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Definition 1.2 ([9]). A self-mapping T on metric space (X, d) is called graphic
contraction if there exists k ∈ [0, 1) such that

d(Tx, T 2x) ≤ kd(x, Tx), ∀ x ∈ X.

The name graphic contraction was given due to fact that the contraction condition
is required to hold merely on the elements of Graph of T rather than all elements
of X2. Independently, Rus [6] and Subrahmanyam [11] first proved the graphic
contraction principle, that runs as follows:

Theorem 1.3 ([6, 11]). A continuous graphic contraction mapping on a complete
metric space is a weakly Picard mapping.

In 2013, Popescu [5] improved the Ćirić-type multivalued contraction [2] by intro-
ducing the concept of (λ, k)-contractive multivalued mappings with real constants
0 ≤ k < 1 and λ > k and utilized the same to prove an interesting generaliza-
tion of classical fixed point theorems of Nadler [4] as well as Ćirić [2]. In process,
Popescu [5] derived a corresponding fixed point theorem in case of single valued
(λ, k)-contractive mappings. In the last several years, this paper has attracted the
attention of several researchers of this domain and by now there exist a considerable
literature on and around this paper but all such results are proved for multivalued
maps. The authors of the present paper are of the view that there is a consider-
able scope of proving similar result for single valued mappings besides exploring the
possibilities of refinements in single-valued considerations. With this formation in
mind, we consider a special but most natural version of the Popescu’s single valued
(λ, k)-contractive mapping, which turns out to be a weakly Picard mapping on a
complete metric space.

In Section 2, we term the Popescu’s single valued (λ, k)-contractive mapping
as inevitable contraction and refine the non-unique fixed point theorem under in-
evitable contraction. Our result is a straightforward variant of Banach contraction
principle. To testify the credibility of our results, we construct two examples with
more than one fixed points. We also observe that the inevitable contraction remains
a class of graphic contractions. However our result is different from Theorem 1.3
due to the removal of continuity requirement.

In Section 3, we utilize our result to discuss the existence of bounded solutions
of a class of functional equations arising in dynamic programming.

Section 4 is devoted to highlight the role and the meaning of the concept of in-
evitable contractions. This work and the work of this kind can inspire new researches
refinements and improvements.

2. Main results

With a view to emphasize the role of Popescu [5] type single-valued mapping, let
us agree to re-name it as “inevitable contraction mapping”.

Definition 2.1. Let (X, d) be a metric space and T a self-mapping on X. If there
exist real numbers k and λ verifying 0 ≤ k < 1 and k < λ such that for all x, y ∈ X,

d(y, Tx) ≤ λd(y, x) =⇒ d(Tx, Ty) ≤ kd(x, y),

then T is called a (λ, k)-inevitable contraction or simply, an inevitable contraction.
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Clearly, every contraction mapping is an inevitable contraction, but not con-
versely.

Proposition 2.2. Every inevitable contraction is a graphic contraction.

Proof. Take an arbitrary x ∈ X. Then for every λ ≥ 0, the inequality

d(y, Tx) ≤ λd(y, x)

will be satisfied automatically for y = T (x). Consequently, for such pair, the in-
evitable contraction condition reduces to

d(Tx, T 2x) ≤ kd(x, Tx).

As x is an arbitrary, above inequality holds for all x ∈ X. This completes the
proof. □

Now, we prove a metrical fixed point theorem under inevitable contraction, which
generalizes the Banach contraction principle. Apart from Theorem 1.3, in the hy-
potheses of our result, there is no need continuity of T . The existence part of this
result follows from Theorem 2.5 of Popescu [5]. However, for the sake of brevity
and self-containment, we present a complete proof.

Theorem 2.3. Every inevitable contraction on a complete metric space is a weakly
Picard mapping.

Proof. Let (X, d) be a complete metric space and T : X −→ X an inevitable
contraction. Then there exist real numbers k and λ verifying 0 ≤ k < 1 and k < λ
such that for all x, y ∈ X,

(2.1) d(y, Tx) ≤ λd(y, x) =⇒ d(Tx, Ty) ≤ kd(x, y).

