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CONVERGENCE RATE ANALYSIS OF VARIOUS FIXED-POINT
ITERATIONS FOR GENERALIZED AVERAGED
NONEXPANSIVE OPERATORS

PRACGATI GAUTAM, VINEET*, MOHAMMAD AKRAM', AND M. ELSAID RAMADAN

ABSTRACT. This paper evaluates the rate of convergence of various fixed-point
iterative techniques for a class of nonlinear operators inspired by problems in
convex optimization, referred to as Generalized Averaged Nonexpansive (GAN)
operators. We demonstrate the convergence of iterative techniques, including
Mann, Ishikawa, Normal-S, and PV iterations, to fixed points of GAN opera-
tors. Additionally, we show that these methods achieve an exponential global
convergence rate for GAN operators with a positive exponent less than 1 and es-
tablish that the rate depends on the exponents of generalized nonexpansiveness
and Holder regularity. Numerical experiments validate the theory, showing PV
and Normal-S outperform Picard.

1. INTRODUCTION

From enhancing image quality to powering breakthroughs in machine learning,
non-differentiable optimization problems are at the forefront of countless technologi-
cal advancements. Fixed-point algorithms are essential tools for tackling these prob-
lems, with traditional approaches relying on contractive or averaged nonexpansive
operators for their convergence analysis [2,7-9]. However, these traditional meth-
ods are limited in their applicability, as not all optimization problems can be read-
ily transformed into fixed-point problems using averaged nonexpansive operators.
To address this limitation, Lin and Xu introduced the concept of the Generalized
Averaged Nonexpansive operator [10], which, despite being weaker than averaged
nonexpansiveness, still guarantees convergence of fixed-point iterations. Moreover,
the GAN operator’s exponent provides a mechanism for refining local convergence
rates, potentially leading to faster convergence than traditional methods. This de-
velopment raises a crucial and unexplored question: Can iterative methods beyond
Picard iteration be effectively applied to GAN operators, potentially leading to
faster and more efficient convergence?. This paper delves into this question, provid-
ing, for the first time, global convergence rates for the Mann, Ishikawa, Normal-S,
and PV iterations applied to GAN operators, significantly advancing the under-
standing and applicability of GAN-based optimization. Our analysis also reveals
that the PV iteration demonstrates superior convergence properties compared to
the Picard iteration in the context of GAN operators.
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2. PRELIMINARIES

Now, we will give the definition of the u-GAN operator with exponent A. Here,
R* denotes the set of all positive real numbers.

Definition 2.1 ([10]). An operator G : R” — R" is said to be generalized averaged
nonexpansive if there exist \, u € RT such that

Gz — Gy|* + pll (I = @) — (I = GYy|I* < [l = y|*, for all z,y € R™.

Let Fiz(G) denote the set of all fixed points of operator G .

One can easily verify that GAN operators are nonexpansive thus set of all fixed
points of GAN operators are closed and convex set.

The next theorem, proved in [10], provides the rate of convergence of the fixed-
point iterations in GAN with exponent A for some A € (0,1) operators for the
Picard case.

Theorem 2.2 ([10]). If G is GAN such that Fix(G) # ¢ and exponent X for some
A € (0,1), then for any initial vector pg € R™, the Picard sequence p, of G converges
to some p € Fiz(G),and ||p, — p|| = o(nP=1/}).

Now we will define Holder regularity, which we will denote by HR.

Definition 2.3 ([2]). An operator G is said to be Holder regular (HR) if Fiz(G)
is nonempty, and there exists © € R* such that:

d(z, Fiz(G)) < p|lz — Gz||, for all x € R,
where d(z, Fiz(G)) denotes the distance from x to the set Fix(G).
The next theorem provides the rate of convergence for exponent A; > 1.

