. In this paper we
try to complete this circle of ideas by characterizing boundedness, injectivity, sur-
jectivity and compactness of weighted composition operators between Lip0(X,E)
and Lip0(Y, F ). Our proofs depend on the ideas presented in [10].

2. Preliminaries and basic results

In this section we recall some basic definitions and results that will be used
throughout the paper. The operator T : Lip0(X,E) → Lip0(Y, F ) will always
denote a weighted composition operator (WCO, for short) of the form

Tf(y) = Wy(f(ϕ(y))), for all y ∈ Y and f ∈ Lip0(X,E);

where ϕ is a map from Y to X, and Wy is a linear operator from E to F . We will
also refer to such T as the weighted composition operator induced by W and ϕ.
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The map ϕ is called base point preserving map if ϕ(y0) = x0. We recall that x0
and y0 are base points of X and Y respectively. The diameter of a metric space X,
denoted by diam(X), is defined as

diam(X) = sup
x,y∈X

d(x, y).

It is a natural question to ask how the properties of T , Wy and ϕ are related to
each other. What conditions the operator Wy and the map ϕ should satisfy so that
T is a (bounded) WCO from Lip0(X,E) to Lip0(Y, F ), and vice-versa.

Consider the following examples.

Example 2.1. Let X = {−1, 0} and Y = (−1, 1) with the usual metric d and base
point 0. Define the map ϕ : Y → X by ϕ(y) = [y], where [y] stands for the greatest
integer less than or equal to y. It is clear that ϕ is not Lipschitz. For y ∈ Y , we
define Wy ∈ B(E) by Wy(e) = ye. It can be shown that the operator T induced by
ϕ and W is a bounded WCO from Lip0(X,E) into Lip0(Y,E).

Example 2.2. Let X = (−3, 3), Y = (−2, 2) with the usual metric d and base point
−1. Define the map ϕ : Y → X by ϕ(y) = y. For y ∈ Y , we define Wy ∈ B(E)
as Wy(e) = [χ(−2,−1](y) − χ(−1,2](y)]e, where χA is the characteristic function of
A ⊆ R.

We observe that W is not Lipschitz. Indeed,

||W(−1− 1
n
) −W(−1+ 1

n
)||

|(−1− 1
n)− (−1 + 1

n)|
=

1

| − 1− 1
n + 1− 1

n |
sup
||e||=1

||W(−1− 1
n
)(e)−W(−1+ 1

n
)(e)||

=
n

2
sup
||e||=1

||e+ e|| = n.

We can also show that T is bonded linear operator from Lip0(X,E) to Lip0(Y,E).

Remark 2.3. In the above two examples we see that T : Lip0(X,E) → Lip0(Y,E)
is a bounded WCO, but in one case ϕ is not a base point preserving Lipschitz map,
and in the other case W is not Lipschitz.

For a function f ∈ Lip0(X,E), under what conditions we have that Tf ∈
Lip0(Y, F ). Our first proposition gives an answer to this question in the case when
diameter of X is finite.

Proposition 2.4. Let diam(X) < ∞. Suppose that W ∈ Lip(Y,B(E,F )) and

ϕ : Y → X is a base point preserving map such that sup
{
∥Wx∥d(ϕ(x),ϕ(y))

ρ(x,y) : x, y ∈

Y, x ̸= y
}
< ∞. Then T is a WCO from Lip0(X,E) into Lip0(Y, F ).

Proof. Take C = sup
{
∥Wx∥d(ϕ(x),ϕ(y))

ρ(x,y) : x, y ∈ Y, x ̸= y
}
. Let f ∈ Lip0(X,E).

