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2. Preliminaries

Now, we will give the definition of the µ-GAN operator with exponent λ. Here,
R+ denotes the set of all positive real numbers.

Definition 2.1 ([10]). An operator G : Rn → Rn is said to be generalized averaged
nonexpansive if there exist λ, µ ∈ R+ such that

∥Gx−Gy∥λ + µ∥(I −G)x− (I −G)y∥λ ≤ ∥x− y∥λ, for all x, y ∈ Rn.

Let Fix(G) denote the set of all fixed points of operator G .
One can easily verify that GAN operators are nonexpansive thus set of all fixed

points of GAN operators are closed and convex set.
The next theorem, proved in [10], provides the rate of convergence of the fixed-

point iterations in GAN with exponent λ for some λ ∈ (0, 1) operators for the
Picard case.

Theorem 2.2 ([10]). If G is GAN such that Fix(G) ̸= ϕ and exponent λ for some
λ ∈ (0, 1), then for any initial vector p0 ∈ Rn, the Picard sequence pn of G converges

to some p ∈ Fix(G),and ∥pn − p∥ = o(n(λ−1)/λ).

Now we will define Hölder regularity, which we will denote by HR.

Definition 2.3 ([2]). An operator G is said to be Hölder regular (HR) if Fix(G)
is nonempty, and there exists µ ∈ R+ such that:

d(x, F ix(G)) ≤ µ∥x−Gx∥, for all x ∈ Rn,

where d(x, F ix(G)) denotes the distance from x to the set Fix(G).

The next theorem provides the rate of convergence for exponent λ1 ≥ 1.

Theorem 2.4 ([10]). If G is GAN such that Fix(G) ̸= ϕ , exponent λ1 ≥ 1and HR
with exponent λ2 ∈ R+, then for any initial vector p0 ∈ Rn, the Picard algorithm
{pn} for G converges to some p ∈ Fix(G), and there exists ρ ∈ (0, 1) such that

∥pn − p∥ =

O

(
n
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1

O (ρn) , λ2 ≥ 1

A useful theorem that will help in constructing example.

Theorem 2.5 ([10]). Let f : Rn → R ∪ {∞} be a proper lower semicontinuous
convex function that is differentiable. If there exist L1 ≥ L2 > 0 such that

L2∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥, for all x, y ∈ Rn

then, for α ∈
(
0, 2

L1

)
, we have S1 = I − α∇f is both GAN with exponent 1 and

HR with exponent 1.

Definition 2.6. A Banach space X with norm ∥ · ∥ is called uniformly convex if,
for every ϵ > 0, there exists a δ > 0 such that for all x, y ∈ X with ∥x∥ = ∥y∥ = 1,
the condition

∥x− y∥ ≥ ϵ =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.
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Throughout this study, we will assume that our space is uniformly convex.

Definition 2.7. Assume K is a real Hilbert space and F ⊆ K is a nonempty, closed,
and convex set, and suppose {pk}∞k=0 is a sequence in K. We say that {pk}∞k=0 is
Fejér monotone with respect to F if

(2.1) ∥pk+1 − z∥ ≤ ∥pk − z∥

for all z ∈ F and every integer k = 0, 1, 2, . . .

Now, we present a lemma that we are going to use in later results.

Lemma 2.8 ( [14]). Let V be a uniformly convex Banach space and 0 < α ≤
rn ≤ β < 1 for all n ∈ N. Let τn and σn be two sequences in V such that
lim supn→∞ ∥τn∥ ≤ c, lim supn→∞ ∥σn∥ ≤ c, and lim supn→∞ ∥rnτn+(1−rn)σn∥ = c
hold for some c ≥ 0. Then,

lim
n→∞

∥τn − σn∥ = 0.

The iterative algorithms described below are referred to as the Mann [11], Ishikawa
[5], Normal-S [13], and PV [4] algorithms, respectively, for the self-mapping G de-
fined on V , where V is a closed and convex subset of a Banach space B.

(2.1)

{
p0 ∈ V,

pn+1 = (1− rn)pn + rnGpn, n ∈ Z+

(2.2)


p0 ∈ V,

pn+1 = (1− rn)pn + rnGqn,

qn = (1− sn)pn + snGpn, n ∈ Z+

(2.3)

{
p0 ∈ V,

pn+1 = G((1− rn)pn + rnGpn), n ∈ Z+

(2.4)


p0 ∈ V,

pn+1 = Gqn,

qn = G((1− rn)G
2pn + rnGpn), n ∈ Z+,

3. Main results

Here, we present key Lemmas essential for the main results.