Theorem 2.4 ([10]). If G is GAN such that Fiz(G) # ¢ , exponent \y > land HR
with exponent Ao € RT, then for any initial vector pg € R™, the Picard algorithm
{pn} for G converges to some p € Fix(G), and there exists p € (0,1) such that

A

o) <n‘A1<12Az>> L 0<h <1
[P — pl| =
O ("), Az > 1

A useful theorem that will help in constructing example.

Theorem 2.5 ([10]). Let f : R" — R U {oo} be a proper lower semicontinuous
convez function that is differentiable. If there exist Ly > Lo > 0 such that

Lollz —yll < IVFf(z) = VWl < Lallz —yll,  for all z,y € R"
then, for o € (0, L%)’ we have S1 =1 — aVf is both GAN with exponent 1 and
HR with exponent 1.

Definition 2.6. A Banach space X with norm || - || is called uniformly convex if,
for every € > 0, there exists a § > 0 such that for all x,y € X with ||z] = ||y|| =1,
the condition

lo—yll > e = Hx;y”g—&
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Throughout this study, we will assume that our space is uniformly convex.

Definition 2.7. Assume K is a real Hilbert space and F' C K is a nonempty, closed,
and convex set, and suppose {p;} is a sequence in . We say that {py}r, is
Fejér monotone with respect to F' if

(2.1) P41 — 2l < [lpx — 2|
for all z € F and every integer £k =0,1,2, ...
Now, we present a lemma that we are going to use in later results.

Lemma 2.8 ([14]). Let V' be a uniformly convex Banach space and 0 < o <
rm < B <1 for all n € N. Let 1, and o, be two sequences in V such that
limsup,,_, ||| < ¢, limsup,,_, ||on]| < ¢, and limsup,,_,  ||rnm+(1—1n)on| = ¢
hold for some ¢ > 0. Then,

lim ||, —oy] =0.
n—oo

The iterative algorithms described below are referred to as the Mann [11], Ishikawa
[5], Normal-S [13], and PV [4] algorithms, respectively, for the self-mapping G de-
fined on V', where V is a closed and convex subset of a Banach space B.

(2.1) {po €v,

Pn+1 = (1 - Tn)pn +1,Gpp,n € Ly

po €V,
(22) Pn+1 = (1 - Tn)pn + T’anTLJ
gn = (1 - Sn)pn + SnGpna nc Z+

Po € V7
(2.3)
Prnt1 = G((L —1p)pn +10.Gpp), n € Z4

po €V,

(2.4) Pn+1 = Gan,
gn = G((1 = 1)G?py +7Gpy), 1 € Zy,

3. MAIN RESULTS

Here, we present key Lemmas essential for the main results.

Lemma 3.1. Let {p,} be the sequence generated by the PV algorithm for a GAN
operator G with Fix(G) # 0. Then, {p,} is a Fejér monotone (FM) sequence with
respect to Fixz(G), and lim,_,« ||pn — p|| ezists for all p € Fiz(G).
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Proof. Since G is nonexpansive and || - || is convex, we have
1Pn+1 = pll = 1Gan — Gpll < llan — pl,
lgn =l = IG (1 = 72)G?pn + 72 Gpn) — 1|
< (1= 7r2)[|G*pn = pl| + 72l Gpn — p|
< |lpn —pl-

Thus, [[pn+1 —pll < |lpn —pll-
Hence, {p,} is Fejér monotone with respect to Fiz(G). Moreover, the sequence

{llpn. — p||}, being decreasing and bounded below by 0, converges. O

Similarly, Mann, Normal-S, and Ishikawa iterations are Fejér monotone with
respect to Fiz(G). Next, we prove a Lemma for the main result.

