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their ultimate bound sets (UBSs) play a significant role in chaos control [23, 34].
Numerous researchers have been fascinated by the concept of ultimate bound set.
It can be used to calculate attractors numerically, which is significant in the studies
related to hidden attractors and points of equilibrium. It is well known that chaotic
systems can be expressed explicitly as differential equations and it is a crucial task to
study the chaotic systems from viewpoint of the boundary. Therefore, investigation
of a bound set of chaotic systems is a beautiful idea for the deep understanding
of the subject. Chaos can be controlled and synchronized for different systems
such as fractional order chaotic systems, integer order chaotic and hyperchaotic
systems [20,30] via ultimate bound estimation technique. As compared to the search
of attractors of chaotic systems, the search of ultimate bound sets and Lyapunov
functions corresponding to attractors of hyperchaotic systems are more challenging.
One possible approach to solve the problem of ultimate bound estimate for the
hyper-chaotic systems is through optimization. Li et al. [16] have analyzed the
ultimate bound set for the hyper-chaotic Lorenz-Haken system. Using dimension
reduction method, Wang et al. [28] calculated explicit bound sets for the hyper-
chaotic Lorenz-Stenflo system. Through the extremum principle of function and
generalized Lyapunov function theory, Nik et al. [18] obtained UBSs for a system.
Recently, Lei et. [13] brought to light the complete inaccuracy regarding the results
of estimating the ultimate bound set [33]. The bound sets of different chaotic and
hyperchaotic systems are analytically estimated using the standard methodology of
an optimization approach [29]. Numerous authors are interested in estimating the
bounded sets of various hyper-chaotic and chaotic systems by using an optimization
technique [1,6,7,21]. These types of investigations in case of bound sets have been
carried out for few chaotic systems which seems to be a key component of present
scenario.

An important technique for controlling chaos is predictive control and synchro-
nization [19]. Researchers have utilized a diverse range of synchronization schemes
and control techniques to achieve synchronization in various integer chaotic or hy-
perchaotic systems. Recently, [2, 4, 8, 11], and many other researchers have studied
synchronization in fractional order chaotic and hyperchaotic system [24,25]. Among
the different methods of chaos synchronization, linear feedback control is the most
common, simple, and straightforward approach to realize in practice. Several au-
thors have used the linear feedback control approach to synchronize other nonlinear
systems. These authors have also used Lyapunov stability theory to make sure
that nonlinear error systems are stable on a global level. They use this method to
achieve globally exponential synchronization through linear feedback control. The
main contribution of our studies in this manuscript are highlighted as follows:
–This paper focuses on two aspects: first is dynamic analysis of new 3D chaotic
system from perceptive of Hamilton energy and bound sets, and second is the ap-
plication of bound set in chaos synchronization.
–To the best of our knowledge, no one constructed this type of 3D Lorenz-like sys-
tem.
–To study more deeply about the dynamics of the new system, Hamilton energy
function is also investigated.
–Available literature does not yet address the bound sets for the 3D chaotic system
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neither analytically nor numerically.
–With the help of bound set, global exponential synchronization has been achieved
between two identical 3D chaotic systems.

Complete description of the paper is as follows: Section 2 describes a new 3D
chaotic system with Lyapunov exponent and phase portraits. Section 3 investigates
the Hamilton energy function. The explicit ultimate bound set for the new 3D
chaotic system is determined in Section 4. Section 5 describes the application of
the bound set in synchronization. Conclusion is drawn in Section 6.

2. The 3D chaotic system and its dynamics

Consider the general system [17], which includes a variety of significant systems,
including the classical Lorenz system, the Chen system, and other Lorenz-like sys-
tems, which have been addressed for various parameter values. The following is the
mathematical equations that describes the general system:

ẇ1 = µ(w2 − w1),

ẇ2 = κw1 + βw2 − w1w3,(2.1)

ẇ3 = w1w2 − δw3,

where µ, β, κ, and δ are unknown parameters. Throughout the fields of chaos
theory, dynamical systems, chaos control, synchronization and many other area
of research [14, 27, 31] have exclusively concentrated on Lorenz-like systems. As a
result of these studies and ideas, we decided to develop and analyze a new chaotic
system designed in the Lorenz-like fashion. The mathematical equations of a new
3D Lorenz-like system are described as follows:

