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By employing Mönch fixed point theorem, Machado et al. [14] also obtained suffi-
cient conditions for controllability and controllability results for a class of impulsive
functional integrodifferential equations with finite delay in Banach spaces.

Restrictive requirements on the estimated parameters and the measure of non-
compactness are necessary, however the results in [13,14] do not presume the com-
pactness of the evolution system. Under the presumptions of the measure of non-
compactness in a separable and uniformly smooth Banach space, Xue [22] achieved
the existence results of integral solutions for nonlinear first order differential equa-
tions with nonlocal initial value conditions. In [9], Haque et al. studied the control-
lability of ψ-Hilfer fractional differential equation via measure of noncompactness.

Ahmad et al. [2] shown that first order impulsive integrodifferential equations
with nonlinearity of the form f(t, u(t), Gu(t)) have mild solutions where Gu(t) de-
notes a Volterra-type integral operator. Bose and Udhayakumar [7] studied the
controllability of Hilfer fractional neutral differential equations with almost secto-
rial opertor via mnc.

Motivated by the earlier results of above authors, we study the controllability of
the following ψ-Hilfer fractional differential equation with almost sectorial operator.

(1.1) Dk,ϵ,ψ
0+

[w(z)] = Aw(z) + h(z, w(z), χw(z)) +Bv(z), z ∈ J = (0, d]

I1−δ;ψ
0+

w(z)|z=0 = w0 +Σmj=1cjw(τj), τj ∈ (0, d)(1.2)

where 0 < k < 1, 0 ≤ ϵ ≤ 1, δ = k+ ϵ− kϵ, Dk,ϵ,ψ
0+

is a ψ-Hilfer fractional derivative

operator and I1−δ;ψ
0+

is ψ-Riemann–Liouville fractional integral operator. A is almost
sectorial operator, h(z, w(.), χw(.)) ∈ C1−δ;ψ(J, C,R), the control function is v ∈
L2([0, d], U), U is Hilbert space and B : U → R is bounded linear operator with
∥ B ∥≤ K1. For χ : D × R → R, χw(z) =

∫ z
0 K(z, s, w(s))ds, D = {(t, s) : 0 ≤

s ≤ t ≤ d}, ck are real numbers and τj , j = 1, 2, . . . ,m are given points satisfying
0 < τ1 < τ2 < · · · < τm < d.

This type of fractional differential equations arise in the financial crisis model
represented in the work of Norouzi [16], where author solved same kind of problem
without discussing controllability.

If we consider all cj = 0, then system reduces to problem of Bose and Ud-
hayakumar [7] without delay for a particular value of function ψ(t). We establish
the existence of mild solution for evolution equations, and give a set of sufficient
conditions for the controllability result for ψ-Hilfer fractional differential equation
through the measure of noncompactness approach and almost sectorial operator.

2. Preliminaries and basic results

Basic definitions and lemmas from the fractional calculus along with some results
for measure of noncompactness (mnc) are recalled in this section.

Let J = [0, d] be an interval and ψ : J → R+ be an increasing and positive
function for all z ∈ J .

The space C1−δ,ψ(J, C,R) denotes the Banach space of weighted functions defined
on J , i.e.

C1−δ,ψ(J, C,R) = {w : J → R|(ψ(.)− ψ(0))1−δw(.) ∈ C(J,R)},
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with norm ∥w∥C1−δ,ψ(J,C,R) = maxz∈J{|(ψ(.)− ψ(0))1−δw(z)|}.
Definition 2.1 ( [11]). Let f be a integrable function defined on (0, d) and ψ be an
increasing function having a continuous derivative ψ′ on (0, d) such that ψ′(t) ̸= 0
for all t ∈ J and k > 0 is a constant. The left-sided fractional integral of order k of
function f with respect to ψ is defined by

(2.1) Ik,ψ
0+
f(t) =

1

Γ(k)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))k−1f(s)ds.

If we take ψ(t) = t, we get a well known classical Riemann-Liouville fractional
integral.