Theorem 3.2. Let G be a GAN operator with Fixz(G) # 0, and let {p,} be the
sequence generated by the PV iteration. Then,

lim Hpn - Gpn” = lim ”pn - Gzan =0
n—00 n—00

Proof. As, we have lim,_, ||pn, — p|| exist from Lemma 3.1 . Let us assume that
lim,, o0 ||pn —pl| = ¢. We will use Lemma 2.8 with 7, = G?p,, —p and o, = Gp,, —p.
Since G is nonexpansive, we have

17l = |G*pn — pll < |lpn — pll and [|ow | = |Gpn — pI| < |Ipn — |-
Hence,

limsup ||7,|| < limsup ||p, — p|| and limsup ||y, || = limsup |Gp,, — p|| = ¢
n—o0 n—oo n—oo n—oo

Now, according to the Lemma 2.8 we need to show that

limsup |[(1 — rp) 7y + ron|| = ¢
n—oo

Substituting the value of 7,, and o, this is equivalent to show that

limsup [|(1 — r)G*pp + raGpn — pl| = c.

n—oo

Using traingle inequality and G is nonexpansive
1(1 = r0)G*pn + 10 Gpn — pll < (1 = )| G*pn — pl| + 7l|Gpn — pll
= [lpn — pl|-
Taking limit superior on both side and using the fact lim,, o ||pn — p|| = ¢ we get

(3'1) lim sup H(l - 7”n)Gzpn + TnGzpn - p“ <c
n—»00

Now, consider

1Pnt1 — pll = 11Gan — Gpll < llgn — pll = |G ((1 = 1) G?pr, + 1,Gpy) — G|

(3.2) — ¢ < limsup [|(1 — r,,)G?py, + 72 Gpn — p||.

n—oo
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Using (3.1) and (3.2) we get
limsup ||(1 — 7,)G*pp + raGpn — || = c.

n—oo

Therefore, from Lemma 2.8 we have
G2 p,, — Gpyl| = 0.

lim
n—oo
Now, using the triangle inequality, one can obtain
(3.3) 1Ggn = anll < llgn — Gpull + (1 = 72)[|G*pr — Gpul.
Now, consider ||g, — Gpy||
lan — Gpull = |G ((1 - Tn)Gzpn + TnGpn) — Gpa|
< (1= rn)[|G?pn — Gpul| + [|GPpn — Gpull.
We have obtained
(3‘4) HQn - Gan < (2 - Tn)HGQpn - Gan~

Now, since {r,} is a bounded sequence and lim,,_,« ||G*pn — Gpn| = 0, it follows
from (3.4) that lim,_ ||¢gn — Gpr|| = 0. Similarly, using (3.3) and (3.4), we get
lim,, 0 ||gn — Ggn|| = 0, and hence lim,, o ||pn+1 — GPn+1]| = 0.

U

Similar results can be established for the Ishikawa iteration in a similar manner.
The following lemma holds true for all iterations discussed in this study.

Lemma 3.3. Let {p,} be any Fejér monotone sequence with respect to Fix(Q).
Then, lim, o0 d(pp, Fix(G)) = 0 if and only if {pn} converges to a point in Fix(G),
where d(pp, Fiz(G)) = inf{||p, — a| : a € Fiz(G)}.

Proof. One side of the implication is easy to see, we will prove the converse. Now
to show converse we have lim,, .o d(pn, Fiz(G)) = 0 thus for any § > 0 we have
d(pn, Fiz(G)) < § ¥ n > nifor some ny € N which implies that

. . € . .
inf {{lpn —pllp € Fiz(G)} < 5 = nf{[[pn, —pllp € Fiz(G)} <e/2.
Therefore, there exists p; € F/(G) such that

€
(3.5) Iy = prll < 5

Using the fact that {p,} is Fejér monotone sequence we have V n,m > n;
||pn+m _an < ||pn+m _le + Hpn - pl”
< Ipny = il + lIpny = pall = 2P, = p1ll <.

Thus, {p,} is a Cauchy in Y. Since Y is closed, lim;,_,o p, = ¢ for some g € Y.
Now, as

lim d(pn, Fiz(G)) =0 = lim inf {||p, — p|| : p € Fiz(G)} = 0.
n—00 n—00
Using the definition of infimum we get for every € > 0 3 p. € Fiz(G) such that
€
(3.6) lpn = pell < 5 V= M.
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As we have
€

> Vn > M;, where M; € N.