ẇ1 = −w1 − µw2,

ẇ2 = −βw2 − w1w3 − κw1,(2.2)

ẇ3 = w1w2 − δw3,

where µ, β, κ, δ are the unknown parameters and wi for i = 1, 2, 3 are variables
of state for the system (2.2). By taking the parameter values as µ = 2.5, β = 0.3,
κ = 4, δ = 0.1 with initial conditions (−0.4, 0.1,−4), Lyapunov exponents of the
system (2.2) at t = 1000 are λ1 = 0.125875, λ2 = −0.001774, and λ3 = −1.524101.
In Fig. 1(A), we observe that one of the three Lyapunov exponents value is positive,
which is a necessary requirement for chaotic behavior of the system. Moreover,
the times series and phase portraits of the proposed system with initial conditions
(−0.4, 0.1,−4) can be see in the Fig. 1(B) and Fig. 2, respectively. For µ+β+δ > 0,
the system (2.2) is dissipative with the divergence

∂ẇ1

∂w1
+
∂ẇ2

∂w2
+
∂ẇ3

∂w3
= −(µ+ β + δ) < 0.

The equilibrium points of system (2.2) and their corresponding eigenvalues for
the parameters µ = 2.5, β = 0.3, κ = 4 and δ = 0.1 are given in the following
table: From the perspective of the Routh-Hurwitz criteria [5], it may be said that
all equilibrium points are unstable. Taking into consideration the suggested system
(2.2), it is worth noting that it is not comparable to the original Lorenz system
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Figure 1. (A) Lyapunov exponents; (B) Time Series of the system
(2.2) with µ = 2.5, β = 0.3, κ = 4 and δ = 0.1

Figure 2. (A), (B) and (C) denote the phase portraits of the 3D
chaotic system (2.2) with µ = 2.5, β = 0.3, κ = 4 and δ = 0.1

Equilibrium points Eigenvalues Stability

E1(0, 0, 0) (−3.8316, 2.5316, 0.1000) Saddle point

E2(−0.9849, 0.3940,−3.8800) (−1.5175, 0.0588 + 1.1290i, 0.0588− 1.1290i) Saddle point

E3(0.9849,−0.3940,−3.8800) (−1.5175, 0.0588 + 1.1290i, 0.0588− 1.1290i) Saddle point

or any other existing Lorenz-like systems. In addition, the Chen system and the
Lorenz system, both of which were originally developed, are linked in the sense that
is provided by [3], which also demonstrates a transition from one system to the
other. In light of this, it would be fascinating to get knowledge about the unusual
dynamics that this system demonstrates.

3. The Hamilton energy

In this section, the calculation of the Hamilton energy for 3D chaotic system (2.2)
has been included. The investigation focuses on the link between the Hamilton
energy and many attractors of the system (2.2), as well as the energy reliance on
the attractors. Rewrite the system (2.2) as follows:
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ẇ1

ẇ2

ẇ3

 = Fc + Fd =

 −µw2

−w1w3 − κw1

w1w2

+

 −w1

−βw2

−δw3

 ,(3.1)

where Fc is the conservative field containing the full rotation and Fd denotes the
dissipative field including the divergence. Then system (2.2) can be rewritten as
follows: ẇ1

ẇ2

ẇ3

 =

0 −µ 0
µ 0 −w1

0 w1 0

−κ
µ w1

w2

w3

+

µ
κ 0 0
0 −β 0
0 0 −δ

−κ
µ w1

w2

w3

 ,(3.2)

= J(W )∇H +R(W )∇H,

where the gradient vector of a smooth energy function is denoted by ∇H and J(W )
denotes a skew-symmetric matrix, while R(W ) denotes a symmetric matrix. The

Figure 3. (A) H versus w1; (B) H versus w2; and (C) H versus w3

for the system (2.2) with µ = 2.5, β = 0.3, κ = 4 and δ = 0.1.

