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wavelet-based method, Zahra et al. [21] applied cubic B-spline collocation method,
Patade and Bhalekar [15] applied iterative method, Jassim [10] opted combination
of homotopy perturbation and Laplace transform method, Prakash and Kumar [16]
solved the NWS equation using He ’s Variational iteration method, Akinlabi and
Edekiwhich [2] applied a combination of Perturbation Iteration Algorithm and con-
ventional Laplace Transform Method to solve this equation, Hilal et al. [9] presented
two different approaches to solve NWS equation. One is implicit exponential finite
difference method and the other is fully implicit exponential finite difference method
and many more.

The paper is organized as: The improvised cubic B-spline collocation method is
derived in Section 2. The proposed ICSCM and Crank-Nicolson scheme is imple-
mented to the NWS equation in Section 3. In Section 4, a stability analysis of the
technique is carried out and is shown to be stable. Convergence analysis of the tech-
nique is established in Section 5 and is shown to be fourth-order convergent in the
space domain and second-order convergent in the time direction. Relevant examples
are solved in Section 6, to illustrate the performance of the proposed technique. In
Section 7, the conclusion part of the paper is discussed.

2. Improvised cubic B-spline collocation method

The improvised cubic B-spline collocation method is formed by making posteriori
corrections to the cubic B-spline interpolant. With these corrections, better results
are obtained as compared to the standard B-spline collocation method.

2.1. Properties of cubic B-splines. Uniform partition of the space domain Πx ≡
{xL = x0 < x1 < · · · < xN−1 < xN = xR} with the nodal points xk = xL +
kh, j = 0, 1, . . . , N and spatial step size h = (xR − xL)/N is taken. According
to the behaviour of cubic B-splines, each cubic B-spline cover four elements of the
domain and each finite element [xj , xj+1] is occupied by four spline functions. So,
for calculations four more nodal points are required outside the interval [xL, xR],
which are positioned as x−2 < x−1 < x0 and xN < xN+1 < xN+2. The introduction
to cubic B-spline functions were given by Prenter [17] as follows:

Sj,3(x) =
1

h3
(2.1) 

(x− xj−2)
3, x ∈ [xj−2, xj−1]

h3 + 3h2(x− xj−1) + 3h(x− xj−1)
2 − 3(x− xj−1)

3, x ∈ [xj−1, xj ]

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3, x ∈ [xj , xj+1]

(xj+2 − x)3, x ∈ [xj+1, xj+2]

0, Otherwise.

This collection of cubic B-splines Sj,3(x) = {S−1(x), S0(x), . . . , SN+1(x)} forms
the basis function for the subspace X of C2[xL, xR]. Let z(x, t) be the cubic B-
spline approximate solution corresponding to the exact solution w(x, t), then it can
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be expressed as follows:

(2.2) z(x, t) =
N+1∑
j=−1

δj(t)Sj(x),

where δj(t)’s are the time dependent unknown quantities to be determined.

2.2. Posteriori correction in second-order derivative of cubic B-spline in-
terpolant. Assume that the cubic B-spline interpolant satisfies the following con-
ditions:

(I) the interpolatory condition, for j = 0, 1, . . . , N :

(2.3) z(xj , t) = w(xj , t),

(II) at end nodal points, for j = 0 and N :

(2.4) zxx(xj , t) = wxx(xj , t)−
h2

12
wxxxx(xj , t).

Theorem 2.1. The following relations hold for the cubic B-spline interpolant (CSI)
z(x,t) of w(x,t), where w(x,t) is sufficiently smooth function in spatial domain and
satisfy Eqs. (2.3) and (2.4), for j = 0, 1, . . . , N :

(2.5) zxx(xj , t) = wxx(xj , t)−
h2

12
wxxxx(xj , t) +O(h4),

(2.6) zx(xj , t) = wx(xj , t) +O(h4).

In addition,

(2.7) ∥ w(k) − z(k) ∥∞= O(h4−k), k = 0, 1, 2,

where w(k) and z(k) represents kth derivative w.r.t ‘x’.