(3.7) Jim pp =g = |pn —ql <
Using (3.6) and (3.7)
lg = pell < llg = pnll + lpn — pell < €V n = maz{M, M}.
Therefore, we have
inf{|l¢g —p|| :p € Fiz(G)} =0 = d(q, Fiz(G)) =0 = q € Fiz(QG).
g

For real sequences {p,,} with p, > 0 and {g,} with g, > 0, both tending to zero,
we write p, = 0o(qy,) if lim, % = (. If there exist constants ¢ > 0 and K € Ny
such that p, < ¢g, for all n > K, we write p, = O(qn).

Next, we present the main result, beginning with the results for Mann, Ishikawa,
and Normal-S.

Theorem 3.4. If G is a GAN operator with Fix(G) # ¢ , and HR with exponent
M > 1 and Ay € RT respectively. Then, for any initial vector pg € R™, the sequence
{pn} generated by the Mann and Ishikawa algorithms (with s, < % and 0 < M <
rn < 1) and the Normal-S algorithm (with 1 — 2r,, > M3 > 0) converges to some
p € Fix(G). Moreover, there exist pi1,p2, and ps € (0,1) such that the rate of
convergence for each iteration is as follows:

for Mann

A2
(@) (n A1<1A2>) , 0<A<1
O (p1) Ay > 1

(3-8) lpn —pll =

for Ishikawa

S
(@) (n A1<1A2>> , 0<A<1
O (p3) A2 > 1

(3.9) lpn —pll =

for Normal-S

O<nm>, 0<X<1
O (p5) A2 >1
Proof. For the Mann Iteration from the definition of GAN, we have
1Gz — Gyl™ + ml|(I = G)e — (I = Gy < |z —y|™, for all 2,y € R™.
Substituting = = p, and y = p € Fix(G), we obtain

(3.10) lpn — pll =

1Gpn = pIM < —pmallpn — Gpal™ + [lpa — pII™-
As r, > 0, multiplying the entire equation by r,, yields:
(311> TnHGpn _pH>\1 S _Tnﬂlupn - Gpn”)\l + Tann _pH)\l-

From the Mann iteration (2.1) and using that ||-||** is a convex function, we have
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(3.12) 1 = plM < (1= 7ra)llpa = I + 70| Gpy — p|
From equation (3.11)and (3.12),
(3.13) Iprs1 =PI < =rapnllpn — Gpull™ + llpn — plI™

From, the Holder inequality we have d(py, Fix(G)) < p2||pn — Gpall*2.
Case 1. If \y > 1.
As we have ||p, — Gpy|| — 0, for sufficiently large n, we have
[pn — Gpnll <1 = |lpn — Gan)\Q < lpn — Gpnll-
Hence, using Holder’s inequality, we obtain
d(pn, Fix(G)) = llpn — Prix(c) | < p2llpn — Gpall.

A
dpt

Taking dp, = d (pn, Fix(G)) and assuming A\; > 1, we obtain - < |p, — Gpn||*.
Mo
Multiplying both sides by —r,u1 and putting in( 3.13) ,we obtain
pn1 = pIM < —ramd) ™ + [lpn — p| -
Taking p = Ppjz () (pn) in above equation we obtain

IPns1 = Privie) ()M < —rapipy M dyt + rod)?.
Using the definition of projection, d,, and the above inequality, we obtain that

dply < —ruppp My +
Since 0 < m < ry, it follows that —r, < —m for all n € N.

(3.14) Aty < —mpnpy AN+ dN
A1

Case 2. If 0 < X\ < 1 we get d,, < pa||pn—Gpn||*? = (i—g) 2 < lpn—Gpn|| M.

Now, proceeding in the same way as in Case 1 ,we obtain
MM
(3.15) d:{h < —mulu;Q dn? + d;\f.