Lemma 3.1. Let {pn} be the sequence generated by the PV algorithm for a GAN
operator G with Fix(G) ̸= ∅. Then, {pn} is a Fejér monotone (FM) sequence with
respect to Fix(G), and limn→∞ ∥pn − p∥ exists for all p ∈ Fix(G).
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Proof. Since G is nonexpansive and ∥ · ∥ is convex, we have

∥pn+1 − p∥ = ∥Gqn −Gp∥ ≤ ∥qn − p∥,
∥qn − p∥ = ∥G

(
(1− rn)G

2pn + rnGpn
)
− p∥

≤ (1− rn)∥G2pn − p∥+ rn∥Gpn − p∥
≤ ∥pn − p∥.

Thus, ∥pn+1 − p∥ ≤ ∥pn − p∥.
Hence, {pn} is Fejér monotone with respect to Fix(G). Moreover, the sequence

{∥pn − p∥}, being decreasing and bounded below by 0, converges. □

Similarly, Mann, Normal-S, and Ishikawa iterations are Fejér monotone with
respect to Fix(G). Next, we prove a Lemma for the main result.

Theorem 3.2. Let G be a GAN operator with Fix(G) ̸= ∅, and let {pn} be the
sequence generated by the PV iteration. Then,

lim
n→∞

∥pn −Gpn∥ = lim
n→∞

∥pn −G2pn∥ = 0

.

Proof. As, we have limn→∞ ∥pn − p∥ exist from Lemma 3.1 . Let us assume that
limn→∞ ∥pn−p∥ = c. We will use Lemma 2.8 with τn = G2pn−p and σn = Gpn−p.
Since G is nonexpansive, we have

∥τn∥ = ∥G2pn − p∥ ≤ ∥pn − p∥ and ∥σn∥ = ∥Gpn − p∥ ≤ ∥pn − p∥.

Hence,

lim sup
n→∞

∥τn∥ ≤ lim sup
n→∞

∥pn − p∥ and lim sup
n→∞

∥σn∥ = lim sup
n→∞

∥Gpn − p∥ = c.

Now, according to the Lemma 2.8 we need to show that

lim sup
n→∞

∥(1− rn)τn + rnσn∥ = c.

Substituting the value of τn and σn this is equivalent to show that

lim sup
n→∞

∥(1− rn)G
2pn + rnGpn − p∥ = c.

Using traingle inequality and G is nonexpansive

∥(1− rn)G
2pn + rnGpn − p∥ ≤ (1− rn)∥G2pn − p∥+ rn∥Gpn − p∥

= ∥pn − p∥.

Taking limit superior on both side and using the fact limn→∞ ∥pn − p∥ = c we get

(3.1) lim sup
n→∞

∥(1− rn)G
2pn + rnG

2pn − p∥ ≤ c.

Now, consider

∥pn+1 − p∥ = ∥Gqn −Gp∥ ≤ ∥qn − p∥ = ∥G
(
(1− rn)G

2pn + rnGpn
)
−Gp∥

(3.2) =⇒ c ≤ lim sup
n→∞

∥(1− rn)G
2pn + rnGpn − p∥.
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Using (3.1) and (3.2) we get

lim sup
n→∞

∥(1− rn)G
2pn + rnGpn − p∥ = c.

Therefore, from Lemma 2.8 we have

lim
n→∞

∥G2pn −Gpn∥ = 0.

Now, using the triangle inequality, one can obtain

(3.3) ∥Gqn − qn∥ ≤ ∥qn −Gpn∥+ (1− rn)∥G2pn −Gpn∥.
Now, consider ∥qn −Gpn∥

∥qn −Gpn∥ = ∥G
(
(1− rn)G

2pn + rnGpn
)
−Gpn∥

≤ (1− rn)∥G2pn −Gpn∥+ ∥G2pn −Gpn∥.
We have obtained

(3.4) ∥qn −Gpn∥ ≤ (2− rn)∥G2pn −Gpn∥.
Now, since {rn} is a bounded sequence and limn→∞ ∥G2pn−Gpn∥ = 0, it follows

from (3.4) that limn→∞ ∥qn − Gpn∥ = 0. Similarly, using (3.3) and (3.4), we get
limn→∞ ∥qn −Gqn∥ = 0, and hence limn→∞ ∥pn+1 −Gpn+1∥ = 0.