Definition 2.2 ([3]). Let n − 1 < k < n ∈ N, 0 ≤ ϵ ≤ 1 and f, ψ ∈ Cn(J,R) two
functions such that ψ is an increasing and ψ′(t) ̸= 0 for all t ∈ J . The left-sided
ψ-Hilfer fractional derivative of order k and type ϵ of function f is defined as

Dk,ϵ;ψ
0+

f(t) = I
ϵ(n−k);ψ
0+

[
1

ψ′(t)

d

dt

]n
I
(1−ϵ)(n−k);ψ
0+

f(t).

Or we can write it as

Dk,ϵ;ψ
0+

f(t) = I
ϵ(n−k);ψ
0+

Dδ;ψ
0+
f(t), δ = k + ϵ(n− k)

where Dδ;ψ
0+
f(t) =

[
1

ψ′(t)
d
dt

]n
I
(1−ϵ)(n−k);ψ
0+

f(t).

In particular, the ψ-Hilfer fractional derivative of order 0 < k < 1 and type
0 ≤ ϵ ≤ 1 can be written in the following form :

Dk,ϵ;ψ
0+

f(t) =
1

Γ(δ − k)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))δ−k−1Dδ;ψ

0+
f(s)ds = Iδ−k;ψ

0+
Dδ;ψ

0+
f(t)

where δ = k + ϵ(1 − k), Iδ−k;ψ
0+

(·) are defined by equation (2.1) and Dδ;ψ
0+
f(t) =[

1
ψ′(t)

d
dt

]n
I1−δ;ψ
0+

f(t).

Lemma 2.3 ([11]). Let α > 0 and β > 0. The following semigroup properties hold:

(i) If f ∈ Lp(J,R)(p ≥ 1), then Iα;ψ
0+

Iβ;ψ
0+

f(t) = Iα+β;ψ
0+

f(t), a.e. t ∈ J .

(ii) If f ∈ Cγ;ψ(J,R), then Iα;ψ0+
Iβ;ψ
0+

f(t) = Iα+β;ψ
0+

f(t), t ∈ [a, b], 0 ≤ γ < 1.

(iii) If f ∈ C(J,R), then Iα;ψ
0+

Iβ;ψ
0+

f(t) = Iα+β;ψ
0+

f(t), t ∈ J .

Lemma 2.4 ([20]). Let 0 < k < 1, 0 ≤ ϵ ≤ 1 and 0 ≤ δ < 1. If f ∈ L1(J,R) and

D
ϵ(1−k)
0+

f is well-defined as an element of L1(J,R), then

Dk,ϵ;ψ
0+

Ik,ψ
0+
f(t) = I

ϵ(1−k),ψ
0+

D
ϵ(1−k),ϵ;ψ
0+

f(t).

Moreover, if f ∈ C1(J,R)
Dk,ϵ;ψ

0+
Ik,ψ
0+
h(t) = h(t).

For 0 < k < 1, 0 ≤ ϵ ≤ 1 and δ = k+ ϵ(1− k), we introduce the weighted spaces

Ck,ϵ1−δ;ψ(J,R) = {w ∈ C1−δ;ψ|Dk,ϵ;ψ
0+

w ∈ C1−δ;ψ(J,R)}
and

Cδ1−δ;ψ(J,R) = {w ∈ C1−δ;ψ|Dδ;ψ
0+
w ∈ C1−δ;ψ(J,R)}.

Since Dk,ϵ;ψ
0+

w = I
ϵ(1−k),ψ
0+

Dδ;ψ
0+
w, it is obvious that Cδ1−δ;ψ(J,R) ⊂ Ck,ϵ1−δ;ψ(J,R).
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Lemma 2.5 ([1]). Let 0 < k < 1, 0 ≤ ϵ ≤ 1 and δ = k+ϵ(1−k). If f ∈ Cδ1−δ;ψ(J,R),
then

(2.2) Iδ;ψ
0+
Dδ;ψ

0+
f(t) = Ik;ψ

0+
Dk,ϵ;ψ

0+
f(t)

and

(2.3) Dδ;ψ
0+
Ik;ψ
0+
f(t) = D

ϵ(1−k);ψ
0+

f(t).