Then for each x, y ∈ Y with ϕ(x) ̸= ϕ(y), we have

∥Tf(x)− Tf(y)∥
ρ(x, y)

=
∥Wx(f(ϕ(x)))−Wy(f(ϕ(y)))∥

ρ(x, y)

≤ ∥Wx(f(ϕ(x)))−Wx(f(ϕ(y)))∥
ρ(x, y)
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+
∥Wx(f(ϕ(y)))−Wy(f(ϕ(y)))∥

ρ(x, y)

=
∥Wx∥∥f(ϕ(x))− f(ϕ(y))∥

d(ϕ(x), ϕ(y))

d(ϕ(x), ϕ(y))

ρ(x, y)

+
∥Wx −Wy∥∥f(ϕ(y))∥

ρ(x, y)

≤ CL(f) + L(W )L(f) diam(X).

Moreover, for each x, y ∈ Y with x ̸= y and ϕ(x) = ϕ(y), we have

∥Tf(x)− TF (y)∥
ρ(x, y)

≤ L(W )L(f) diam(X).

□
An important property which is related to the compactness of weighted composi-

tion operators is supercontractivity. A map ϕ : Y → X is called supercontractive if

for every ϵ > 0, there exists δ > 0 such that d(ϕ(x),ϕ(y))
ρ(x,y) < ϵ whenever 0 < ρ(x, y) < δ.

Constant maps are Lipschitz and supercontractive. A supercontractive Lipschitz
function is often called a little Lipschitz function.

3. Bounded weighted composition operators

In this section we characterize boundedness of weighted composition operators
between vector-valued Lipschitz spaces.

We start by stating the following elementary lemma.

Lemma 3.1. Let fn, f ∈ Lip0(X,E) such that fn → f . Then fn → f pointwise on
X.

Proposition 3.2. Let W : Y → B(E,F ) be a map, and let ϕ : Y → X be a base
point preserving map. Let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. Then

(1) T is bounded.

(2) sup
{
∥Wx∥d(ϕ(x),ϕ(y))

ρ(x,y) : x, y ∈ Y, x ̸= y
}
≤ 2∥T∥.

Proof. Let fn ∈ Lip0(X,E) such that fn → 0 and Tfn → g in Lip0(Y, F ). Then
fn(ϕ(y)) → 0 and Tfn(y) → g(y) for every y ∈ Y . Applying Closed Graph Theorem
and using the fact that each Wy is bounded, we conclude that T is bounded. This
proves the first assertion.

Let x, y ∈ Y with x0 ̸= ϕ(x) ̸= ϕ(y). We can assume without loss of generality
that d(ϕ(y), x0) ≤ d(ϕ(x), x0). This implies that d(ϕ(x), ϕ(y)) ≤ 2d(ϕ(x), x0). Take
δ = min{d(ϕ(x), x0), d(ϕ(x), ϕ(y))} > 0. For fixed e ∈ E we define the function
f : X → E by

f(z) = d(ϕ(x), ϕ(y))max

{
0, 1− d(ϕ(x), z)

δ

}
e.

One can show that f ∈ Lip0(X,E) and L(f) ≤ 2||e||. We also note that f(ϕ(x)) =
d(ϕ(x), ϕ(y))e and f(ϕ(y)) = 0. Now,

∥Wx(e)∥
d(ϕ(x), ϕ(y))

ρ(x, y)
=

∥Wx(f(ϕ(x)))−Wy(f(ϕ(y)))∥
ρ(x, y)

=
∥Tf(x)− Tf(y)∥

ρ(x, y)
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≤ L(Tf) ≤ 2∥T∥∥e∥.

For the case x0 = ϕ(x) ̸= ϕ(y), we define the function f : X → E by f(z) = d(z, x0)e
and the proceed in the same way to get the required conclusion. Hence, the second
assertion is also proved. □

Corollary 3.3. Let W : Y → B(E,F ) be a bounded map which is continuous on
Y \N , where N = {y ∈ Y : Wy = 0}, and let ϕ : Y → X be a base point preserving
map. Let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. Then ϕ is Lipschitz on every
nonempty compact subset of Y \N .