□
Similar results can be established for the Ishikawa iteration in a similar manner.

The following lemma holds true for all iterations discussed in this study.

Lemma 3.3. Let {pn} be any Fejér monotone sequence with respect to Fix(G).
Then, limn→∞ d(pn, F ix(G)) = 0 if and only if {pn} converges to a point in Fix(G),
where d(pn, F ix(G)) = inf{∥pn − a∥ : a ∈ Fix(G)}.

Proof. One side of the implication is easy to see, we will prove the converse. Now
to show converse we have limn→∞ d(pn, F ix(G)) = 0 thus for any ϵ

2 > 0 we have
d(pn, F ix(G)) < ϵ

2 ∀ n ≥ n1for some n1 ∈ N which implies that

inf {∥pn − p∥ p ∈ Fix(G)} <
ϵ

2
=⇒ inf {∥pn1 − p∥ p ∈ Fix(G)} < ϵ/2.

Therefore, there exists p1 ∈ F (G) such that

(3.5) ∥pn1 − p1∥ <
ϵ

2
.

Using the fact that {pn} is Fejér monotone sequence we have ∀ n,m ≥ n1

∥pn+m − pn∥ ≤ ∥pn+m − p1∥+ ∥pn − p1∥
≤ ∥pn1 − p1∥+ ∥pn1 − p1∥ = 2 ∥pn1 − p1∥ < ϵ.

Thus, {pn} is a Cauchy in Y . Since Y is closed, limn→∞ pn = q for some q ∈ Y .
Now, as

lim
n→∞

d (pn, F ix(G)) = 0 =⇒ lim
n→∞

inf {∥pn − p∥ : p ∈ Fix(G)} = 0.

Using the definition of infimum we get for every ϵ > 0 ∃ pϵ ∈ Fix(G) such that

(3.6) ∥pn − pϵ∥ <
ϵ

2
∀ n ≥ M.
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As we have

(3.7) lim
n→∞

pn = q =⇒ ∥pn − q∥ <
ϵ

2
∀n ≥ M1, where M1 ∈ N.

Using (3.6) and (3.7)

∥q − pϵ∥ ≤ ∥q − pn∥+ ∥pn − pϵ∥ < ϵ ∀ n ≥ max{M,M1}.
Therefore, we have

inf {∥q − p∥ : p ∈ Fix(G)} = 0 =⇒ d(q, F ix(G)) = 0 =⇒ q ∈ Fix(G).

□
For real sequences {pn} with pn ≥ 0 and {qn} with qn > 0, both tending to zero,

we write pn = o(qn) if limn→∞
pn
qn

= 0. If there exist constants c > 0 and K ∈ N0

such that pn ≤ cqn for all n ≥ K, we write pn = O(qn).
Next, we present the main result, beginning with the results for Mann, Ishikawa,

and Normal-S.

Theorem 3.4. If G is a GAN operator with Fix(G) ̸= ϕ , and HR with exponent
λ1 ≥ 1 and λ2 ∈ R+ respectively. Then, for any initial vector p0 ∈ Rn, the sequence
{pn} generated by the Mann and Ishikawa algorithms (with sn < 1

2 and 0 < M <
rn < 1) and the Normal-S algorithm (with 1 − 2rn > M3 > 0) converges to some
p ∈ Fix(G). Moreover, there exist ρ1, ρ2, and ρ3 ∈ (0, 1) such that the rate of
convergence for each iteration is as follows:

for Mann

(3.8) ∥pn − p∥ =

O

(
n
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1

O (ρn1 ) , λ2 ≥ 1

for Ishikawa

(3.9) ∥pn − p∥ =

O

(
n
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1

O (ρn2 ) , λ2 ≥ 1

for Normal-S

(3.10) ∥pn − p∥ =

O

(
n
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1

O (ρn3 ) , λ2 ≥ 1

Proof. For the Mann Iteration from the definition of GAN, we have

∥Gx−Gy∥λ1 + µ1∥(I −G)x− (I −G)y∥λ1 ≤ ∥x− y∥λ1 , for all x, y ∈ Rn.