Proof. Given in [11]. □

Lemma 2.2. For w(x,t) ∈ C6[xL, xR], the following relations hold:

wxxxx(x0, t) =
1

h2
[2zxx(x0, t)− 5zxx(x1, t) + 4zxx(x2, t)− zxx(x3, t)] +O(h2),

wxxxx(xj , t) =
1

h2
[zxx(xj−1, t)− 2zxx(xj , t) + zxx(xj+1, t)] +O(h2),

j = 1, 2, . . . , N − 1,

wxxxx(xN , t) =
1

h2
[2zxx(xN , t)− 5zxx(xN−1, t) + 4zxx(xN−2, t)− zxx(xN−3, t)]

+O(h2).

Proof. The above mentioned relations can be proved by finite differences and Taylors
expansion. □

Corollary 2.3. For w(x,t) ∈ C6[xL, xR], the following relations hold:

wx(xj , t) = zx(xk, t) +O(h4), j = 0, 1, . . . , N,
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wxx(x0, t) =
1

12
[14zxx(x0, t)− 5zxx(x1, t) + 4zxx(x2, t)− zxx(x3, t)] +O(h4),

wxx(xj , t) =
1

12
[zxx(xj−1, t) + 10zxx(xj , t) + zxx(xj+1, t)] +O(h4),

j = 1, 2, . . . , N − 1,

wxx(xN , t) =
1

12
[14zxx(xN , t)− 5zxx(xN−1, t) + 4zxx(xN−2, t)− zxx(xN−3, t)]

+O(h4).

3. Implementation of proposed technique

For the implementation of the technique, take uniform partitioning of the time
domain Πt ≡ {0 = t0 < t1 < · · · < tn < tn+1 < · · · < T}, with tn+1 = tn +∆t, for
n = 0, 1, . . . , where ∆t is the temporal step size.

Applying Crank-Nicolson scheme to discretize Eq. (1.2):

(3.1)
wn+1 − wn

∆t
= k

[
wn+1
xx + wn

xx

2

]
+ a

[
wn+1 + wn

2

]
− b

[
(wp)n+1 + (wp)n

2

]
.

Apply the Quasilinearization process to linearize the nonlinear terms, which was
proposed by [3] as follows:

(3.2) (wp)n+1 = (wp)n + (wn+1 − wn)p(wp−1)n.

Substituting the above expression and combine the terms at (n + 1)th and nth

time levels:

(3.3)

[
1

∆t
− a

2
+

bp

2
(wp−1)n

]
wn+1 − k

2
wn+1
xx =

[
1

∆t
+

a

2

]
wn +

k

2
wn
xx

− b

2
(2− p)(wp)n.

At any ‘jth’ nodal point, the above equation can be written as:

(3.4) Ajw
n+1
j +B(wxx)

n+1
j = Dj ,

where

Aj =
1

∆t
− a

2
+

bp

2
(zp−1

j )n, B = −k

2
and(3.5)

Dj =

[
1

∆t
+

a

2

]
wn
j +

k

2
(wxx)

n
j − b

2
(2− p)(wp)nj .

Substitute the calculated improvised cubic B-spline values of w and wxx in Eq.
(3.4):

For j = 0:

A0(δ
n+1
−1 + 4δn+1

0 + δn+1
1 ) +

B

2h2
(14δn+1

−1 − 33δn+1
0 + 28δn+1

1

− 14δn+1
2 + 6δn+1

3 − δn+1
4 ) = D0 +O(h4).
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For j = 1, 2, . . . , N − 1:

Aj(δ
n+1
j−1 +4δn+1

j +δn+1
j+1 )+

B

2h2
(δn+1

j−2 +8δn+1
j−1 −18δn+1

j +8δn+1
j+1 +δn+1

j+2 ) = Dj+O(h4).