Take an arbitrary x0 ∈ X and construct the sequence {xn} of successive approxi-
mations of T , i.e, xn := Tn(x0) so that

xn = T (xn−1), ∀ n ∈ N.

Setting x = xn−1 and y = xn, we get

d(y, Tx) = d(xn, xn) = 0 ≤ λd(xn, xn−1) = λd(y, x).

Hence, by applying the contractivity condition (2.1) on these points, we deduce that

(2.2) d(xn, xn+1) = d(Txn−1, Txn) ≤ kd(xn−1, xn), ∀ n ∈ N

which using induction on n, reduces to

(2.3) d(xn, xn+1) ≤ knd(x0, x1), ∀ n ∈ N.

For n < m, using triangular inequality and (2.3), we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ [kn + kn+1 + · · ·+ km−1]d(x0, x1)

=
kn − km

1− k
d(x0, x1)

≤ kn

1− k
d(x0, x1)
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so that

d(xn, xm) ≤ kn

1− k
d(x0, x1).

As 0 ≤ k < 1 and d(x0, x1) is fixed, taking the limit as n tends to ∞ in above

inequality, the right hand side approaches to 0 consequently d(xn, xm)
R−→ 0. Thus,

the sequence {xn} is Cauchy. Owing to completeness of metric space X, there exists

x ∈ X such that xn
d−→ x.

Now, we claim that

(2.4) d(x, Txn) = d(x, xn+1) ≤ λd(x, xn), ∀ n ∈ N.

On contrary, assume that there exists a positive integer N such that

d(x, xn+1) > λd(x, xn), ∀ n ≥ N.

By easy induction, we obtain for all n ≥ N and r ≥ 1 that

d(x, xn+r) > λrd(x, xn)

so that

(2.5) d(x, xn) < λ−rd(x, xn+r)

On the other hand, using (2.2) and the triangular inequality, we get for all n ≥ N
and s ≥ 1 that

d(xn+s, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+s−1, xn+s)

≤ [1 + k + k2 + · · ·+ ks−1]d(xn, xn+1)

=
1− ks

1− k
d(xn, xn+1).

Letting s→ ∞ in above inequality, we obtain

d((x, xn) ≤
1

1− k
d(xn, xn+1), ∀ n ∈ N

which on replacing n by n+ r gives rise to

(2.6) d((x, xn+r) ≤
1

1− k
d(xn+r, xn+r+1), ∀ n ∈ N and r ≥ 1.

Making use of (2.2) and by an easy induction, we get for all n ∈ N and r ≥ 1 that

d(xn+r, xn+r+1) ≤ kd(xn+r−1, xn+r)

≤ k2d(xn+r−2, xn+r−1)

...

≤ krd(xn, xn+1).(2.7)

On combining (2.5), (2.6) and (2.7), we obtain for all n ≥ N and r ≥ 1 that

d(x, xn) ≤
(kλ−1)r

1− k
d(xn, xn+1).
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As k < λ, we have kλ−1 < 1. Therefore on taking the limit as r → ∞, we obtain
d(x, xn) = 0, for all n ≥ N , which contradicts to (2.5). Hence, (2.4) holds. Using
(2.1) and (2.4), we obtain

d(xn+1, Tx) = d(Txn, Tx) ≤ kd(xn, x)

which by using n → ∞ gives rise to xn+1
d−→ T (x). Owing to uniqueness of limit,

we get T (x) = x. This completes the proof. □
Remark 2.4. Under the restriction λ ≥ 1, any (λ, k)-inevitable on a complete
metric space is a Picard mapping. Indeed, for every pair x, y ∈ F(T ), we have

d(y, Tx) = d(y, x) ≤ λd(y, x).

Therefore, applying (λ, k)-inevitable contraction condition on these points, we get

d(x, y) = d(Tx, Ty) ≤ kd(x, y)

implying thereby

(1− k)d(x, y) ≤ 0 =⇒ d(x, y) = 0, as 0 ≤ k < 1.

Hence, we get the uniqueness of fixed points.