Proof. Let U be a nonempty compact subset of Y \ N . Take B = infy∈U ||Wy||.
Suppose that x, y ∈ U with x ̸= y. By Proposition 3.2 we have ∥Wx∥d(ϕ(x),ϕ(y))

ρ(x,y) ≤
2||T ||. This implies that d(ϕ(x),ϕ(y))

ρ(x,y) ≤ 2||T ||
B . Therefore, ϕ is a Lipschitz. □

4. Injective and surjective weighted composition operators

In this section we characterize injectivity and surjectivity of weighted composition
operators between vector-valued Lipschitz spaces.

Our first theorem gives a necessary and sufficient condition for a WCO to be
injective. We recall that N = {y ∈ Y : Wy = 0}.

Theorem 4.1. Let W : Y → B(E,F ) be a map, ϕ : Y → X a base point preserving
map, and T : Lip0(X,E) → Lip0(Y, F ) a WCO. Suppose that y0 ∈ Y \N , and for
every y ∈ Y \ N , Wy is injective. Then T is injective if and only if ϕ(Y \ N) is
dense in X.

Proof. Suppose that T is injective, and ϕ(Y \ N) is not dense in X. Then there
exists x′ ∈ X such that dist(x′, ϕ(Y \ N) > 0. Let ε = dist(x′, ϕ(Y \ N). Define
f : X → E by

f(x) = max

{
0, 1− d(x′, x)

ε

}
e.

It is clear that f(x0) = 0 and f ∈ Lip0(X,E). Moreover, Tf = 0 and f(x′) = e.
This implies that T is not injective, a contradiction.

Conversely, assume that ϕ(Y \ N) is dense in X. Let g ∈ Lip0(X,E) with
T (g) = 0. Let x ∈ ϕ(Y \ N) and y ∈ Y \ N such that ϕ(y) = x. Now, Tg(y) =
Wy(g(ϕ(y))) = Wy(g(x)) = 0. As Wy is injective g(x) = 0. This implies that g = 0.
Therefore, T is injective. □

Theorem 4.2. Let W ∈ Lip(Y,B(E,F )) and let ϕ : Y → X be a Lipschitz homeo-
morphism. Let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. Suppose that y0 ∈ Y \N .
If T is surjective, then the following conditions hold.

(1) Y \N = Y ,

(2) inf
{

d(ϕ(x),ϕ(y))
ρ(x,y) : x, y ∈ Y, x ̸= y

}
> 0,

(3) inf
{
||Wx||d(ϕ(x),ϕ(y))ρ(x,y) : x ∈ K, y ∈ Y, x ̸= y

}
> 0, where K is nonempty

compact subset of Y .
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Proof. Let y ∈ Y \ {y0}. Take ε < ρ(y, y0). For fix s ∈ F , we define g : Y → F by

g(x) = max

{
0, 1− ρ(y, x)

ε

}
s, x ∈ Y.

We have g(y0) = 0, g(y) = s and g ∈ Lip0(Y, F ). As T is surjective, there exists
f ∈ Lip0(X,E) such that Tf = g. Now, Tf(y) = Wy(f(ϕ(y))) = g(y) = s. This
implies that Wy ̸= 0 for all y ∈ Y . This proves the first assertion.

As ϕ is Lipschitz homeomorphism, there exists M > 0 such that ρ(x, y) ≤
Md(ϕ(x), ϕ(y)) for all x, y ∈ Y . This implies that, d(ϕ(x),ϕ(y))

ρ(x,y) ⩾ 1
M . Thus,

inf

{
d(ϕ(x), ϕ(y))

ρ(x, y)
: x, y ∈ Y, x ̸= y

}
≥ 1

M
> 0,

which proves the second assertion.
Suppose that K is a nonempty compact subset of Y. Then infx∈K ||Wx|| = ||Wk||

for some k ∈ K. This implies that

||Wx||
d(ϕ(x), ϕ(y))

ρ(x, y)
≥ ||Wk||

d(ϕ(x), ϕ(y))

ρ(x, y)
,

for all x ∈ K, y ∈ Y with x ̸= y. Hence, we have

inf

{
||Wx||

d(ϕ(x), (ϕ(y))

ρ(x, y)
: x ∈ K, y ∈ Y, x ̸= y

}
≥ ||Wk|| inf

{
d(ϕ(x), ϕ(y))

ρ(x, y)
: x, y ∈ Y, x ̸= y

}
≥ ||Wk||

1

M
> 0.