For j = N :

AN (δn+1
N−1 + 4δn+1

N + δn+1
N+1)

+
B

2h2
(−δn+1

N−4 + 6δn+1
N−3 − 14δn+1

N−2 + 28δn+1
N−1 − 33δn+1

N + 14δn+1
N+1)

= DN +O(h4).

Clubbing up the coefficients of δn+1
j ’s, the following equations are obtained:

For j = 0:(
A0 +

7B

h2

)
δn+1
−1 +

(
4A0 −

33B

2h2

)
δn+1
0 +

(
A0 +

14B

h2

)
δn+1
1 − 7B

h2
δn+1
2

+
3B

h2
δn+1
3 − B

2h2
δn+1
4 = D0 +O(h4),

(3.6) p0δ
n+1
−1 + q0δ

n+1
0 + r0δ

n+1
1 + s0δ

n+1
2 + v0δ

n+1
3 + y0δ

n+1
4 = D0 +O(h4).

For j = 1, 2, . . . , N − 1:

B

2h2
δn+1
j−2 +

(
Aj +

4B

h2

)
δn+1
j−1 +

(
4Aj −

9B

h2

)
δn+1
j

+

(
Aj +

4B

h2

)
δn+1
j+1 +

B

2h2
δn+1
j+2 = Dj +O(h4),

(3.7) pjδ
n+1
j−2 + qjδ

n+1
j−1 + rjδ

n+1
j + sjδ

n+1
j+1 + vjδ

n+1
j+2 = Dj +O(h4).

For j = N :

− B

2h2
δn+1
N−4 +

3B

h2
δn+1
N−3 −

7B

h2
δn+1
N−2 +

(
AN +

14B

h2

)
δn+1
N−1

+

(
4AN − 33B

2h2

)
δn+1
N +

(
AN +

7B

h2

)
δn+1
N+1 = DN +O(h4),

(3.8) pNδn+1
N−4 + qNδn+1

N−3 + rNδn+1
N−2 + sNδn+1

N−1 + vNδn+1
N + yNδn+1

N+1 = DN +O(h4).

A system of (N + 1) differential equations is obtained in (N + 3) unknowns. To
deal with the two remaining unknowns, the boundary conditions given by Eq. (1.4)
are used. Collection of all the equations can be represented as follows:

(3.9) PC = Q
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where P is (N +3)× (N +3) matrix, C and Q are (N +3)× 1 column vectors given
below:



1 4 1 0 0 0 0 . . . 0
p0 q0 r0 s0 v0 y0 0 . . . 0
p1 q1 r1 s1 v1 0 0 . . . 0
0 p2 q2 r2 s2 v2 0 . . . 0
0 0 p3 q3 r3 s3 v3 . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 . . . pN−3 qN−3 rN−3 sN−3 vN−3 0 0
0 . . . 0 pN−2 qN−2 rN−2 sN−2 vN−2 0
0 . . . 0 0 pN−1 qN−1 rN−1 sN−1 vN−1

0 . . . 0 pN qN rN sN vN yN
0 . . . 0 0 0 0 1 4 1





δn+1
−1

δn+1
0

δn+1
1

δn+1
2

δn+1
3
.
.

δn+1
N−3

δn+1
N−2

δn+1
N−1

δn+1
N

δn+1
N+1



=



f1[(n+ 1)∆t]
D0

D1

D2

D3

.

.
DN−3

DN−2

DN−1

DN

f2[(n+ 1)∆t]



3.1. Initial Condition: To find the value of δ0 which is required to find the so-
lution at the next time levels, the initial condition (1.3) is used at every nodal
point i.e., w(xj , t0) = G(xj). Two more conditions wx(x0, t0) = Gx(x0) and
wx(xN , t0) = Gx(xN ) are used. By using these equations following system is ob-
tained. 

−3
h 0 3

h 0 0 0 0 . . . 0
1 4 1 0 0 0 0 . . . 0
0 1 4 1 0 0 0 . . . 0
0 0 1 4 1 0 0 . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 . . . 0 0 1 4 1 0 0
0 . . . 0 0 0 1 4 1 0
0 . . . 0 0 0 0 1 4 1
0 . . . 0 0 0 0 −3

h 0 3
h





δ0−1

δ00
δ01
δ02
.
.