Substituting x = pn and y = p ∈ Fix(G), we obtain

∥Gpn − p∥λ1 ≤ −µ1∥pn −Gpn∥λ1 + ∥pn − p∥λ1 .

As rn > 0, multiplying the entire equation by rn yields:

(3.11) rn∥Gpn − p∥λ1 ≤ −rnµ1∥pn −Gpn∥λ1 + rn∥pn − p∥λ1 .

From the Mann iteration (2.1) and using that ∥·∥λ1 is a convex function, we have
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(3.12) ∥pn+1 − p∥λ1 ≤ (1− rn)∥pn − p∥λ1 + rn∥Gpn − p∥λ1 .

From equation (3.11)and (3.12),

(3.13) ∥pn+1 − p∥λ1 ≤ −rnµ1∥pn −Gpn∥λ1 + ∥pn − p∥λ1 .

From, the Hölder inequality we have d(pn,Fix(G)) ≤ µ2∥pn −Gpn∥λ2 .
Case 1. If λ2 ≥ 1.
As we have ∥pn −Gpn∥ → 0, for sufficiently large n, we have

∥pn −Gpn∥ < 1 =⇒ ∥pn −Gpn∥λ2 ≤ ∥pn −Gpn∥.
Hence, using Hölder’s inequality, we obtain

d(pn,Fix(G)) = ∥pn − PFix(G)∥ ≤ µ2∥pn −Gpn∥.

Taking dn = d (pn,Fix(G)) and assuming λ1 ≥ 1, we obtain d
λ1
n

µ
λ1
2

≤ ∥pn − Gpn∥λ1 .

Multiplying both sides by −rnµ1 and putting in( 3.13) ,we obtain

∥pn+1 − p∥λ1 ≤ −rnµ1d
λ1
n µ−λ1

2 + ∥pn − p∥λ1 .

Taking p = PFix(G)(pn) in above equation we obtain

∥pn+1 − PFix(G)(pn)∥λ1 ≤ −rnµ1µ
−λ1
2 dλ1

n + rnd
λ1
n .

Using the definition of projection, dn, and the above inequality, we obtain that

dλ1
n+1 ≤ −rnµ1µ

−λ1
2 dλ1

n + dλ1
n .

Since 0 < m < rn, it follows that −rn < −m for all n ∈ N.

(3.14) dλ1
n+1 ≤ −mµ1µ

−λ1
2 dλ1

n + dλ1
n .

Case 2. If 0 < λ2 < 1 we get dn ≤ µ2∥pn−Gpn∥λ2 =⇒
(
dn
µ2

)λ1
λ2 ≤ ∥pn−Gpn∥λ1 .

Now, proceeding in the same way as in Case 1 ,we obtain

(3.15) dλ1
n+1 ≤ −mµ1µ

−λ1
λ2

2 d
λ1
λ2
n + dλ1

n .

We now derive a similar inequality for the Ishikawa(2.2) iteration.
Using Definition 2, we have

(3.16) ∥Gqn − p∥λ1 ≤ −µ1∥qn −G(qn)∥λ1 + ∥qn − p∥λ1 .

From the Ishikawa iteration, we can easily show that

(3.17) ∥pn+1 − p∥λ1 ≤ (1− rn)∥pn − p∥λ1 + αn∥Gqn − p∥λ1 .

From equation (3.16)and (3.17), we obtain

(3.18) ∥pn+1 − p∥λ1 ≤ (1− rn)∥pn − p∥λ1 − rnµ1∥qn −G(qn)∥λ1 + rn∥qn − p∥λ1 .

Now, as
∥qn − p∥λ1 ≤ (1− sn)∥pn − p∥λ1 + sn∥Gpn − p∥λ1 .
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Multiplying above equation by αn and using (3.18),we get

∥pn+1 − p∥λ1 − (1− rn)∥pn − p∥λ1 ≤ −rnµ1∥qn −G(qn)∥λ1 + rn(1− sn)∥pn − p∥λ1

+ rnsn∥pn − p∥λ1

(3.19) ∥pn+1 − p∥λ1 ≤ −rnµ1∥qn −G(qn)∥λ1 + ∥pn − p∥λ1 .