To demonstrate Theorem 2.3, we furnish the following examples.

Example 2.5. Consider X = [0, 9
10 ] with usual metric d. Then (X, d) is complete

metric space. Define a self-mapping T on X by

T (x) =

{
2/3, x ∈ (0, 9

10 ];
0, x = 0.

Let us choose λ = 7
10 and k = 2

3 . Now, we consider the following cases:

Case-1: If x = y = 0, then λd(x, y) = 0. In this case, we have d(y, Tx) = 0 and
hence the inequality d(y, Tx) ≤ λd(y, x) will be satisfied for x = y = 0. Now, for
the given pair of points, we have

d(T0, T0) = 0 = kd(0, 0).

Case-2: If x = 0 and y ̸= 0, then we have d(y, Tx) = y and λd(y, x) =
7y

10
. Thus,

the inequality d(y, Tx) ≤ λd(y, x) will never be satisfied for any values of y ∈
(
0, 9

10

]
.

Case-3: If y = 0 and x ̸= 0, then we have d(y, Tx) =
2

3
and and λd(y, x) =

7x

10
.

Thus, the inequality d(y, Tx) ≤ λd(y, x) will never be satisfied for any values of
x ∈

(
0, 9

10

]
.

Case-4: Denote S := {(x, y) ∈ X2 : x ̸= 0, y ̸= 0, d(y, Tx) ≤ λd(y, x)}. Now for
each pair x, y ∈ X with x ̸= 0, y ̸= 0, we have

d(Tx, Ty) = 0 <
2

3
|x− y| = kd(x, y).

As a consequence, the above inequality will be satisfied for every (x, y) ∈ S.
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Thus, T is an inevitable contraction mapping. Consequently, by Theorem 2.3, T

is a weakly Picard mapping. Notice that F(T ) =

{
0,

2

3

}
.

Example 2.6. Consider X = {a, b, c, d, e, f} equipped with discrete metric d, i.e.,

d(x, y) =

{
1, x ̸= y
0, x = y.

Clearly, (X, d) is complete metric space. Define a self-mapping T on X by

T :=

(
a b c d e f
a b c a b c

)
Let k ∈ (0, 1) and λ ∈ (k, 1) be fixed. Now, to substantiate the contractive condition
of Theorems 2.3, we need to discuss the following cases.

Case-1: If (x, y) ∈ {(a, a), (b, b), (c, c)}, then d(y, Tx) = 0 = λd(y, x) and d(Tx, Ty) =
0 = kd(x, y).

Case-2: If (x, y) ∈ {(d, a), (e, b), (f, c)}, then d(y, Tx) = 0 < λ · 1 = λd(y, x) and
d(Tx, Ty) = 0 < k · 1 ≤ kd(x, y).

Case-3: In all remaining pairs (x, y), we have d(y, Tx) = 1 and λd(y, x) = λ.
Consequently, the inequality d(y, Tx) ≤ λd(y, x) never holds.

Thus in view of Theorem 2.3, T is a weakly Picard mapping. Notice that F(T ) =
{a, b, c}.

3. An application in dynamic programming

Various methods of fixed point theory are widely used in the field of mathematical
optimization. It is commonly recognized that dynamic programming offers practical
resources for computer programming and mathematical optimization. Under this
scenario, the dynamic programming problem associated with a multistage process
reduces to solution of specific functional equation described in the forthcoming lines.

Throughout the section, we assume that A and B are Banach spaces, Z ⊂ A is
the state space and S ⊂ B is the decision space. If θ : Z × S → Z, ℏ : Z × S → R
and 𝟋 : Z × S × R → R are known functions, then the return function f : Z → R
of the continuous decision process is defined by the functional equation:

(3.1) f(t) = sup
s∈S

{ℏ(t, s) +𝟋 (t, s, f (θ(t, s)))} , for each t ∈ Z.