δ0N−2
δ0N−1
δ0N
δ0N+1


=



Gx(x0)
G(x0)
G(x1)
G(x2)

.

.
G(xN−2)
G(xN−1)
G(xN )
Gx(xN )


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4. Stability analysis

Von-Neumann method is applied to discuss the stability analysis of the proposed
improvised collocation technique. Substitute w as a local constant l = max (w) to
linearize the nonlinear term in the equation (1.2) and then apply the Crank-Nicolson
scheme to discretize the temporal domain:

(4.1)
wn+1
j − wn

j

∆t
= k

[
(wxx)

n+1
j + (wxx)

n
j

2

]
+ (a− bl(p−1))

[
wn+1
j + wn

j

2

]
.

Combining the (n+ 1)th and nth time level terms:

(4.2)

[
1

∆t
− (a− bl(p−1))

2

]
wn+1
j − k

2
(wxx)

n+1
j =

[
1

∆t
+
(a− bl(p−1))

2

]
wn
j +

k

2
(wxx)

n
j .

For simplification, write above equation as follows:

(4.3) f wn+1
j − k

2
(wxx)

n+1
j = g wn

j +
k

2
(wxx)

n
j .

where

(4.4) f =
1

∆t
− (a− bl(p−1))

2
, g =

1

∆t
+

(a− bl(p−1))

2
.

Using improvised cubic B-splines, substitute the values of w and wxx:

f(δn+1
j−1 + 4δn+1

j + δn+1
j+1 )−

k

4h2
(δn+1

j−2 + 8δn+1
j−1 − 18δn+1

j + 8δn+1
j+1 + δn+1

j+2 )

= g(δnj−1 + 4δnj + δnj+1) +
k

4h2
(δnj−2 + 8δnj−1 − 18δnj + 8δnj+1 + δnj+2).

(4.5)

Simplifying Eq. (4.5) yields:

(4.6)

− k

4h2
δn+1
j−2 +

(
f − 2k

h2

)
δn+1
j−1

+

(
4f +

9k

2h2

)
δn+1
j +

(
f − 2k

h2

)
δn+1
j+1 − k

4h2
δn+1
j+2

=
k

4h2
δnj−2 +

(
g +

2k

h2

)
δnj−1 +

(
4g − 9k

2h2

)
δnj

+

(
g +

2k

h2

)
δnj+1 +

k

4h2
δnj+2.

Above equation can be written as follows:

a1δ
n+1
j−2+a2δ

n+1
j−1+a3δ

n+1
j +a2δ

n+1
j+1+a1δ

n+1
j+2 = −a1δ

n
j−2+a4δ

n
j−1+a5δ

n
j +a4δ

n
j+1−a1δ

n
j+2,

where

a1 = − k

4h2
, a2 = f − 2k

h2
, a3 = 4f +

9k

2h2
, a4 = g +

2k

h2
, a5 = 4g − 9k

2h2
.
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Put δnj = Aαnexp(ijσh), where A is the amplitude, i =
√
−1, h is the spatial

step length and σ is a mode number, we get:

α =
−a1exp(−2iσh) + a4exp(−iσh) + a5 + a4exp(iσh)− a1exp(2iσh)

a1exp(−2iσh) + a2exp(−iσh) + a3 + a2exp(iσh) + a1exp(2iσh)
,

=
−2a1cos(2σh) + a5 + 2a4cos(σh)

2a1cos(2σh) + a3 + 2a2cos(σh)
,

=
X1

X2
,

where

X1 = −2a1cos(2σh) + a5 + 2a4cos(σh),

X2 = 2a1cos(2σh) + a3 + 2a2cos(σh.

It can be easily observed that |α| ≤ 1, i.e., X2
1 ≤ X2

2 . Hence the technique is
unconditionally stable.