Hamilton energy function is obtained by the following approach:

dH

dt
= ∇HTR(W )∇H,(3.3)

∇HTJ(W )∇H = 0.(3.4)

The Hamilton energy function can be determined by using Helmhotz’s theorem
[12,35] as follows:

∇HTFc(W ) = 0,(3.5)

∇HTFd(W ) =
dH

dt
.(3.6)

Thus, the Hamilton energy function is,

H = −κ
µ
w2
1 +

1

2
w2
2 +

1

2
w2
3.(3.7)

The flow of energy both inside and outside of the system is calculated as:

dH

dt
=
κ

µ
w2
1 − βw2

2 − δw2
3.(3.8)
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Figure 4. (a) H versus w1; (b) H versus w2; and (c) H versus w3

for system (2.2) with µ = 2, β = 0.1, κ = 3 and δ = 1.2

Based on the equation (3.8), we made the observation that the time derivative
of the Hamilton energy of the system (2.2) is depend upon the parameters and
variables of the system. The Hamilton energy is affected by the changes that occur
in the behavior of the system, and the behavior of the system is affected by the
changes that occur in the value of H. As a consequence of this, the regulation of
the Hamilton energy will guarantee the stability of the system (2.2). If we choose
the values µ = 2.5, β = 0.3, κ = 4, and δ = 0.1, we are able to see the initiation
of chaotic states in the system, as shown in Fig. 3. Moreover, the Hamilton energy
function is subject to change over time as a consequence of the continuous energy
pumping and release that occurs inside the system, as seen in Fig. 5(A). Again, if
we choose the parameters as µ = 2, β = 0.1, κ = 3, and δ = 1.2, the system becomes
stable which can be seen in Fig. 4, and the Hamilton energy is finally stabilized to
a constant as seen in Fig. 5(B). Furthermore, the influence of attractors stability
on the energy function is seen in Fig. 5.

Figure 5. Comparing in terms of energy quantity and consumption
of the system (2.2) in chaotic stale (A) and stable state (B).
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Remark 3.1. The results of the Hamilton energy investigations guarantee that
system (2.2) shown the existence of chaos for the considered parameters µ = 2.5,
β = 0.3, κ = 4 and δ = 0.1.

4. The bound set of the 3D chaotic system

Within the following subsections, we first provide an explanation of the funda-
mental terminology and the technique that is used to compute the ultimate bound
set. After that, we use the Lagrange multiplier approach to aid in the optimization
of bound set, and the outcomes are shown via the use of numerical simulations.

4.1. Method description. Assuming that W = (w1, w2, ..., wn)
T is the solution

of the following autonomous system:

dW

dt
= f(W ),(4.1)

where f : Rn → Rn is a nonlinar function. Let W0 = W (t0, t0,W0) be the initial
value of W (t, t0,W0), and Υ ⊂ Rn is the compact set. Let η represents the distance
between W (t, t0,W0) and Υ, which is described as:

η(W (t, t0,W0),Υ) = inf
Y ∈Υ

||W (t, t0,W0)− Y ||.(4.2)

Suppose for each χ > 0, Υχ = {W |η(W,Υ) < χ}, then we have Υ ⊂ Υχ.
Definition: [29] Assume that there is a compact set Υ ∈ Rn fulfilling the following
criteria:

lim
t→∞

η(W (t),Υ) = 0, ∀ W0 ∈ Rn/Υ,

i.e., for each χ > 0, there exists T > t0 such that W (t, t0,W0) ∈ Υχ for all t ≥ T .
The set Υχ is referred as ultimate bound set of system (4.1). To determine the
bound set of system (4.1), let us rewrite the system (4.1) as:

Ẇ = AW +

n∑
i=1

wiHiW + U,(4.3)

where W = (w1, w2, ..., wn)
T ∈ Rn are system state vectors. Also, A ∈ Rn×n,

U ∈ Rn, and Hi = (hijk)n×n ∈ Rn×n with every element of Hi satisfying h
j
ik = hkij ,

for all i, j, k = 1, 2, ..., n. Now, let us assume the quadratic function V as follows:

V (W ) = (W + ψ)TM(W + ψ),(4.4)

where M = MT = (mij)n×n, i, j = 1, 2, ..., n is a symmetric matrix and ψ =
(ψ1, ψ2, ..., ψn) ∈ Rn are real parameters to be calculated. Taking the derivative of
(4.4) we get,

V̇ (W ) = Ẇ TM(W + ψ) + (W + ψ)TMẆ,(4.5)

V̇ (W ) =W T [ATM +MA+ 2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T ]W

+
n∑

i=1

wiW
T (HT

i M +MHi) + 2(ψTMA+ UTM)W + 2UTMψ.(4.6)
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Denoting Q = ATM +MA+2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T , and G = 2(ψTMA+

UTM).
We rewrite as follows:

V̇ (W ) =W TQW +

n∑
i=1

wiW
T (HT

i M +MHi)W +GW + 2UTMψ.(4.7)

Theorem 4.1. [29] Suppose that M > 0 is a positive definite symmetric matrix
and ψ ∈ Rn is a vector such that

Q = ATM +MA+ 2(HT
1 Mψ,HT

2 Mψ, ...,HT
nMψ)T < 0,(4.8)

and for any W = (w1, w2, ..., wn)
T ∈ Rn

n∑
i=1

wiW
T (HT

i M +MHi)W = 0,(4.9)

then, system (4.3) is bounded and defines its ultimate bound as follows:

Υ = {W ∈ Rn : (W + ψ)TM(W + ψ) ≤ J},(4.10)

where J is a real value that can be determined using the optimization problem de-
scribed in the following manner:

maximize (W + ψ)TM(W + ψ)

subject to W TQW + 2(ψTMA+ UTM)W + 2UTMψ = 0.(4.11)

4.2. Estimating the ultimate bound set of the 3D chaotic system. We
rewrite the system (2.2) in the form of equation (4.3) in order to apply Theorem
4.1 to establish the ultimate bound set of the proposed 3D chaotic system:

Ẇ = AW +

3∑
i=1

wiHiW + U,(4.12)

where

A =

 −1 µ 0
κ −β 0
0 0 −δ

, H1 =

 0 0 0
0 0 −1

2
0 1

2 0

, H2 =

 0 0 0
0 0 0
1
2 0 0

,

H3 =

 0 0 0
−1

2 0 0
0 0 0

 , and U =

 0
0
0

 .

Let M =MT = (mij)3×3 for all i.j = 1, 2, 3. From Eq. (4.9), we have

3∑
i=1

wiW
T (HT

i M +MHi)W = 0,(4.13)

and equation (4.13) holds for any wi ∈ R with i = 1, 2, 3. Thus,

2(m13 +m31)w
2
1w2 − 2(m21 +m12)w

2
1w3 + 2(m23 +m32)w

2
2w1

−2(m22 −m33)w1w2w3 − 2(m23 +m32)w
2
3w1 + 2(m23 +m32)w

2
2w1 = 0.(4.14)

Let m12 = m21 = m13 = m31 = m23 = m32 = 0 and m22 −m33 = 0. Corresponding
to these calculation the positive definite matrix M becomes,
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M =

 m11 0 0
0 m22 0
0 0 m22

.

Thus, Q =

 −2m11 ψ3 − µm11 − κm22 −ψ2

ψ3 − µm11 − κm22 −2βm22 0
−ψ2 0 −2δm22

 .

For simplification, choose ψ = (ψ1, ψ2, ψ3) =

(
0, 0, µm11 + κm22

)
. Then

Q =

 −2m11 0 0
0 −2βm22 0
0 0 −2δm22

 ,

and
2(ψTMA+ UTM) = [0, 0,−2δm22(µm11 + rm22)].

Therefore,

V (W ) = (W + ψ)TM(W + ψ),(4.15)

V (W ) = m11w
2
1 +m22w

2
2 +m22(w3 + (µm11 + κm22))

2,(4.16)

and V̇ (W ) = 0 gives,

−2m11w
2
1 − 2βm22w

2
2 − 2δm22w

2
3 − 2δ(µm11 + κm22)w3 = 0.

