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SOLVABILITY OF A NEW FRACTIONAL DIFFERENTIAL
EQUATION IN HOLDER SPACE BY MEASURES OF
NONCOMPACTNESS

HOJJATOLLAH AMIRI KAYVANLOO AND MOHAMMAD MURSALEEN*

ABSTRACT. We define a new fractional differential equation of order n with
boundary value problem and prove the existence of solutions in the Hélder func-
tion space with Lipschitz condition

Dw(€) =[f(§), 0<E<E, E>1,

w(0) = w'(0) = w®™(0) =w®(0) = =w™(0) =0,

w"(B) = w"(0) = w"(n), w® (1) = w® (1), w"(0) = fuw(n), BER, ne(0,1).
We apply the technique of measures of noncompactness and Darbo’s fixed point
theorem, also we present one illustrative example in support of main results.

1. INTRODUCTION

Fractional calculus, is active field of mathematics analysis is as old as the classical
calculus and occur in many scientific disciplines as the mathematical modeling of
systems in the fields of biology, economy, engineering and many other fields ( [1,6,
12,13, 16]).

Measure of noncompactness (MNC) ([8,11,18]) plays an outstanding pattern in
nonlinear functional analysis. Recently, researchers studied the issues of existence
of solutions of integral equations in various spaces [2,3,10,19,24,26] . The problems
for solving infinite systems of differential and fractional differential equations in
sequence spaces have been addressed in [4,14,15,20-23].

In this work we define a new MNC in the Holder space H1([0, E]), then we
define the new fractional differential equation with boundary value problem and we
study the existence of solutions of new fractional equation in #; ([0, E]) by using
Darbo’s fixed point theorem via MNC. Then, we present one example to show the
performance of main results.

Let A be a real Banach space, and () # £ C A. Then
£ the closure of £ and Convg closed convex hull.

D(v,0) is a closed ball in A.

NMa C A is the family of relatively compact.
M C A is the family of bounded.

Definition 1.1 ([7]). The mapping p : My — Ry is a measure of noncompactness
(MNC) in A if for any W, Q € Mt we have:

(1) MA Dkerpp={W e My : u(W) =0} #0.
2020 Mathematics Subject Classification. 47TH10, 47THO8, 34A08, 26A33.
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@) TEWCQ = uW) < uQ).
(3) W) = u(W) = p(ConvW).

(4) pIW+ (1 =X1)Q) < Au(W) + (1 — N)u(Q) for each X € [0, 1].

(5) If for each n € N, W,, = W,, € Mp, Wyq C W, If nh—>HoloM<W”) =0, =

0 # Woo = () Wh.
n=1

Theorem 1.2 ([11]). Let ) # U = U C A be convez, bounded and G : 5 — U be a

continuous function and 3 a constant £ € [0,1) so that
w(GS) < u(S),

for any 0 # 3 C U. Then G has a fized point in the set U.

2. HOLDER SPACE H;([a,b])

In this part, we present a (MNC) in the Holder space Hi([a,b]) (satisfying the
Lipschitz condition). In what follows, this space will be denoted by Lip(M). Ob-
serve that H;([a,b]) is Banach space by following norm

|w(€1) — w(&2)
€1 — &

Remark 2.1. The § # D C H1([a,b]) is bounded if

wlip = (@) +sup { GG elob], G £ 6]

sup{|w|rip : w € D} < oo.
Theorem 2.2 ([9]). Suppose that D C H([a,b]) be bounded so that for every e >0
3490 >0, we get

lw(&1) — w(a)] <
&1 — & -7

for every w € D and &1,& € [a,b]. Then D is relatively compact in Hi([a,b]).

0<[&1—&l<i=>

Suppose W € My, ((a,))- For w € W and € > 0, define

l(w,2) = sup { 'w(fg - Z(f”' ebelol, bAG, [0 -6&<ch
u(W,e) = sup{p(w,e), w e W},
and
(2.1) p(W) = lmpu(W. ).

Theorem 2.3. The function p: My (ap) — Ry given by (2.1), fulfils the hypoth-
esis 1° — 5° of Definition 1.1.

Proof. Its proof is similar to [5] and [9]. O
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3. NEwW CLASS OF n-ORDER FDE wiTH BVP

In this section, we define the new class of fractional deferential equation of order
7€ (n—1,n], (n > 5) with boundary value problems as following:

cDiw(€) = f(€), 0<E< B, BE>1,

w(0) = w'(0) = w®(0) = w®(0) = -+ = w™(0) =0,
w’(E) — w”(0) = w"(n), w® (1) = w® (1), w’(0) = fw(n),
B eR, ne(0,1).