5. Convergence analysis

Green’s function approach is followed to establish the convergence analysis which
is based on the work of [4, 6, 7] etc.

Take Eq. (1.2) in the following operator form:

(5.1) T ≡ kwxx − wt + aw −Ψ(x, t, w),

with the boundary conditions as:

(5.2) Bw = Φj , j = 0, N,

where Ψ(x, t, w) = wp. Take T̂ and B̂ to be the perturbed form of the operators
T and B respectively. Then the following relations hold between above defined
operators for the CSI z(x, t).

(5.3)

T̂zj(t) ≡ T(zj(t), (zx)j(t), (zxx)j(t)

+
1

12
[(zxx)j−1(t)− 2(zxx)j(t) + (zxx)j+1(t)]), j = 1, 2, . . . , N − 1,

T̂z0(t) ≡ T(z0(t), (zx)0(t), (zxx)0(t)

+
1

12
[2(zxx)0(t)− 5(zxx)1(t) + 4(zxx)2(t)− (zxx)3(t)]),

T̂zN (t) ≡ T(zN (t), (zx)N (t), (zxx)N (t)

+
1

12
[2(zxx)N (t)− 5(zxx)N−1(t) + 4(zxx)N−2(t)− (zxx)N−3(t)]),

B̂zj(t) = Bzj(t), j = 0, N.

Lemma 5.1. The following relations hold at the nodal points, for the unique CSI
z(x, t) of w(x, t), where w(x, t) ∈ C6[xL, xR],

T̂zj(t) = O(h4), j = 0, 1, . . . , N, B̂zj(t) = O(h4), j = 0, N.(5.4)
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Let ẑ(x, t) be the unique CSI of w(x, t) such that,

T̂ẑj(t) = 0, j = 0, 1, . . . , N, B̂ẑj(t) = 0, j = 0, N.(5.5)

Lemma 5.2. The coefficient matrix corresponding to the problem wxx = σ(x, t)
having homogenous boundary conditions is invertible with finite norm of inverse
matrix.

Proof. The coefficient matrix M of the problem wxx = σ(x, t) is given below:

M =
1

12



14 −5 4 −1 0 . . . 0
1 10 1 0 0 . . . 0
0 1 10 1 0 . . . 0
. . . . . . . . .
. . . . . . . . .
0 . . . 0 1 10 1 0
0 . . . 0 0 1 10 1
0 . . . 0 −1 4 15 14


The above coefficient matrix is diagonally dominant and so is invertible.

∥M−1∥∞ ≤ max
0≤j≤N

1

∆jM
, where ∆jM =| Mjj | −

∑
k ̸=j

| Mjk |> 0, j = 0, 1, . . . , N.

So,

∥M−1∥∞ ≤ 1

min0≤j≤N ∆j(M)
=

12

14− (5 + 4 + 1)
= 3.

According to Russell and Shampine [19], if the equation w(2) = 0 with the bound-
ary conditions B(w) = 0 is uniquely solvable then there exists a Green’s function

G(x, t) corresponding to given problem. Let w(2) = û and ẑ(2) = ŷ such that û and
y satisfies the B.C’s. Then using Green’s function w and ẑ can be expressed as
follows:

(5.6) w(k)(x, t) =

∫ xR

xL

∂kG(x, t, s)
∂xk

û(s, t)ds, k = 0, 1,

(5.7) ẑ(k)(x, t) =

∫ xR

xL

∂kG(x, t, s)
∂xk

ŷ(s, t)ds, k = 0, 1.

Let Ω = [xL, xR] × [0, T ] and ρ be any continuous function. Operators required
to establish the convergence analysis are defined below.

(5.8) R : C(Ω) −→ C(Ω) such that Rρ =
1

k
[G0ρt − aG0ρ+Ψ(x, t,G0ρ)] ,

where G0ρ =
∫ xR

xL

G(x,t,s)
ρ (s, t)ds, is the operator from Ω onto Ω. Let P be the

unique piecewise linear interpolation operator at the nodal points {(xj , t)}Nj=0. Next
projection operator is defined as follows:

(5.9) Q : C(Ω) −→ Rn+1 such that Qρ = [ρ(x0, t), ρ(x1, t), . . . , ρ(xN , t)]T .