Theorem 4.2. Suppose that µ > 0, β > 0, κ > 0, δ > 0, Q < 0 and mii ∈ R+.
Denote

Υ =

{
W (t) ∈ R3 : m11w

2
1 +m22w

2
2 +m22(w3 + (µm11 + κm22))

2 ≤ J

}
.(4.17)

Then, the system (4.12) has an ultimate bound set Υ, where

J =


δ2

(δ−1)
m22(µm11+κm22)2

4 , (µ, β, κ, δ) ∈ E1,

δ2

β(δ−β)
m22(µm11+κm22)2

4 , (µ, β, κ, δ) ∈ E2,

m22(µm11 + κm22)
2, (µ, β, κ, δ) ∈ E3,

(4.18)

and J is a real value that can be determined by using the problem described in the
following manner:

maximize (W + ψ)TM(W + ψ)

subject to W TQW + 2(ψTMA+ UTM)W + 2UTMψ = 0,(4.19)

and

E1 = {(µ, β, κ, δ) ∈ R3+| β > 1, β ≤ (δ − 1)},
E2 = {(µ, β, κ, δ) ∈ R3+| 0 < β < 1, β ≤ (δ − 1)},
E3 = R3+ − (E1 ∪ E2).

Proof. Consider the following problem in order to optimize:

maximize V =(W + ψ)TM(W + ψ)

subject to W TQW + 2(ψTMA+ UTM)W + 2UTMψ = 0.(4.20)
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This implies that,

max V = m11w
2
1 +m22w

2
2 +m22(w3 + (µm11 + κm22))

2,

s.t. m11w
2
1 + βm22w

2
2 + δm22w

2
3 + δ(µm11 + κm22)w3 = 0.(4.21)

Expressing
√
m22

(
µm11+κm22

2

)
= τ. Let

√
m11w1 = y1,

√
m22w2 = y2 and

√
m33w3 =

y3. Then equation (4.21) can be rewritten as follows:

max V = y21 + y22 + y23,

s.t y21 + βy22 + δ(y3 + τ)2 = δτ2.(4.22)

Using the Lagrange method, we defined Θ as,

Θ = y21 + y22 + y23 − ζ

[
y21 + βy22 + δ(y3 + τ)2 − δτ2

]
.

Differentiate both sides,

∂Θ

∂y1
= 2y1 − ζ[2µy1] = 0,

∂Θ

∂y2
= 2y2 − ζ[2βy2] = 0,(4.23)

∂Θ

∂y3
= 2y3 − ζ[2δ(y3 + τ)] = 0,

∂Θ

∂ζ
= −

[
y21 + βy22 + δ(y3 + τ)2 − δτ2

]
= 0.

(i) If ζ = 1 and δ − 2 > 0, δ ̸= 1 then

(y⋆1, y
⋆
2, y

⋆
3) =

(
± δτ

(1− δ)

√
(δ − 2), 0,

δτ

(1− δ)

)
,

we get V1 =V (y⋆1, y
⋆
2, y

⋆
3) =

δ2τ2

(δ − 1)
.(4.24)

(ii) If ζ = 1
β and δ − 2β > 0, β ̸= δ then

(y⋆1, y
⋆
2, y

⋆
3) =

(
0,± δτ

(β − δ)

√
(δ − 2β)

β
,

δτ

(β − δ)

)
,

we get V2 =V (y⋆1, y
⋆
2, y

⋆
3) =

δ2τ2

β(δ − β)
.(4.25)

(iii) If ζ ̸= 1 and ζ ̸= 1
β , then

(a) (y⋆1, y
⋆
2, y

⋆
3) = (0, 0,−2τ), we get, V3 = V (y⋆1, y

⋆
2, y

⋆
3) = 4τ2.(4.26)

(b) (y⋆1, y
⋆
2, y

⋆
3) = (0, 0, 0), we obtain, V4 = V (y⋆1, y

⋆
2, y

⋆
3) = 0.(4.27)

Defining the sets:

E1 = {(µ, β, κ, δ) ∈ R3+| β > 1, β ≥ (δ − 1)},
E2 = {(µ, β, κ, δ) ∈ R3+| 0 < β < 1, β ≤ (δ − 1)},
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E3 = R3+ − (E1 ∪ E2).