Using nonexpansivity of G and putting value of qn, we have

(3.20)

∥pn −Gpn∥ ≤ ∥pn − qn∥+ ∥Gqn − qn∥+ ∥Gpn −Gqn∥
∥pn −Gpn∥ ≤ 2∥pn − ((1− sn)pn + snGpn)∥+ ∥Gqn − qn∥

−µ1rn∥Gqn − qn∥λ1 ≤ −µ1rn(1− 2(sn))
λ1∥pn −Gpn∥

λ1
.

Using (3.19) and above equation, we get

∥pn+1 − p∥λ1 ≤ −µ1rn(1− 2(sn))
λ1∥pn −Gpn∥

λ1
+ ∥pn − p∥λ1

as, 0 < M < rn < 1 , 1− 2(sn) > M1 and let A = M1
λ1 thus, we get

∥pn+1 − p∥λ1 ≤ −µ1MA∥pn −Gpn∥λ1 + ∥pn − p∥λ1 .

Using Hölder’s inequality and following the steps of Mann case, we obtain that
Case1: λ2 ≥ 1

dλ1
n+1 ≤ −MAµ1µ

−λ1
2 dλ1

n + dλ1
n

Case2: 0 < λ2 < 1

dλ1
n+1 ≤ −MAµ1µ

−λ1
λ2

2 dλ1
n + dλ1

n

We now derive a similar inequality for the Normal-S(2.3) iteration.
In the definition (2) of GAN, put x = qn and y = p for some p ∈ Fix(G).

(3.21) ∥pn+1 − p∥λ1 = ∥Gqn − p∥λ1 ≤ −µ∥qn −G(qn)∥λ1 + ∥qn − p∥λ1 .

∥qn − p∥λ1 ≤ (1− rn)∥pn − p∥λ1 + rn∥Gpn − p∥λ1 .

Using the definition of GAN, we obtain:

(3.22) ∥qn − p∥λ1 ≤ ∥pn − p∥λ1 − rnµ1∥pn −Gpn∥λ1 .

Further, we have:

∥pn −Gpn∥ ≤ ∥qn − pn∥+ ∥qn −Gpn∥ ≤ ∥qn − pn∥+ ∥qn −Gqn∥+ ∥Gqn −Gpn∥.
Using the nonexpansivity of the GAN operator, we get:

∥pn −Gpn∥ ≤ 2∥qn − pn∥+ ∥qn −Gqn∥
(1− 2rn)∥pn −Gpn∥ ≤ ∥qn −Gqn∥.

As we have rn such that 1− 2rn > M3 > 0.

(3.23) −µ1∥qn −Gqn∥λ1 ≤ −µ1(1− 2rn)
λ1∥pn −Gpn∥λ1 .

As, 1− 2rn > M3 > 0 and −(1− 2rn)
λ1 < −Mλ1

3 = −A1 (say).
Using (3.21), (3.22) and (3.23), we obtain
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∥pn+1 − p∥λ1 ≤ −µ1(A1 +m)∥pn −Gpn∥λ1 + ∥pn − p∥λ1 .

Using Hölder’s inequality and following the same steps as in the Mann case, we
get:

Case 1: λ2 ≥ 1

dλ1
n+1 ≤ −µ1(A1 +m)µ−λ1

2 dλ1
n + dλ1

n .

Case 2: 0 < λ2 < 1

dλ1
n+1 ≤ −µ1(A1 +m)µ

−λ1
λ2

2 dλ1
n + dλ1

n .

Now, consider first case 1 for all the iterations. Let an = dn
λ1 , then for each of

the cases above we have an+1 ≤ (1− α)an where α varies for each iteration as,

(1) Mann α = mµ1µ
−λ1
2

(2) Ishikawa α = MAµ1µ
−λ1
2

(3) Normal-S α = (m+A)µ1µ
−λ1
2 .

Further, as an+1 > 0 =⇒ 1− α > 0 =⇒ 0 < 1− α < 1, and

an+1 ≤ (1− α)an =⇒ an+1 ≤ (1− α)n−m+1am,

we obtain

dn+1 ≤ (1− α)
n−m+1

λ1 dm.

Therefore, as n → ∞, we get dn → 0 for each iteration.
Now, as dn = d(pn,Fix(G)), using Lemma 3.3, we can conclude that each iteration

converges to the fixed point of G. Since all the sequences are Fejér monotone (FM),
for any m > n,

∥pm − PFix(G)(pn)∥ ≤ ∥pm−1 − PFix(G)(pn)∥ ≤ ∥pm−2 − PFix(G)(pn)∥ . . .
≤ ∥pn − PFix(G)(pn)∥ = d(pn, F ix(G)) = dn.