We now derive a similar inequality for the Ishikawa(2.2) iteration.
Using Definition 2, we have

(3.16) 1Gan =PI < —p1llan — Glan)lI™ + llan — plI™-
From the Ishikawa iteration, we can easily show that
(3.17) Ipnt1 =PI < (1= r0)llpn = pI™ + anlGan — p| ™

From equation (3.16)and (3.17), we obtain

(3.18) [[pns1 — pIM < (1= r)llpn — PIM = raptllan — Glan) M + rallgn — |-

Now, as
lgn =PI < (1= s0)llpn — pIM + snllGpa — -



788 P. GAUTAM, VINEET, M. AKRAM, AND M. ELSAID RAMADAN

Multiplying above equation by «, and using (3.18),we get

I

|Prt1 _pH)\l — (L =7p)[lpn — pH)\l < —rppillgn — G(gn) + 70 (1 = 8n)|IPn —PH)\I

+ Tnanpn - pH)\l

(3.19) lPns1 — p”/\l < —rnprllgn — G(Qn)H)\l + [|pn _pHAI'
Using nonexpansivity of G and putting value of ¢,,, we have

1P = Gpall < [pn = anll + 1Gan — gnll + [|Gpn — Gaull
(3.20) [pn = Gpull < 2[lpn — (1 = sn)pn + $2Gpu) || + |Gan — gnll

A
—pral|Ggn — Qn”)\1 < —puarn(l — Z(Sn))Al [pn — Gpnl| "~
Using (3.19) and above equation, we get

A
|Pn+1 _pH)\l < —parn(l — 2(371)))\1“1771 — Gpal| L4 (2 _p”)\l

as,0 < M <rp, <1,1—2(sy,) > M; and let A = MM thus, we get
Ipns1 = pIM < = MA|pn — Gpo || + [[pn — plI™

Using Holder’s inequality and following the steps of Mann case, we obtain that
Casel: \y > 1

)y < —MAppg M) +

Case2: 0< Ao <1

-2
Ay < —MApmpy™ d) + dy!
We now derive a similar inequality for the Normal-S(2.3) iteration.
In the definition (2) of GAN, put = = ¢, and y = p for some p € Fix(G).

(3.21) 1Pas1 — ol = Gan — pI™M < —pillgn — Glgn)|™ + llan — p|I-

lgn — P < (1 = 70)pn — I + 70 l|Gpy — Dl

Using the definition of GAN, we obtain:
(3.22) llgn = 2™ < [lpn = PN = rapallpn — Gpal™-
Further, we have:
1Pn = Gpall < llgn = pull + llgn = GPall < llgn = pull + llan = Ggnll + |Ggn — Gpnl-
Using the nonexpansivity of the GAN operator, we get:
1Pn = Gpull < 2[lgn = pull + llan — Ganl|
(1 =2m)|lpn — Gonl| < [lgn — Ganll-
As we have r, such that 1 — 2r, > M3 > 0.

(323> _MIHQTL - anH)q < _Ml(l - 2Tn))\l Hpn - Gan/\l-

As, 1—2r, > Mg > 0 and —(1 — 2r,)M < —Mj' = —A; (say).
Using (3.21), (3.22) and (3.23), we obtain
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1Pns1 — pIM < —p1(Ar +m)|lpn — Gpal™ + [Ipn — |-

Using Holder’s inequality and following the same steps as in the Mann case, we
get:
Case 1: Ay >1
dyy < = (Ar 4+ m)py Myt +
Case2: 0< o<1

)y < —pa (A +m)py™ dy + dy

Now, consider first case 1 for all the iterations. Let a, = d,,, then for each of
the cases above we have a,4+1 < (1 — a)a,, where « varies for each iteration as,