One can have,

Vmax =


δ2

(δ−1)
m22(µm11+κm22)2

4 , (µ, β, κ, δ) ∈ E1,

δ2

β(δ−β)
m22(µm11+κm22)2

4 , (µ, β, κ, δ) ∈ E2,

m22(µm11 + κm22)
2, (µ, β, κ, δ) ∈ E3,

(4.28)

and, Vmax = J . Thus, the proof is concluded. □

4.3. Simulation Results. Theoretical results are verified by the numerical simu-
lations. The phase portraits and ultimate bound sets, described by Υµ,β,κ,δ of the
system (4.12) are shown as below when the various value of µ > 0, β > 0, κ > 0
and δ > 0 are taken under consideration. If we choose µ = 2.5, β = 0.3, κ = 4 and
δ = 0.1, then we have,

Υ2.5,0.3,4,0.1 =

{
(w1, w2, w3)|0.7w2

1 + 0.7w2
2 + 0.7(w3 + 4.55)2 ≤ (0.7)(4.55)2

}
.

The ultimate bound set Υ2.5,0.3,4,0.1, which is displayed in Fig.6, comprised with
various space trajectories namely chaotic attractors. If we select the parameter as:
µ = 2, β = 0.1, κ = 3 and δ = 1.2, then we have,

Υ2,0.1,3,1.2 =

{
(w1, w2, w3)|0.7w2

1 + 0.7w2
2 + 0.7(w3 + 3.5)2 ≤ (3.2727)(3.5)2

}
.

The ultimate bound set Υ2,0.1,3,1.2, which is displayed in Fig.7, comprised each of
the various space trajectories namely phase portraits.

5. Application of bound set in synchronization

The conclusions that are produced in Theorem 4.2 have been used in order to
accomplish the goal of synchronization between two 3D chaotic systems that are
identical. It has been explained in this section that an exponential synchronization
scheme with linear feedback control is being used. First, we will provide the lemma
as follows:

Lemma 5.1. For given any µ > 0, w1, w2 ∈ R, then the inequality 2w1w2 ≤
µw2

1 +
1
µw

2
2 holds.

Consider the 3D chaotic system (2.2) as master (drive) system and the corre-
sponding slave (response) system is defined as follows:

ż1 = −z1 − µz2 + p1,

ż2 = −z1z3 − βz2 − κz1 + p2,

ż3 = z1z2 − δz3 + p3,

(5.1)

where z1, z2 and z3 are the state vectors of the system and µ, β, κ and δ are
parameters, while p1, p2 and p3 are the controllers to be designed to obtain the



760 SHADAB ALI, AYUB KHAN, AND ARSHAD KHAN

Figure 6. (A), (B) and (C):UBS with chaotic attractors of system
(4.12) with initial conditions (−0.4, 0.1,−4), where µ = 2.5, β = 0.3,
κ = 4, and δ = 0.1.

synchronization between the systems (2.2) and (5.1). On the other hand, by using
Theorem 4.2, we can get,

|w1| ≤
√

J
m11

= ∆1,

|w2| ≤
√

J
m22

= ∆2,

|w3| ≤
√

J
m22

+ |µm11 + κm22| = ∆3,

(5.2)

where J is defined in equation (4.18).

Theorem 5.2. To obtain the exponential synchronization between the drive system
(2.2) and the response system (5.1) with exponential manner. The value of the
controllers are chosen as follows:

p1 = −k1e1, p2 = −k2e2 and p3 = −k3e3,(5.3)
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Figure 7. (A), (B) and (C): UBS with phase portraits of system
(4.12) with initial conditions (−0.4, 0.1,−4), where µ = 2, β = 0.1,
κ = 3, and δ = 1.2.

with k1 >
∆2
2
√
ρ−

κ
2
√
ρ−

∆3
2
√
ρ−

µ
2
√
ρ−1, k2+

∆3
√
ρ

2 +β+
κ
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Proof. Define the error system as follows:

e1 = z1 − w1, e2 = z2 − w2, and e3 = z3 − w3,

then the error dynamics becomes, ėi = żi − ẇi, for i = 1, 2, 3.
ė1 = −e1 − µe2 + p1,

ė2 = −e1e3 − e1w3 − e3w1 − βe2 − κe1 + p2,

ė3 = e1e2 + e1w2 + e2w1 − δe3 + p3.