(3.24)

Now, as m → ∞ we have pm → p a fixed point then

∥pm − PFix(G)(pn)∥ → ∥p− PFix(G)(pn)∥.

Now, in (3.24) keeping n fixed and taking m → ∞ ,we get

(3.25) ∥p− PFix(G)(pn)∥ ≤ dn.

Therefore, for sufficiently large n, we have using (3.25)

(3.26) ∥pn−p∥ ≤ ∥pn−PFix(G)(pn)∥+∥p−PFix(G)(pn)∥ ≤ 2dn ≤ 2dm(1−α)
n−m
λ1 .

Hence, for some C, we have

(3.27) ∥pn − p∥ ≤ C1(1− α)
n−m
λ1 = Cθn

where θ = (1 − α)
1
λ1 . From the values of α for different iterations, one can obtain

ρ1, ρ2, and ρ3 from the equations (3.8), (3.9), and (3.10).
Now, consider Case2 for all the iterations

Mann

dλ1
n+1 ≤ −mµ1µ

−λ1
λ2

2 dλ1
n + dλ1

n .
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Ishikawa

dλ1
n+1 ≤ −MAµ1µ

−λ1
λ2

2 dλ1
n + dλ1

n .

Normal-S

dλ1
n+1 ≤ −µ1(A+m)µ

−λ1
λ2

2 dλ1
n + dλ1

n .

We can make a general case as

dλ1
n+1 ≤ −θdλ1.ν

n + dλ1
n

where ν varies according to the iteration and ν = 1
λ2

> 1. Now, we can proceed

similarly as in Proposition 4.12 of [10]to get

∥pn − p∥ = O

(
k
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1.

□

Now, we will prove the result for the PV iteration.

Theorem 3.5. Let G be a GAN operator with Fix(G) ̸= ϕ and HR with exponent
λ1 ≥ 1, and λ2 ∈ R+ respectively. Then, for any initial vector p0 ∈ Rn, the
PV algorithm generates the sequence {pn}, which converges to some p ∈ Fix(G).
Moreover, there exists ρ4 ∈ (0, 1) such that

∥pn − p∥ =

O

(
n
− λ2

λ1(1−λ2)

)
, 0 < λ2 < 1,

O (ρn4 ) , λ2 ≥ 1.

Proof. For the sake of conveinence, we rewrite the PV (2.4) iteration as

(3.28)


pn+1 = Gqn,

qn = Gan

an = (1− rn)G
2pn + rnGpn, n ∈ Z+.

Takeing x = qnand y = p for some p ∈ Fix(G) we get

(3.29) ∥pn+1 − p∥λ1 = ∥Gqn − p∥λ1 ≤ −µ1∥qn −G(qn)∥λ1 + ∥qn − p∥λ1 .

As, ∥qn − p∥λ1 = ∥Gan − p∥λ1 using the definition of the GAN ,we have

(3.30)
∥qn − p∥λ1 ≤ ∥an − p∥λ1 − µ1∥an −Gan∥λ1

∥an − p∥λ1 = ∥(1− rn)G
2pn + rnGpn − p∥λ1 .

Using the convexity of ∥.∥λ1 ,we obtain

(3.31) ∥an − p∥λ1 ≤ (1− rn)∥G2pn − p∥λ1 + rn∥Gpn − p∥λ1 .

Using the definition of GAN , we have

(3.32) ∥an − p∥λ1 ≤ −(1− rn)µ1∥G2pn −Gpn∥λ1 + ∥Gpn − p∥λ1 .

Using (3.30) and (3.32)

(3.33) ∥qn− p∥λ1 ≤ −(1− rn)µ1∥G2pn−Gpn∥λ1 + ∥Gpn− p∥λ1 −µ1∥an−Gan∥λ1 .
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In the definition of GAN putting x = pn and y = p for some p ∈ Fix(G), we get

(3.34) ∥Gpn − p∥λ1 ≤ −µ1∥pn −Gpn∥λ1 + ∥pn − p∥λ1 .