Using the definition of above operator Eqs. (1.2) and (5.5) can be written as:

(5.10) (I −R)û = 0.
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(5.11) (MQ−R)ŷ = 0.

As the matrix M is invertible, so

(5.12) (Q−M−1R)ŷ = 0.

As ŷ is a linear polynomial, so PQŷ = ŷ,

(5.13) (I − PM−1R)ŷ = 0.

□

Lemma 5.3. For the equally spaced partitioning Πx of [xL, xR] and any continuous
function ρ, ∥ PM−1Rρ−Rρ ∥∞→ 0 as h → 0.

Proof.

∥ PM−1Rρ−Rρ ∥∞ ≤∥ PM−1Rρ− PQRρ ∥∞ + ∥ PQRρ−Rρ ∥∞
≤∥ P ∥∞∥ M−1 ∥∞∥ Rρ−MQRρ ∥∞ + ∥ PQRρ−Rρ ∥∞
≤∥ Rρ−MQRρ ∥∞ +O(h2).

(As ∥ M−1 ∥∞ is finite and ∥ P ∥∞= 1). By the modulus of continuity of functions
ρ and Green’s function G over a width of 6h, the term ∥ Rρ −MQRρ ∥∞ can be
dominated. So ∥ PM−1Rρ−Rρ ∥∞→ 0 as h → 0. □

Theorem 5.4 ([5]). Consider the curve C = (x, t, w) ∈ R4, (x, t) ∈ Ω̄ and let w(x, .) ∈
C6[xL, xR] be the solution of the problem (1.2) with boundary condition (1.4), Ψ(x, t, U)
be sufficiently smooth function near w and the following linear problem

(5.14) wxx −
d

dU

1

k
[Ut − aU +Ψ(x, t, U)]w = 0,

with the boundary conditions (1.4) is uniquely solvable and possesses Green’s func-
tion G(x, t, s). Then, there exist constants β, γ > 0 such that

(I) there does not exists any other solution ŵ corresponding to the problem (1.2)
with B.C (1.4) satisfying ∥ wxx − ŵxx ∥< γ.

(II) For h < β the Eq. (5.13) has a unique solution z(x, .) ∈ Sj,3(Πx) in the
same neighbourhood of w.

(III) Newton’s method converges quadratically in some neighborhood of w for h <
β which is used for numerically solving the Eq. (5.13).

Theorem 5.5. Suppose the assumptions of Theorem 5.4 hold, then the following
error bounds exists:

The global error bounds:

∥ (w(k)(x, .)− ẑ(k)(x, .) ∥∞ = O(h4−k), k = 0, 1, 2.

The local error bounds:

| w(k)(x, .)− ẑ(k)(x, .) |xj = O(h4), k = 0, 1.

| (w(2)(x, .)− ẑ(2)(x, .) |xj = O(h2).
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Proof. Consider the problem z(2) = α̂, Bz = O(h4). By Theorem 5.4, there exists
a linear polynomial ū, such that

(5.15) Bū = Bz = O(h4), ∥ ū(k) ∥∞= O(h4), k = 0, 1.

As (z − ū)(2) = α̂, B(z − ū) = 0 is uniquely solvable. Therefore by Theorem 5.4,

(5.16) (I − PM−1R)(z(2) − ū(2)) = O(h4).

Subtracting Eq. (5.13) from Eq. (5.16),

(5.17) (I − PM−1R)(z(2) − ū(2) − ẑ(2)) = O(h4).

As (I − PM−1R) is bounded, therefore

(5.18) ∥ z(2) − ū(2) − ẑ(2) ∥∞= O(h4).