This completes the proof. □

5. Compact weighted composition operators

In this section we characterize compactness of weighted composition operators
between vector-valued Lipschitz spaces. For this we need to generalize a result of
Antonio and Moisés [16, Proposition 2.3] to vector-valued Lipschitz spaces. Our
generalization uses the same idea presented in their paper. This result uses the fact
that Lip0(X) is a dual space. The predual of Lip0(X) is Æ(X), the Arens-Eells
space of X. For more details see [20]. We also refer the reader to [8, Theorem 4.3].
The vector-valued version of this result is true if the range space is a dual space as
it is evident from a result due to Johnson.

Theorem 5.1 ([17, Theorem 3.1]). For any metric space X and any Banach space
E, Lip(X,E) is a dual space whenever E is.

Throughout this section we will assume that E and F are dual Banach spaces.
For x ∈ X and r > 0, B(x, r) denotes the closed ball in X of radius r centered at x.

Lemma 5.2. Let E be a dual Banach space, and let (fn) be a bounded sequence
in Lip0(X,E). Then (fn) has a subsequence which converges pointwise on X to a
function f ∈ Lip0(X,E). Moreover, this convergence is uniform on totally bounded
subset of X.
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Proof. Let (fn) be bounded sequence in Lip0(X,E). Since Lip0(X,E) is a dual
space whenever E is, [8, Theorem 4.3], its unit ball is w∗-compact (Banach-Alaoglu
Theorem). Hence, there exist a subsequence (fnk

) and a function f ∈ Lip0(X,E)

such that fnk

w∗
−−→ f . Now, since on bounded subsets of Lip0(X,E) the w∗-topology

agrees with the topology of pointwise convergence [9, Corollary 3.8], we conclude
that fnk

→ f pointwise on X.
For the second part, suppose that C is totally bounded subsets of X. Let ε > 0

and N = sup
{
L(f), L(fnk

)(k ∈ N)
}
. As C is totally bounded, there exists a finite

set {x1, x2 . . . , xn} in C such that C ⊂
∪n

i=1B(xi,
ε
3N ). We choose k′ large enough

so that ||fnk
(xi) − f(xi)|| < ε

3 whenever k ≥ k′ and 1 ≤ i ≤ n. Given x ∈ C, we
choose i such that x ∈ B(xi,

ε
3N ). Now, for k ≥ k′ we have

||fnk
(x)− f(x)|| ≤ ||fnk

(x)− fnk
(xi)||+ ||fnk

(x)− f(xi)||+ ||f(xi)− f(x)||

< L(fnk
)d(x, xi) +

ε

3
+ L(f)d(x, xi)

≤ 2N
ε

3N
+

ε

3
= ε.

Therefore, fnk
→ f uniformly on C. □

In order to prove our main theorem for compactness of WCO, we need the fol-
lowing proposition.

Proposition 5.3. Let E and F be dual Banach spaces. Let W ∈ Lip(Y,B(E,F )),
ϕ : Y → X be a base point preserving map, and T : Lip0(X,E) → Lip0(Y, F )
be a WCO. Then T is compact if and only if for each bounded sequence fn ∈
Lip0(X,E) which converge to 0 uniformly on totally bounded subsets of X, there
exists a subsequence (fnk

) such that Tfnk
→ 0 as k → ∞.