(1) Mann o = m,uluz_’\l
(2) Ishikawa o = M Apq iy ™
(3) Normal-S oo = (m + A)Mlu;’\l.
Further, as ap41 >0 = 1—a>0 = 0<1—a <1, and

ap+1 < (1 —a)a, = apt1 < (1— oz)"_m'Ha

m>

we obtain
n—m-+1

dn+1 < (]. — Oé) A1 dm
Therefore, as n — oo, we get d,, — 0 for each iteration.
Now, as d,, = d(pn, Fix(G)), using Lemma 3.3, we can conclude that each iteration
converges to the fixed point of G. Since all the sequences are Fejér monotone (FM),
for any m > n,

1Pm = Priz@) ()l < lPm—1 = Priz@@) @)l < [lPm—2 — Priz@a)@a)ll - - -
< [|pn = Priz(c)(pn)ll = d(pn, Fiiz(G)) = dy.

Now, as m — oo we have p,, — p a fixed point then

(3.24)

1Pm = Priz(c) (Pa) | = 1P = Ppiz(c) (pn) -
Now, in (3.24) keeping n fixed and taking m — oo ,we get

(3.25) 1P = Priza)(Pa) |l < dn.

Therefore, for sufficiently large n, we have using (3.25)

(3.26) [P — Il < Pn— Prize )l + 1P — Prizcy(pn)|| < 2dn < 2dpm(1—a) > .

Hence, for some C', we have

n—m

(3.27) [pn —pll < C1(1 —a) M = CO"

1
where 6 = (1 — a)?t. From the values of « for different iterations, one can obtain
p1, p2, and p3 from the equations (3.8), (3.9), and (3.10).
Now, consider Case2 for all the iterations

Mann

)y < —mppy™ d) +d)
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Ishikawa

A

A1
AN < —MApyp,? d + dM.

n+1

Normal-S
DY

et &
)iy < —pa(A+m)py dy +dy.
We can make a general case as

)t < —0dyY 4 d

where v varies according to the iteration and v = /\—12 > 1. Now, we can proceed

similarly as in Proposition 4.12 of [10]to get

A
|pn — pl| = O (kM> 0< Ao < 1.

Now, we will prove the result for the PV iteration.

Theorem 3.5. Let G be a GAN operator with Fiz(G) # ¢ and HR with exponent
A1 > 1, and Ay € RT respectively. Then, for any initial vector pg € R", the
PV algorithm generates the sequence {p,}, which converges to some p € Fiz(G).
Moreover, there exists ps € (0,1) such that

A

o) (n‘wzm) L 0< N <1,
[pn — pll =
o (pZ) ) Az > 1.

Proof. For the sake of conveinence, we rewrite the PV (2.4) iteration as

Pnt1 = Gan,
(3.28) an = Gay,
an = (1 —=1,)G?py +1,Gpp, n€ Zy.
Takeing x = gpand y = p for some p € Fiz(G) we get
(329) a1 — 2N = 1Ggn — pI™ < —pullgn — Glan) ™ + llan — pII*.
As, ||gn — p||* = ||Ga,, — p||M using the definition of the GAN ,we have
s

gn — D™ < llan — pI™ = pu1llan — Gan||™

(3.30)
lan = plI** = [[(1 = 72) G?pp + rnGpn — p| -

Using the convexity of ||.|[* ,we obtain

(331) lan = pI* < (1= )| G?pn — PN + rallGpn — p|I
Using the definition of GAN , we have
(3.32) lan =PI < =(1 = o) |G*pn — Gpa|™ + [|Gpn — plI™.

Using (3.30) and (3.32)
(3:33) llgn —pl™ < —=(1 =) G*pn = Gpal™ + [|Gpp — Pl = a|an, — Gan ||
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In the definition of GAN putting = = p,, and y = p for some p € Fiz(G), we get

(3.34) |Gpn — pI™ < —pallpn — Goal™ + [Ipn — I

Using (3.34) and (3.33) ,we get

gn — DI < —(1 = 1)1 [|G2pn — G| — pallpn — Gpa|[™
+ [lpn — p|I™ M.