Let us consider the following hypothesis:

(∗): If for a given ϵ > 0, there exist δ ≥ 0, t1, t2 ∈ Z and s1, s2 ∈ S such that
for all t ∈ Z, for some real number λ > 0 and for some pair of real-valued
functions α, β defined on Z, the following inequalities hold:{

−ℏ(t, s1)−𝟋(t, s1, α(t1)) + β(t) < 2ϵ+ λδ

ℏ(t, s2) +𝟋(t, s2, α(t2))− β(t) < ϵ+ λδ,
(3.2)
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then there exists k ∈ (0, 1) verifying k < λ such that for all t ∈ Z and for
all p, q ∈ R, we have

|𝟋(t, si, p)−𝟋(t, si, q)| ≤ k|p− q|, for each i ∈ {1, 2}.
Now, using Theorem 2.3, we prove the existence of bounded solution of the func-

tional equation (3.1). In doing so, we are essentially motivated by Bhakta and
Mitra [1].

Theorem 3.1. Assume that the functions ℏ and 𝟋 are bounded and the assumption
(∗) holds. Then the functional equation (3.1) has a bounded solution.

Proof. Let B(Z) denote the set of all bounded real-valued functions on Z. On B(Z),
define a metric d:

d(x, y) = sup
t∈Z

|x(t)− y(t)| , ∀ x, y ∈ B(Z).

As the convergence in the space B(Z) is uniform, therefore for any Cauchy sequence
{xn} ⊂ B(Z), {xn} converges uniformly to a bounded function x∗, we conclude that
x∗ ∈ B(Z). It follows that (B(Z), d) is a complete metric space.

Define a map T : B(Z) → B(Z) by

(Tx)(t) = sup
s∈S

{ℏ(t, s) +𝟋 (t, s, x (θ(t, s)))} , ∀ x ∈ B(Z) and t ∈ Z.

Take x, y ∈ B(Z) such that

(3.3) d(y, Tx) ≤ λd(y, x).

Since x, y ∈ B(Z), therefore, for all t ∈ Z, we have

(Tx)(t) = sup
s∈S

{ℏ(t, s) +𝟋 (t, s, x (θ(t, s)))}

and

(Ty)(t) = sup
s∈S

{ℏ(t, s) +𝟋 (t, s, y (θ(t, s)))} .

As ϵ is an arbitrary positive real number, there exist s1, s2 ∈ S such that

(Tx)(t) < ℏ(t, s1) +𝟋(t, s1, x(t1)) + ϵ,(3.4)

(Ty)(t) < ℏ(t, s2) +𝟋(t, s2, y(t2))) + ϵ,(3.5)

where t1 := θ(t, s1) and t2 := θ(t, s2) are parameters. Also, we have

(Tx)(t) ≥ ℏ(t, s2) +𝟋(t, s2, x(t2)),(3.6)

(Ty)(t) ≥ ℏ(t, s1) +𝟋(t, s1, y(t1)).(3.7)

On using (3.4), for all t ∈ Z, we get

−ℏ(t, s1)−𝟋(t, s1, x(t1)) + y(t)− ϵ < y(t)− (Tx)(t) ≤ |(Tx)(t)− y(t)| ≤ d(y, Tx)

which using (3.3) reduces to

(3.8) −ℏ(t, s1)−𝟋(t, s1, x(t1)) + y(t) < ϵ+ λd(y, x), ∀ t ∈ Z.
Further, by using (3.6), for all t ∈ Z, we get

ℏ(t, s2) +𝟋(t, s2, x(t2))− y(t) ≤ (Tx)(t)− y(t) ≤ |(Tx)(t)− y(t)| ≤ d(y, Tx)
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which using (3.3) reduces to

(3.9) ℏ(t, s2) +𝟋(t, s2, x(t2))− y(t) ≤ λd(x, y), ∀ t ∈ Z.

Note that

λd(x, y) = sup
t∈Z

|λx(t)− λy(t)| .

As ϵ > 0 be given arbitrarily, there exists tϵ ∈ Z such that

λd(x, y) < ϵ+ |λx(tϵ)− λy(tϵ)| = ϵ+ λ|x(tϵ)− y(tϵ)|.

Denote δ = δ(ϵ) := |x(tϵ)− y(tϵ)|. Then the last inequality becomes

λd(x, y) < ϵ+ λδ.