Proof. Let T be compact and let fn ∈ Lip0(X,E) be a bounded sequence which
converges uniformly to 0 on totally bounded subsets of X. The compactness of T
implies that there exist a subsequence (fnk

) and g ∈ Lip0(Y, F ) such that Tfnk
→ g

as k → ∞. By Lemma 3.1, Tfnk
→ g pointwise on Y . On the other hand, fnk

→ 0
uniformly on totally bounded subsets of X implies that fnk

→ 0 pointwise on X
(as {x} is a totally bounded subsets of X). Thus,

||Tfnk
(y)|| = ||Wy(fnk

(ϕ(y)))|| ≤ ||Wy||||fnk
(ϕ(y))|| → 0, as n → ∞.

Therefore, Tfnk
→ 0 pointwise on Y . Hence, g = 0.

For the converse part, let fn ∈ Lip0(X,E) be a bounded sequence. By Lemma 5.2,
there exist a subsequence (fnk

) and f ∈ Lip0(X,E) such that fnk
→ f uniformly

on totally bounded subset of X. This implies that (fnk
− f) has a subsequence

(fnkl
− f), such that T (fnkl

− f) → 0 as l → ∞. Hence, T is compact. □

The next theorem gives a necessary and sufficient condition for the compactness
of weighted composition operators.

Theorem 5.4. Let E and F be dual Banach spaces. Suppose that W ∈ Lip(Y,B(E,F )),
ϕ : Y → X is base point preserving map, and ϕ(Y \ N) be totally bounded in X.
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Let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. Then T is compact if and only if

lim
d(ϕ(x),ϕ(y))→0

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
= 0.

Proof. Suppose that T is compact and that there exist ε > 0 and two sequence (xn)
and (yn) in Y such that xn ̸= yn for all n ∈ N and lim

n→∞
d(ϕ(xn), ϕ(yn)) = 0, but

∥Wxn∥
d(ϕ(xn),ϕ(yn))

ρ(xn,yn)
≥ ε for all n ∈ N. For n ∈ N, we define the sequence fn : X → K

by

fn(t) =

{
d(t, ϕ(yn)), if d(t, ϕ(yn)) ≤ d(ϕ(xn), ϕ(yn)),

d(ϕ(xn), ϕ(yn)), if d(t, ϕ(yn)) ≥ d(ϕ(xn), ϕ(yn)),

for all t ∈ X. We observe that fn ∈ Lip(X), ∥fn∥∞ ≤ d(ϕ(xn), ϕ(yn)) and L(fn) ≤
1. The sequence fn → 0 uniformly, and hence, fn(x) → 0 for every x ∈ X. For each
n ∈ N and fixed e ∈ E with ||e|| = 1, we define the sequence gn : X → E by

gn(t) = [fn(t)− fn(x0)]e.

The sequence (gn) ∈ Lip0(X,E) and gn → 0 uniformly on X. Moreover, L(gn) =
L(fn) ≤ 1 for all n ∈ N. By Proposition 5.3, there exists a subsequence (gnk

) such
that Tgnk

→ 0 as k → ∞, that is, L(Tgnk
) → 0 as k → ∞. Moreover, the sequence

L(Tgnk
) + |fnk

(x0)|L(W ) → 0 as k → ∞. This implies that there exists a k0 such
that L(Tgnk

) + |fnk
(x0)|L(W ) < ε

2 for all k ≥ k0. Now,

L(Tgnk
) ≥ ∥Tgnk

(xnk
)− Tgnk

(ynk
)∥

ρ(xnk
, ynk

)

=
∥Wxnk

([fnk
(ϕ(xnk

))− fnk
(x0)]e)−Wynk

([fnk
(ϕ(ynk

))− fnk
(x0)]e)∥

ρ(xnk
, ynk

)

=
∥Wxnk

(d(ϕ(xnk
), ϕ(ynk

))e) + fnk
(x0)(Wynk

−Wxnk
)e∥

ρ(xnk
, ynk

)
.

Thus, for all k ≥ k0,

∥Wxnk
(e)∥d(ϕ(xnk

), ϕ(ynk
))

ρ(xnk
, ynk

)

=
∥Wxnk

(d(ϕ(xnk
), ϕ(ynk

))e) + fnk
(x0)(Wynk

−Wxnk
)e− fnk

(x0)(Wynk
−Wxnk

)e∥
ρ(xnk

, ynk
)

≤ L(Tgnk
) + |fnk

(x0)|
∥Wynk

−Wxnk
∥

ρ(xnk
, ynk

)

≤ L(Tgnk
) + |fnk

(x0)|L(W ) <
ε

2
.