Using (3.29) and (3.35),we have

(3.35)
— p1l|an — Gay|

1Pna1 — pIM < —pallgn — Glan) I = (1 = ) pa|GPpn — Gpu||™

— pllpn = Gpal M + [l — plI™
Case 1. In the Holder inequality taking © = Gp,, ,we get,

d(Gpn, FizG) < 2| Gpn — G?pn ™.

(3.36)
— pllan — GanH/\l'

For the case Ao > 1, since ||Gp, — G?p,|| — 0 as n — oo, it follows that there exists
no € N such that ||Gp, — G?py,|| < 1 for all n > ny.
Hence, we have
d(GmeZCCG) < NQHGpn - GZPn” - (1 - Tn),ul”Gpn - G2an
(3.37) d(Gpy, FizG)

< —(1-r _
=~ ( n),ul 12

Using nonexpansive property of G, we have
dnt1 = d(pn+1, Fiz(G)) = [[pnt1 — Prixia) (Prt1) ||
< |lan — Prix(Gpn)|
< (1 =r)l|Gpn — Prix(c) (Gpn) || + 7llGPn — Prix(c) (Gpn)|
1Gpn = Peixcy (Gpa)|| = d(Gpp, Fix(G)) = (1 = rp) prippz My
>—(1- Tn)ﬂl/mi)\ld(Gpm Fix(G)) — pllpn — Gpn”)\l
< —ppz 1 d(Gpn, Fix(G))

< —pap M (dyn) M
Also, we have that

—p1llpn — Gan)\l < _,Ul/@_)\ldn)\la
Thus, from (3.35), we obtain that

1Pns1 = I < llpn — plIM = (1= ro)papo ™Ay — pap ™™ (dn) M.
Therefore, we have
1 — papip ) dp™

d, )M < ( )

()™ < 0 = rype ™)
Let

1 _

(3.38) A < - % (da™

where, a = (1+ (1 — rn),ul,ug_)‘l) and o = (1 — pype™™).
From (3.38) and proceeding similarly as in Theorem 3.4, we get ||p, —p|| < Cp}.
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Case 2. For 0 < Ao < 1 from Hélder inequality and d,, definition ,we have

MM

MM
o2 dp2 < ||pn — Gan)‘l — dzh—l < d21 _MIMQAQ d)?
and then proceed in the same way as in Theorem 3.4. O

Next proposition was given by [10] for the case when the exponent A\; € (0, 1).

Proposition 3.6 ([10]). If G is a GAN operator with Fiz(G) # ¢ and exponent
A1 for some A1 € (0,1), then it is FP-0-contractive for some ¢ € (0,1).

TABLE 1. Convergence Rates of Various Methods

Iterations | A\ € (0,1) | A\ € [1,400) & Ay € (0,1) | A1 € [1,4+00) & A € [1,400)
Picard o(s"*1h) (0] (niﬁ> O(p")
Mann O(sm 1) @) (Tf M(lxzﬁ)) O(p?)
ISHIKAWA | O(5"+) O(n e m) O(p})
NORMAL-S | O(57+) ( T »2>) O(p2)
PV 0(*+1) | 0 (n” ma ) O(p)

In the following theorem, we provide the convergence rates when \; € (0,1).

Theorem 3.7. If G is a GAN operator with Fix(G) # ¢ and exponent A\ €
(0,1). Then, the PV iteration converges to the fized point of G. The global rate of
convergence is given by O(83" 1),

Proof. We are given that G is a GAN operator with Fiz(G) # ¢ and exponent
A1 € (0,1) therefore from Propostion 3.6 we have G is a FP-§ contraction map
therefore there exist a § € (0,1) such that

|G(z) — pll < él|z — p|| Vo € R"/Fiz(G).
We will prove results for the PV iteration, similar results hold for other iterations