Using (3.34) and (3.33) ,we get

∥qn − p∥λ1 ≤ −(1− rn)µ1∥G2pn −Gpn∥λ1 − µ1∥pn −Gpn∥λ1

+ ∥pn − p∥λ1 − µ1∥an −Gan∥λ1 .
(3.35)

Using (3.29) and (3.35),we have

∥pn+1 − p∥λ1 ≤ −µ1∥qn −G(qn)∥λ1 − (1− rn)µ1∥G2pn −Gpn∥λ1

− µ1∥pn −Gpn∥λ1 + ∥pn − p∥λ1 − µ1∥an −Gan∥λ1 .
(3.36)

Case 1. In the Hölder inequality taking x = Gpn ,we get,

d(Gpn, F ixG) ≤ µ2∥Gpn −G2pn∥λ2 .

For the case λ2 ≥ 1, since ∥Gpn−G2pn∥ → 0 as n → ∞, it follows that there exists
n0 ∈ N such that ∥Gpn −G2pn∥ ≤ 1 for all n ≥ n0.

Hence, we have

(3.37)

d(Gpn, F ixG) ≤ µ2∥Gpn −G2pn∥ − (1− rn)µ1∥Gpn −G2pn∥

≤ −(1− rn)µ1
d(Gpn, F ixG)

µ2
.

Using nonexpansive property of G, we have

dn+1 = d(pn+1, F ix(G)) = ∥pn+1 − PFix(G)(pn+1)∥
≤ ∥an − PFix(Gpn)∥
≤ (1− rn)∥Gpn − PFix(G)(Gpn)∥+ rn∥Gpn − PFix(G)(Gpn)∥

∥Gpn − PFix(G)(Gpn)∥ = d(Gpn,Fix(G))− (1− rn)µ1µ2
−λ1dn+1

≥ −(1− rn)µ1µ2
−λ1d(Gpn,Fix(G))− µ1∥pn −Gpn∥λ1

≤ −µ1µ2
−λ1d(Gpn,Fix(G))

≤ −µ1µ2
−λ1(dn+1)

λ1 .

Also, we have that
−µ1∥pn −Gpn∥λ1 ≤ −µ1µ2

−λ1dn
λ1 ,

Thus, from (3.35), we obtain that

∥pn+1 − p∥λ1 ≤ ∥pn − p∥λ1 − (1− rn)µ1µ2
−λ1dλ1

n+1 − µ1µ2
−λ1(dn)

λ1 .

Therefore, we have

(dn+1)
λ1 ≤ (1− µ1µ2

−λ1)dn
λ1

(1 + (1− rn)µ1µ2
−λ1)

.

Let

(3.38) dn+1
λ1 ≤ 1− α

a
(dn)

λ1

where, a =
(
1 + (1− rn)µ1µ2

−λ1
)
and α = (1− µ1µ2

−λ1).
From (3.38) and proceeding similarly as in Theorem 3.4, we get ∥pn − p∥ ≤ Cρn4 .
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Case 2. For 0 < λ2 < 1 from Hölder inequality and dn definition ,we have

µ2

−λ1
λ2 dn

λ1
λ2 ≤ ∥pn −Gpn∥λ1 =⇒ dλ1

n+1 ≤ dλ1
n − µ1µ

−λ1
λ2

2 d
λ1
λ2
n

and then proceed in the same way as in Theorem 3.4. □

Next proposition was given by [10] for the case when the exponent λ1 ∈ (0, 1).

Proposition 3.6 ([10]). If G is a GAN operator with Fix(G) ̸= ϕ and exponent
λ1 for some λ1 ∈ (0, 1), then it is FP-δ-contractive for some δ ∈ (0, 1).

Table 1. Convergence Rates of Various Methods

Iterations λ1 ∈ (0, 1) λ1 ∈ [1,+∞) & λ2 ∈ (0, 1) λ1 ∈ [1,+∞) & λ2 ∈ [1,+∞)

Picard O(δn+1) O
(
n
− λ2

λ1(1−λ2)

)
O(ρn)

Mann O(δn+1) O
(
n
− λ2

λ1(1−λ2)

)
O(ρn1 )

ISHIKAWA O(δn+1) O
(
n
− λ2

λ1(1−λ2)

)
O(ρn2 )

NORMAL-S O(δn+1) O
(
n
− λ2

λ1(1−λ2)

)
O(ρn3 )

PV O(δ3(n+1)) O
(
n
− λ2

λ1(1−λ2)

)
O(ρn4 )

In the following theorem, we provide the convergence rates when λ1 ∈ (0, 1).