This implies that

∥Wxnk
∥d(ϕ(xnk

), ϕ(ynk
))

ρ(xnk
, ynk

)
<

ε

2
, ∀ k ≥ k0,

a contradiction.



WEIGHTED COMPOSITION OPERATORS ON VECTOR-VALUED LIPSCHITZ SPACES 817

For the converse part, suppose that

lim
d(ϕ(x),ϕ(y))→0

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
= 0.

Let fn ∈ Lip0(X,E) be a bounded sequence such that fn → 0 uniformly on totally
bounded subsets of X. Let A > 0 with L(fn) < A for all n ∈ N and

B = sup

{
∥Wx∥

d(ϕ(x), ϕ(y))

ρ(x, y)
: x, y ∈ Y, x ̸= y

}
.

We know that B ≤ 2∥T∥ by Theorem 3.2. Let ε > 0. Then there exists δ > 0 such
that

x, y ∈ Y, 0 < d(ϕ(x), ϕ(y)) < δ ⇒ ∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
<

ε

2A
.

Now, fn → 0 uniformly on ϕ(Y \ N), as ϕ(Y \ N) is totally bounded. Hence,
there exists k ∈ N such that for all y ∈ Y \ N and n ≥ k, ∥fn(ϕ(y))∥ < ε

C , where

C = 3(2Bδ + 1
2 + L(W )).

To prove that T is compact, we show that

∥Tfn(x)− Tfn(y)∥
ρ(x, y)

< ε

for all x, y ∈ Y , with x ̸= y, and n ≥ k. This will imply that L(Tfn) → 0 as n → ∞,
see Proposition 5.3.

Let x, y ∈ Y , with x ̸= y, and n ≥ k. We consider the following cases.
Case 1: x, y ∈ Y \N with ϕ(x) ̸= ϕ(y).
Then we have

∥Tfn(x)− Tfn(y)∥
ρ(x, y)

=
∥Wx(fn(ϕ(x)))−Wy(fn(ϕ(y)))∥

ρ(x, y)

≤ ∥Wx∥∥fn(ϕ(x))− fn(ϕ(y))∥
d(ϕ(x), ϕ(y))

d(ϕ(x), ϕ(y))

ρ(x, y)
+ ∥fn(ϕ(y))∥L(W ).

If 0 < d(ϕ(x), ϕ(y)) < δ, then

∥Tfn(x)− Tfn(y)∥
ρ(x, y)

< L(fn)
ε

2A
+

ε

C
L(W ) <

ε

2
+

ε

3
<

5ε

6
.

If d(ϕ(x), ϕ(y)) ≥ δ, then

∥Tfn(x)− Tfn(y)∥
ρ(x, y)

≤ ∥Wx∥∥fn(ϕ(x))− fn(ϕ(y))∥
d(ϕ(x), ϕ(y))

d(ϕ(x), ϕ(y))

ρ(x, y)
+ ∥fn(ϕ(y))∥L(W )

≤ ∥fn(ϕ(x))∥+ ∥fn(ϕ(y))∥
δ

B +
ε

C
L(W )

≤ 2εB

Cδ
+

ε

C
L(W ) <

ε

2
.

Case 2: x, y ∈ Y \N with x ̸= y and ϕ(x) = ϕ(y). The proof is obvious.



818 A. B. ABU BAKER AND R. MAURYA

Case 3: x ∈ Y \N and Wy = 0. Then

∥Tfn(x)− Tfn(y)∥
ρ(x, y)

≤ ∥Wx(fn(ϕ(x)))∥
ρ(x, y)

=
∥Wx −Wy∥

ρ(x, y)
∥fn(ϕ(x))∥ <

ε

2
.