(5.4)

Take the Lyapunov function as follows:

ν(e1, e2, e3) =
1

2
ρe21 +

1

2
ρe22 +

1

2
ρe23.(5.5)
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Using (5.4) and (5.5), one can get

ν̇(e1, e2, e3) = ρe1[−e1 − µe2 − k1e1] + ρe2[−e1e3 − e1w3

− e3w1 − βe2 − ρκe1 − k2e2] + ρe3[e1e2 + e1w2 + e2w1 − δe3 − k3e3],

ν̇(e1, e2, e3) = −(ρ+ ρk1)e
2
1 − (ρβ + ρk2)e

2
2

− (ρδ + ρk3)e
2
3 − ρµe1e2 − ρe1e2w3 − ρκe1e2 + ρe1e3w2.(5.6)

By using Lemma 5.1 and the equation (5.2), we obtain

ρµe1e2 ≤ µ
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3
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ρ
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)
,
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4 |e1|ρ

3
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∆3ρ

√
ρ

2 e22

)
,

ρe1e2κ ≤ κ

(
ρ

1
4 |e1|ρ

3
4 |e2|

)
≤
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(5.7)

From (5.6) and (5.7), we obtain

ν̇(e1, e2, e3) ≤ −
(
ρk1 + ρ−

∆2
√
ρ

2
+
κ
√
ρ

2
+

∆3
√
ρ

2
+
µ
√
ρ

2

)
e21

−
(
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∆3ρ
√
ρ

2
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ρ

2
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√
ρ

2

)
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−
(
ρk3 + ρδ +

∆2ρ
√
ρ

2

)
e23.

Set 
ρk1 + ρ− ∆2

√
ρ

2 +
κ
√
ρ

2 +
∆3

√
ρ

2 +
µ
√
ρ

2 = β1 > 0,

ρk2 +
∆3ρ

√
ρ

2 + βρ+
κρ

√
ρ

2 +
µρ

√
ρ

2 = β2 > 0,

ρk3 + ρδ +
∆2ρ

√
ρ

2 = β3 > 0,

α̂ = min{β1, β2, β3, } > 0.

(5.9)

Substituting the values from Eq. (5.9), equation (5.8) becomes

ν̇(e1, e2, e3) ≤ −β1e21 − β2e
2
2 − β3e

2
3,(5.10)

that is, ν̇(e1, e2, e3) ≤ −α̂ν(e1, e2, e3).(5.11)

Hence, ν(t) ≤ ν(t0)e
−α̂(t−t0). It demonstrates that the master system (2.2) and

the slave system (5.1) are synchronized with one another in a globally exponential
manner, as shown in Fig. 8. □

6. Conclusion

This study analyzes a new 3D Lorenz-like chaotic system from the perspective
of dynamical analysis. An intriguing fact is that the Hamilton energy function
changes in response to changes in the features and behavior of the chaotic system
under consideration, and changes to the energy function have an impact on the
system’s behavior. We have also determined explicit bound sets for the solutions of
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Figure 8. (A), (B), (C) Synchronized state-trajectories and (D)
Errors dynamics synchronization of the systems (2.2) and (5.1) with
initial conditions (−0.4, 0.1,−4), (−4,−1, 3) and k1 = 1, k2 = 2,
k3 = 3.

proposed system by solving an optimization problem. We have observed that given
approach is effective under certain circumstances, and it has the potential to broaden
the scope to point where any kind of attractors may be found inside the bound set.
Additionally, we have discussed the use of bound sets in the synchronization process.
Several simulations demonstrate the technical feasibility of the proposed procedures.
It is possible to employ this chaotic system in the future to encrypt images, deal
with secure communications, and solve circuit difficulties.
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