(3.1)

Definition 3.1 ([25]). The fractional integral of order j is

s L[5 fp)
LI =5 |, e 00

Definition 3.2 ([25]). Let f : [0,00) — R, then Caputo fractional derivative of

order 3 > 0 is
c 1 A1)
DIO =15 ), T

where n = [j] + 1.

Lemma 3.3 ([17]). Let w € C([0,00)) N L*([0,00)) with the Caputo fractional
derivative of order 7 that belongs to C([0,00)) N L1([0,00)). So

D DMw(€) = w(€) + e1 + cob + a8 + -+ el
where ¢; € R, i =1,2,...,n and n = [)].

Lemma 3.4. Let f € [1([0,00)) be continuous function andn—1 < 3 <n, (n >5).
Then the BVP problem of fractional differential equation

‘D’w(€) = f(6), 0SE<E, E>1,

w(0) = w'(0) = w®(0) = w®(0) = - = w"(0) = 0,

w"(E) —w"(0) = w"(n), w® (1) =w®(1), w(0)=pw(n), BeR, ne(0,1).
has a unique solution

_ [fE—er! B [ ["n—py
w©) = [ g —reyo+ 57 W( | e —roe

A ) a-py
+ 6</0 Wf(@)d@ —/0 Wf(@)d@

' PE-p)? " (n— )y
*omnm (), Ty e [ e e

v [ G oo [ Wf(p)dp)))

gt a—p’?® -t
+ 6(/0 mf(@)dp —/0 mf(@)d@
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4 E - -2 n _ _4
+2477—£12E2< /0 Ly / 9P~ o)

I'(p—-1) o T(G=3)
11 _ \j—5 17 \y—4
e (O %J’(p)d@))-

Proof. By Lemma 3.3, the equation (3.1) is equivalent to the integral form

w(&) = I"f(€) +e1 + o€ + c3€% + ca® + -+ cpa €,

for some ¢; € R, 1 =1,2,3,4,...,n+ 1.
By the boundary value conditions for (3.1), we find that

co=cp=cg=cCr ="+ =cCpy1 =0,
and
§ (e _ )1
(3.2) w(€) = /0 « r(i; F(p)dp + c3€? + cal® + esE™.
So we get

13 o —2

w©) = [ S oo+ 2ea 4 3 + s
3 _ -3

w”’(§) = /0 Mf(p)dp+203+6045+1205§2,

13 _ —4
wl”(f) _ /0 Mf(p)d{p + 6cq + 24c58,

w®©) = [T e,

Applying, w® (1) = w"(1) we get

P —p)y? [ty
/0 W]ﬁ(@)d@ + 24c5 = /0 mf(p)dp + 6¢4 + 24c5
which imply that
et [
6y = /O T —1) e /0 3 | ©)1de

Consequently,

Lo [fa—pp® et
Cq = 6(/0 Wf(@)d@ —/0 Wf(@ﬂ@);
By w”(E) — w”(0) = w"(n) we have

E(p_ o)y2 N (n— o)—4
/ %f(@)dp + 23 + 6c4E + 12c5E? — 2¢3 = / Mf(p)d@
0

L(p—1) o T'(1—3)
+ 6cyq + 24c5n.
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Then, we have

E(E - py? " (n— ) B
/0 T —1) fp)dp — /O ;- 3) Flp)dp + (6E — 6)cs = (241 — 12E2)cs.

Consequently,

_ 1 (B —p)? T (n—p)?
s = 2477—12E2</0 T 1) f(@)d@_/o T(;—3) flp)dp

=
11 \—4
wE-( [ G s [ Ao f(@)dp))

By w”(0) = fw(n) we have

n — )1
2c3 = ﬁ(/o (n F(@; f(p)dp + c3n? + can® + 05774),

SO we get
-1

2ot =5 [ T

) flp)dp + can® + 65774),

Consequently,
7 _ 3
C3:2—65772</o . F( / ;
101 -4 E
_/0 (;(9?)3) flp)d ) 12E (/
—/fﬁ(j@éff(@dm(lﬂ ([ 4 )) (o)do

1 _ 1—4
—/0 (;(ﬁ)g) f(p)d@)))

Substituting the value of ¢3, ¢4 and ¢ in (3.2), it yields

_ [ le—pp! B [ ["n—py !
we) = [ S5 f(@)dp+2_ W( | r
'

U Gl Vi t(— )
7' P —p)? "yt
i m( /0 NOESRAL /0 T3 (9)de
P—pp L1yt
+(E_1)</0 I'(;—4) f(@)dp_/o T(—3) f(@)d@))

Erta-—py ta-py
+6</0 NPy f(@)d@—/o TG —3) f(p)dp)
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¢ F(E—p)? " (n—p)
" oay - 122 (/0 r(j_gf@)d@—/o ;3 e