Theorem 3.7. If G is a GAN operator with Fix(G) ̸= ϕ and exponent λ1 ∈
(0, 1). Then, the PV iteration converges to the fixed point of G. The global rate of

convergence is given by O(δ3(n+1)).

Proof. We are given that G is a GAN operator with Fix(G) ̸= ϕ and exponent
λ1 ∈ (0, 1) therefore from Propostion 3.6 we have G is a FP-δ contraction map
therefore there exist a δ ∈ (0, 1) such that

∥G(x)− p∥ ≤ δ∥x− p∥ ∀x ∈ Rn/F ix(G).

We will prove results for the PV iteration, similar results hold for other iterations

∥pn+1 − p∥ = ∥Gqn − p∥ ≤ δ.∥qn − p∥
= δ∥G((1− rn)G

2pn + rn.Gpn)− p∥
≤ δ2[(1− rn)δ

2 ∥pn − p∥+ rnδ ∥pn − p∥]
≤ δ3∥pn − p∥.

Inductively, we get

∥pn+1 − p∥ ≤ δ3(n+1)∥p0 − p∥.

□
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4. Numerical experiment

Example 4.1. Let f(x) = 1
2∥Ax − b∥22 where A =

(
1 1
0 1

)
and b =

(
1
0

)
. Then

A is a full-rank matrix. Now, from the proof of Corollary 5.6 in [10], and by
Theorem 2.5, we have S1 = I − α∇f is GAN where α ≈ (0, 0.763).Thus, the
Mann, Ishikawa, Normal-S, and PV algorithms all converge to the fixed point of
S1 with an exponential rate of convergence by Theorem 3.5 and Theorem 3.4.Here,
S1(x) = x − αA⊤Ax − A⊤b .Putting the value x = (x1, x2), we get S1(x1, x2) =(
1
2(x1 − x2)− 1,−1

2x1 − 1
)
.One can easily find its fixed point as (−2, 0). The con-

vergence behavior is shown in the tables and graphs. Using two randomly chosen
rn values, we observe that PV converges faster than Picard.

Table 2. Residual table for Case 1 ( rn = 0.14302691083025781)

iteration PV Picard Normal-S Ishikawa Mann
1 3.162278 3.162278 3.162278 3.162278 3.162278
2 3.162278 3.162278 3.162278 3.162278 3.162278
3 0.897345 1.802776 1.707093 1.788660 2.788947
4 0.397366 1.346291 1.264030 1.334034 2.499469
5 0.175972 1.075291 0.988109 1.062430 2.275145
6 0.077928 0.868278 0.777032 0.854741 2.100522
7 0.034510 0.702256 0.611418 0.688638 1.963146
8 0.015283 0.568114 0.481132 0.554925 1.853253
9 0.006768 0.459611 0.378611 0.447188 1.763409

10 0.002997 0.371833 0.297936 0.360369 1.688091

Figure 1. Scattered plot for rn = 0.14
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Table 3. Residual table for Case 2 (rn = 0.4)

iteration PV Picard Normal-S Ishikawa Mann
1 3.162278 3.162278 3.162278 3.162278 3.162278
2 3.162278 3.162278 3.162278 3.162278 3.162278
3 0.950082 1.802776 1.555635 1.696231 2.200000
4 0.445371 1.346291 1.132519 1.254763 1.814166
5 0.208804 1.075291 0.845356 0.978162 1.617860
6 0.097894 0.868278 0.631636 0.766715 1.479761
7 0.045896 0.702256 0.471966 0.601296 1.363131
8 0.021517 0.568114 0.352659 0.471591 1.258114
9 0.010088 0.459611 0.263512 0.369867 1.161786

10 0.004730 0.371833 0.196900 0.290085 1.072980

Figure 2. Scattered plot for rn = 0.4

5. Conclusion

In this paper, we have established the convergence of various iterative algorithms,
namely Mann, Ishikawa, Normal-S, and PV, for the GAN operator and obtained
their convergence rates. Our results are further verified through numerical experi-
ments, where we observe that PV and Normal-S perform better than Picard. For
future work, one could aim to generalize these results to more abstract spaces and
explore faster iterations for GAN operators.
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