[pnt1 = pll = |Ggn — pll < 6.llgn — pll
= 8||G((1 = 10)G*pn + n.Gpn) — 1|
< 8%[(1 = 10)0% |pn — Pl + 700 [P0 — pl]
< 6%(|pn — p||-
Inductively, we get

[P — pll < 83Dy — p].
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4. NUMERICAL EXPERIMENT

2 0 1 0

A is a full-rank matrix. Now, from the proof of Corollary 5.6 in [10], and by
Theorem 2.5, we have S; = I — aVf is GAN where a ~ (0,0.763).Thus, the
Mann, Ishikawa, Normal-S, and PV algorithms all converge to the fixed point of
S1 with an exponential rate of convergence by Theorem 3.5 and Theorem 3.4.Here,
Si(z) = x — aAT Az — ATb Putting the value z = (21, 22), we get Sy(x1,29) =
(3(z1 — 22) —1,—321 — 1).One can easily find its fixed point as (—2,0). The con-
vergence behavior is shown in the tables and graphs. Using two randomly chosen
ryn, values, we observe that PV converges faster than Picard.

Example 4.1. Let f(z) = %||Az — b||3 where A = <1 1) and b = <1> Then

TABLE 2. Residual table for Case 1 ( r, = 0.14302691083025781)

iteration | PV Picard Normal-S | Ishikawa | Mann

3.162278 | 3.162278 | 3.162278 | 3.162278 | 3.162278
3.162278 | 3.162278 | 3.162278 | 3.162278 | 3.162278
0.897345 | 1.802776 | 1.707093 | 1.788660 | 2.788947
0.397366 | 1.346291 | 1.264030 | 1.334034 | 2.499469
0.175972 | 1.075291 | 0.988109 | 1.062430 | 2.275145
0.077928 | 0.868278 | 0.777032 | 0.854741 | 2.100522
0.034510 | 0.702256 | 0.611418 | 0.688638 | 1.963146
0.015283 | 0.568114 | 0.481132 | 0.554925 | 1.853253
0.006768 | 0.459611 | 0.378611 | 0.447188 | 1.763409
0.002997 | 0.371833 | 0.297936 | 0.360369 | 1.688091

O O 00 IO T W+~

[

Scatter Plot of Residual

3.0 4

FIGURE 1. Scattered plot for r, = 0.14
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In this paper, we have established the convergence of various iterative algorithms,
namely Mann, Ishikawa, Normal-S, and PV, for the GAN operator and obtained
their convergence rates. Our results are further verified through numerical experi-
ments, where we observe that PV and Normal-S perform better than Picard. For
future work, one could aim to generalize these results to more abstract spaces and

P. GAUTAM, VINEET, M. AKRAM, AND M. ELSAID RAMADAN

TABLE 3. Residual table for Case 2 (r, = 0.4)

iteration | PV Picard Normal-S | Ishikawa | Mann
13.162278 | 3.162278 | 3.162278 | 3.162278 | 3.162278
21 3.162278 | 3.162278 | 3.162278 | 3.162278 | 3.162278
3 10.950082 | 1.802776 | 1.555635 | 1.696231 | 2.200000
410.445371 | 1.346291 | 1.132519 | 1.254763 | 1.814166
510.208804 | 1.075291 | 0.845356 | 0.978162 | 1.617860
6 | 0.097894 | 0.868278 | 0.631636 | 0.766715 | 1.479761
71 0.045896 | 0.702256 | 0.471966 | 0.601296 | 1.363131
8 10.021517 | 0.568114 | 0.352659 | 0.471591 | 1.258114
9 1 0.010088 | 0.459611 | 0.263512 | 0.369867 | 1.161786
10 | 0.004730 | 0.371833 | 0.196900 | 0.290085 | 1.072980

Scatter Plot of Residual

3.0

1.0

05

0.0

FIGURE 2.

5. CONCLUSION

explore faster iterations for GAN operators.

Scattered plot for r, = 0.4
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