11 _ ,\J—5 19 _y—4
+(E—1)(/0 (;(] ?)1) f(p)dzp—/o (IF(] @;) f(@)d@))

4. APPLICATION

Now, we study the solvability of E.q (3.1) in #H;([0,E]) and we present one
example to performance main results.
(A1) The function f : [0, F] x R — R is continuous and 3 increasing functions
¥ : [0,E] — [0,400) so that ¢(p) — 0, as p — 0 and V w,v € R, p € [0,7T] the
inequality

[ (g, w) = f (g, 0)| < P(lw —vl),

is satisfied and o
N =sup{[f(p,0) : p € [0, E]} < oo.
(A2) 3 a solution 9 > 0 for the inequality

— 2Fit
(¥(r) + N)( T0) ) <.

Theorem 4.1. By conditions (Al) and (A2) the E.q (3.1) has at least one solution
in H1([0, E]).

Proof. Define F : H1([0, E]) — H1([0, E]) a

3 J— 1 2
F)© = [ ETE oo+ 52 (
1

)
+ZS3(/0 (1r< )4> fle)dp _/0 1F< ~3) f“’)dp)
*aa ([ g2y o [ g Yy s
([ S - [ S ons)
5 o [ g rom)

1 _ 7—5 1 _ 1—4
v [ G e [ Lo f(p)dp))

For any w € H1([0, E]), we show that F(w) € H1([0, E]). For this choose &2,&; €
[0, E] with & # & and & < &. By (A1), we have

(p)dgp
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I(Fw)(EQ)—(Fw)(&)‘

[€2—¢1]

1

Jo? B —f (o, w(p)dp — 5 Wf(p,w(@))d@'
= o
AL ([ 2 10wl + 5 3 U2 6wl

_ —4
g f(p,w(@))d@)‘

- & &
stz (I 2 £ oo — 7 s (vl
* €2 — &1
(B = 1)(Jy S F(o.w(9)de — [ S5 f . w(p))dp))
N (1—4) )
€2 — &1
L8y G2 o wo)an - i iy v olohds )|
* €2 — &1
24?1322@0 B2 f (o, w — e g (@)d@‘
* &2 — &1
(B~ 1)(Jy S fo.w(o))do — [y S5 £, w(p))dp)
(1—4) )
* & &

Since, & > &1 50 |€3 — &3] — 0, |€5 — & — 0 and |&5 — &1 — 0, then we get

(Po)) - (Fuen| |8 SR ol - [ ST 1o (o))
& &l = & &

By condition (A1), we obtain

I(Fw)(&)—(Fw)(&)‘
[E2—¢1]

f01(£2 K; - (51;8))]_1”%@7 (©) d@—i-f& (62— @)) lf(p, (9))dp
: &l
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o (S Sl (£(p,w(p)) — F(9.0) + f(,0))dp

+ J& R (f(p,w(p) — F(9,0) + (g, 0))dp‘

)
<
&2 — &1

1 (4 (@-a)y & (L-&a)

‘(ﬂ)ﬂwlup) + W)y (8 4+ el &y %)
<

- &2 — &1
Since, & > &1, using the facts that % — % < 0, we have

Mﬂ@@»%Fw@n

L (G —&)
G =Wl N e
I Y
< 20(wlei) + M) (505):
Consequently, we obtain
— /2E!
(4.1) ol < (i) + N (T50)-

By (4.1) F is well defined. We define the D C H,([0, E]) as
D={weHi(0,5): [wlup<r).

Clearly §) # D = D is convex and bounded in H; ([0, E]) by (A2) gives that F': D —
D. We show that F' is continuous, let ¢ > 0 and w,v € D, so that |w —v|r;) < €.
Then, for arbitrary &1,&; € [0, E] with £ > &1, we can write

[(Fw)(&2)—(Fv)(&2)]—[(Fw) (1) —(Fv)(§1)]
[E2—¢1]

‘/52 — p, w(p)) — f(p,v(p)))dp

& (f )] 1
- 3mﬂ<ﬂmww»—fwm@»u4
&2 — &1

pE T — )
K (A (F(o. () - S(o.0(0))do)

IN

I'(9)

3 7—5
n<A<1 2 Fo,w(p)) — Fp.v(0)dp

G TG —

)
(1)

‘A I(— a<ﬂ@www—f@wmnm@\

€2 — &1l




NEW CLASS OF FRACTIONAL DIFFERENTIAL EQUATION 1051
4

E(m_ \-2
i ([ G0 o) - SN

_ —4
- [N (o) - o))y

FA—py®
+ - [ o2 o) - 5o

Fl-p!
- [ 55 <f<p,w<p>>—f(w(p)))d@)))‘
&2 — &1

3 ¢3 1 _ )5
& a( /0 <; (]@4) (F(pw(p)) — F(p,0(p))dyp

6

Pa—ppt
- [t - f(@,v(@)))d@> |

&2 — &1

4 ¢4 E (g _ 52
T </0 o 2 oo ~ oo

n _ —4
_/0 (7%(3?);) (f(@vw(@))—f(p,v(p)))d@'

-y
#lE - [ G2 0l - S0

I'(p—3)

14 \y—d
_ /0 - p) (f(p,w(p)) — f(@av(@)))d@)> ‘
&2 — &1 .