Hence, the inequalities (3.8) and (3.9) becomes, respectively

−ℏ(t, s1)−𝟋(t, s1, x(t1)) + y(t) < 2ϵ+ λδ, ∀ t ∈ Z

and

ℏ(t, s2) +𝟋(t, s2, x(t2))− y(t) < ϵ+ λδ, ∀ t ∈ Z.
Thus, the two inequalities represented by (3.2) holds for α = x and β = y. Conse-
quently, by assumption (∗), there exists k ∈ (0, 1) verifying k < λ such that for all
t ∈ Z and for all p, q ∈ R, we have

(3.10) |𝟋(t, s1, p)−𝟋(t, s1, q)| ≤ k|p− q|.

and

(3.11) |𝟋(t, s2, p)−𝟋(t, s2, q)| ≤ k|p− q|.

Using (3.4), (3.7) and (3.10), it follows that

(Tx)(t)− (Ty)(t) < 𝟋(t, s1, x(t1))−𝟋(t, s1, y(t1)) + ϵ

≤ |𝟋(t, s1, x(t1))−𝟋(t, s1, y(t1))|+ ϵ

≤ k|x(t1)− y(t1)|+ ϵ

≤ kd(x, y) + ϵ.

so that

(3.12) (Tx)(t)− (Ty)(t) < kd(x, y) + ϵ.

Now, from (3.5), (3.6) and (3.10), we get

(Tx)(t)− (Ty)(t) > 𝟋(t, s2, x(t2))−𝟋(t, s2, y(t2)))− ϵ

≥ − |𝟋(t, s2, x(t2))−𝟋(t, s2, y(t2)))| − ϵ

≥ −k|x(t2)− y(t2)| − ϵ

≥ −kd(x, y)− ϵ

so that

(3.13) (Tx)(t)− (Ty)(t) > −kd(x, y)− ϵ.

Combining the inequalities (3.12) and (3.13), we conclude that

(3.14) |(Tx)(t)− (Ty)(t)| < kd(x, y) + ϵ,
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which, by taking supremum over t ∈ Z on both the sides, reduces to

(3.15) d(Tx, Ty) < kd(x, y) + ϵ.

As ϵ > 0 is taken arbitrary, we conclude immediately that

d(Tx, Ty) ≤ kd(x, y).

It follows that the operator T is an inevitable contraction. Consequently, by Theo-
rem 2.3, T has a fixed point, say x̄ ∈ B(Z) and hence x̄ forms a bounded solution
of the functional equation (3.1). □

4. Conclusion

In his paper, Popescu [5] imposed a conjecture that weather Theorem 2.3 is
still valid in the case where k = λ instead of k < λ. A negative answer to this
conjecture was given by Suzuki [12]. One more conjecture was raised in [5] regarding
well-posedness of a fixed point problem for (1, k)-inevitable contraction, which was
answered affirmatively by Khojasteh [3].

Indeed, the inevitable contraction condition in its right hand side contains the
inequality d(Tx, Ty) ≤ kd(x, y), which by definition are required to satisfy merely
for those pair of elements x, y that verify the inequality d(y, Tx) ≤ λd(y, x) as
implied by left hand side. Due to natural behaviour of d(Tx, Ty) ≤ kd(x, y),
we are able to obtain further generalizations of inevitable contractions adopting
the idea involved in the quasi-contractions, Boyd-Wong’s φ-contractions, Matkowski’s
φ-contractions, weak ψ-contractions, (ϕ, ψ)-contractions, F -contractions, shifting
distance admissible contractions, Z-contractions, Meir-Keeler Contractions, CJM-
Contractions, implicit contractions, etc.

In this article, we applied Theorem 2.3 to investigate a bounded solution of certain
functional equations associated with dynamic programming. For further aspects of
applicability, our result (and possible similar future results) can also be utilized to
the domains of linear positive approximation operators, difference equations with
deviating argument and functional-integral equations on the lines of Rus [10], which
remains a very important and applicable area on its own.
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