Case 4: y ∈ Y \N and Wx = 0. The proof is similar to Case 3.
Case 5: x, y ∈ Y with x ̸= y and Wx = Wy = 0. The proof is obvious.
Combining all the cases we get L(Tfn) < ε for all n ≥ k. Therefore, T is

compact. □

Theorem 5.5. Let E and F be dual Banach spaces, and let W ∈ Lip(Y,B(E,F )).
Let ϕ : Y → X be a base point preserving map such that ϕ(Y \N) is totally bounded
in X, and let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. If ϕ is supercontractive on
Y \N , then T is compact.

Proof. Suppose that ϕ is supercontractive on Y \N . For given ε > 0, there exists
0 < δ0 < 1 such that

x, y ∈ Y \N, 0 < ρ(x, y) < δ0 ⇒
d(ϕ(x), ϕ(y))

ρ(x, y)
≤ ε

1 + ||W ||s
,

where ||W ||s = L(W ) + ||W ||∞. Let δ = εδ0
1+||W ||s and x, y ∈ Y such that 0 <

d(ϕ(x), ϕ(y)) < δ. To prove that T is compact, we show that ∥Wx∥d(ϕ(x),ϕ(y))
ρ(x,y) < ε,

see Theorem 5.4.
We consider the following cases.
Case 1: x, y ∈ Y \N with 0 < ρ(x, y) < δ0. Then

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
≤ ||W ||∞

d(ϕ(x), ϕ(y))

ρ(x, y)
< ||W ||∞

ε

1 + ||W ||s
< ε.

Case 2: x, y ∈ Y \N with ρ(x, y) ≥ δ0. Then

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
≤ ||W ||∞

d(ϕ(x), ϕ(y))

δ0
< ||W ||∞

εδ0
(1 + ||W ||s)δ0

< ε.

Case 3: x ∈ Y \N and Wy = 0. Then

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
=

||Wx −Wy||
ρ(x, y)

d(ϕ(x), ϕ(y)) < L(W )δ =
L(W )εδ0
1 + ||W ||s

< ε.

Case 4: Same as Case 3.
Therefore,

lim
d(ϕ(x),ϕ(y))→0

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
= 0.

□

Theorem 5.6. Let E and F be dual Banach spaces, and let W ∈ Lip(Y,B(E,F )).
Let ϕ : Y → X be a base point preserving map such that ϕ(Y \N) is totally bounded
in X, and let T : Lip0(X,E) → Lip0(Y, F ) be a WCO. If T is compact, then ϕ is
supercontactive on compact subsets of Y \N .
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Proof. Assume that T is a compact operator. By Theorem 5.4, we have

lim
d(ϕ(x),ϕ(y))→0

∥Wx∥
d(ϕ(x), ϕ(y))

ρ(x, y)
= 0.

Let U be a non empty compact subset of Y \ N . Take B = infy∈U ||Wy||, and let
ε > 0 be given. There exists δ > 0 such that

x, y ∈ Y, 0 < d(ϕ(x), ϕ(y)) < δ ⇒ ||Wx||
d(ϕ(x), ϕ(y))

ρ(x, y)
< Bε.

The map ϕ is uniformly continuous as it is Lipschitz on U , see corollary 3.3. Thus,
there exits δ1 > 0 such that d(ϕ(x), ϕ(y)) < δ whenever ρ(x, y) < δ1.

Suppose that x, y ∈ U with 0 < ρ(x, y) < δ1. Then d(ϕ(x), ϕ(y)) < δ.

If ϕ(x) = ϕ(y), then d(ϕ(x),ϕ(y))
ρ(x,y) = 0 < ε.

If ϕ(x) ̸= ϕ(y), then we have

d(ϕ(x), ϕ(y))

ρ(x, y)
≤ ||Wx||

d(ϕ(x), ϕ(y))

Bρ(x, y)
<

Bε

B
= ε.

Therefore, ϕ is supercontractive. □
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