So, we get

[(Fw)(€2)—(Fv) (€2)]—[(Fw)(€1)—(Fv) (€
{\ ) fgrs(u )€1~ (Fo)(&)] 251,526[0,E],§17é§2}

Y(lw—v|Lip) (5} + (82—61)? %% + (§2—j£1)3>

I'(9) J

IN

&2 — &1
BE-)( w7 L
28 (]F(J)+ & (=00 — o9t

&2 — &1

+(|lw — Ule‘p)(

4 E]—l J—3
. sz (Goro-n — o=3ro—y) + (B — Vg=aro=n — (3_3)%(]_3)))
|€2 — &1

&-¢

1 1
6 (74r -4 731‘73)
+¢(|1U—’U|sz)( U )|22_)§1‘(J 1o )>
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&—& ( B! U
24n —12E2\() - DI -1) (-3 -3)
1 1
+ (B —1)( - ))
—AI()—4 —3)I(y-3
+op(fw — vlnip) G=HIG-49 =3)T0=3)
€2 — &1
Finally,

|Fw — Fv|Lip

W(lw—vlriy) (€ | @ty & | (&)
o) <Jl+(211) —32+(231)>
<
&2 — &1
BEE-€3) ( o n3 1 . 1
45%55%7<JFU)+_7T(U*4HYJ*® N

+(lw — v[Lip) (

&2 — &1

24nji2E2 ((375?(;1) B (J*Z%]F(:s]*3)) +(E - 1)((374)11“(]74) - (373)111(]73))>
&2 — &1 )
55;5?((_41 N — )
+(lw - v!up)< ! )F|é] D __UOIGs) )
2 — &1
fé - ﬁil ( Ei1 _ 17]_3
24n —12E2\ (5 — 1)1;(3 -1 (- 3)1I(J ~3)
HE- (=g~ a3

+(lw —v|Lip)

&2 — &1

By (A1), since 9(s) — 0 as s — 0, we get F is continuous. We show that F' is a
condensing operator. Let ) # W C H1([0, E]) be bounded, take w € W, ¢ > 0 and
&2,&1 € [0, E] with & # &1 and |§2 — &1] < ¢, by (4.1) we obtain

|(Fw)(&2) — (Fw)(&1)]

pFw,e) = sup {FERE = S 6.6 €0,F] 646, J -Gl <<
__ 92071
< @ulew) + M) (5 )

This implies that
2¢771
()

H(FW, &) = sup{u(Fuw,e), w e W} < (@(jwliyp) + N)(

).
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By taking € — 0, we get
W(FW) = lim u(FW, 2) = 0,
e—0
which is equivalent to,
p(FW) < Lp(W),
where L = 0. By Theorem 1.2, we get F' has a fixed point w in the ball D so the
E.q (3.1) has at least one solution in H1([0, E]). O
Example 4.2. Consider the equation

D5 w(E) = < arctanii/vl(i):;) @) << B B> 1,

(4.2) w(0) = w/(0) = w®(0) = w®(0) = w(0) =0,
w"(E) —w"(0) = w”(%), w® (1) = w® (1), w"(0) = 5w(%).

Observe that (4.2) is a special case of (3.1) when 5 = £, 3 =5, n = %, and
flp,w) = e10 arctan(w4) Sin(p4+1), o € (0, E]. The condition (A1) of Theorem 4.1

V 12+

with ¢ (p) = \/%p hold. Indeed, we have

e~ % arctan(w + 4) sin(p* + 1) ’

Fow) = fo0) = | NiE

1
—— | arctan(w + 4) sin(p? + 1
o arctan( + 4)sin(i! + 1)
1 1
< —=lw+4—-—v—4)| < —=lw—-vw
o DI < st = ol
and
N = sup {‘6_4p sin(p* + 1)arctan(2) oe [O,E]} _ arctan(2)
/p2+12 V12

Also, 3 r > 0 so that fulfils the inequality of (A2) of Th 4.1, that is,

(\/7”172+ arc%@))(éff(%)) <r

Now, Theorem 4.1 guarantees that E.q (4.2) has at least one solution in ([0, EJ).
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