By Theorem 5.4, the problem (z − ū − ẑ)(2) = η̄, B(z − ū − ẑ) = 0 is uniquely
solvable, so there exists a Green’s function such that,

| (z − ū− ẑ)(k) |=
∫ xR

xL

∂kG(x, t, s)
∂xk

(z(2) − ū(2) − ẑ(2))ds, k = 0, 1.

Thus,

∥ (z − ū− ẑ)(k) ∥∞= O(h4), k = 0, 1.

So,

(5.19) ∥ (z − ẑ)(k) ∥∞≤∥ (z − ū− ẑ)(k) ∥∞ + ∥ ū(k) ∥∞= O(h4), k = 0, 1, 2.

Using Theorem 2.1, Eq. (5.19) and triangular inequality,

∥ (w − ẑ)(k) ∥∞≤∥ (w − z)(k) ∥∞ + ∥ (z − ẑ)(k) ∥∞= O(h4−k) fork = 0, 1, 2.

Using Theorem 2.1, local error bounds can be obtained, which completes the
proof. Therefore, the proposed technique is fourth-order convergent in space direc-
tion. As the Crank-Nicolson scheme is used to discretize the time direction which
is second-order convergent in time [13], hence the order of convergence of ICSCM
is O(h4 +∆t2). □

6. Numerical examples

Several examples of the Newell-Whitehead-Segel equation are solved in this sec-
tion to demonstrate the applicability and good performance of the proposed tech-
nique. L∞ and L2 error norms are calculated using the following formulas:

(6.1) L∞ = max
0≤j≤N

|wexact
j − wnum

j |, L2 =

√√√√h

N∑
j=0

(wexact
j − wnum

j )2,

where wexact
j and wnum

j are the exact and improvised cubic B-spline solutions re-
spectively at the nodal point ‘xj ’ for some fixed time.

Example 1. Consider the following NWS equation [9]:

(6.2) wt = wxx + w − w4, (x, t) ∈ [0, 1]× [0, T ],
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Figure 1. Solutions of Example 1 with N = 100 and ∆t = 0.01.

with the exact solution:

(6.3) w(x, t) =

[
1

2
+

1

2
tanh

{
− 3

2
√
10

(
x− 7t√

10

)}] 2
3

.

Table 1 gives the comparison of L∞ and L2 error norms. The comparison shows
that the results are better than the implicit exponential finite difference (I-EFD)
method [9] and fully implicit exponential finite difference (FI-EFD) method [9].
Figure 1(a) gives the comparison of the numerical and exact solution with N = 100
and ∆t = 0.01 at different time levels. Figure 1(b) represents the 3-D profile of the
numerical solution.

Table 1. Comparison of L∞ and L2 error norms of Example 1 for
h = 0.05 and ∆t = 0.001 at different time levels.

Example 2. Consider the following NWS equation [9]:

(6.4) wt = wxx + 3w − 4w3, (x, t) ∈ [0, 1]× [0, T ],

with the exact solution:

(6.5) w(x, t) =

√
3

4

exp(
√
6x)

exp(
√
6x) + exp(

√
6x
2 − 9t

2 )
.

In Table 2, a comparison of L∞ and L2 error norms with I-EFD and FI-EFD is
reported with h = 0.05 and ∆t = 0.001 at different time levels.It is clear from the
table that the error decreases with the increase in time. In Figure 2(a), a comparison
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Figure 2. Solutions of Example 2 with N = 100 and ∆t = 0.01.

of the numerical and exact solution with N = 100 and ∆t = 0.01 at different time
levels is represented and Figure 2(b) gives the 3-D profile of the numerical solution.

7. Conclusion

In this work, the improvised cubic B-spline collocation method has been suc-
cessfully applied to solve the nonlinear Newell-Whitehead-Segel equation. This
technique is found to be unconditionally stable. The proposed combination of tech-
niques is shown to be fourth-order convergent in the space domain and second-order
convergent in the time domain. Results in terms of accuracy have been observed
to be better than many existing techniques. The numerical results are in good
agreement with the exact values, which is shown graphically.
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