Lemma 2.6 ([11]). Let k > 0, and δ > 0, then ψ-fractional integral and derivative
of a power function are given by

Ik;ψ
0+

(ψ(t)− ψ(0))δ−1 =
Γ(δ)

Γ(δ + k)
(ψ(t)− ψ(0))k+δ−1

and
Dk;ψ

0+
(ψ(t)− ψ(0))k−1 = 0, 0 < k < 1.

Lemma 2.7 ( [19]). Let k > 0 and 0 ≤ δ < 1. Then Ik;ψ
0+

(.) is bounded from

C1−δ;ψ(J,R) into C1−δ;ψ(J,R). In particular, if δ ≤ k, then Ik;ψ
0+

(.) is bounded from
C1−δ;ψ(J,R) into C(J,R).

Lemma 2.8 ([20]). Let k > 0 and 0 ≤ δ < 1, and C1−δ;ψ([a, b],R). If k > δ, then

Ik;ψ
a+
f ∈ C([a, b],R) and

Ik;ψ
a+
f(a) = lim

t→a+
Ik;ψ
a+
f(t) = 0.

Theorem 2.9 ([20]). Let 0 < k < 1 and 0 ≤ ϵ ≤ 1. If C1−δ,ψ(J,R), then

Ik;ψ
0+
Dk,ϵ;ψ

0+
f(t) = f(t)−

I
(1−ϵ)(1−k),ψ
0+

f(0)

Γ(k + ϵ(1− k))
[ψ(t)− ψ(0)]k+ϵ(1−k)−1.

Moreover, if δ = k + ϵ(1− k), f ∈ Cδ1−δ;ψ(J,R) and I
(1−δ);ψ
0+

f ∈ C1
1−δ;ψ(J,R), then

Iδ;ψ
0+
Dδ;ψ

0+
f(t) = f(t)−

I
(1−δ);ψ
0+

f(0)

Γ(δ)
[ψ(t)− ψ(0)]δ−1.

Definition 2.10 ( [5]). For any bounded subset Z of a metric space (X, d), the
Kuratowski [12] measure of noncompactness is defined as:
ω(Z) = inf{ϵ > 0 : Z =

⋃n
i=1 Zi, diam(Zi) ≤ ϵ, 1 ≤ i ≤ n < ∞}, where diam(Zi)

represents the diameter of set Zi ⊂ X.

Definition 2.11. Let Z be the bounded subset of a metric space (X, d), the Haus-
dorff measure of non-compactness µ is defined by

µ(Z) = inf{θ > 0 : Z can be covered by a finite number of balls with radii θ}.
There are only in a few Banach spaces, which able to express Hausdorff’s mea-

sure of noncompactness with the help of these definitions. So, Banaś and Goebel
introduced the definition of mnc in axiomatic way.

Definition 2.12 ([5]). Let E be any Banach space and ME denotes the set of all
bounded subsets of E.
A mapping ς :ME→ R+ is called measure of noncompactness (mnc) in E if the
following conditions hold:
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(A1) A non-empty family ker ς := {B ∈ ME : ς(B) = 0} ⊆ NE ;
(A2) B1 ⊂ B2 =⇒ ς(B1) ≤ ς(B2);
(A3) ς(B) = ς(B);
(A4) ς(ConvB) = ς(B).

Definition 2.13. Suppose P+ is the positive cone of an ordered Banach space (P ,
≤). Let ψ be the function defined on the set of all bounded subsets of the Banach
space E with values in P+ is known as mnc on E iff ψ( ¯conv(Ω)) = ψ(Ω) for every
bounded subset Ω ⊂ E, where conv(Ω) denoted the closed convex hull of Ω.

Lemma 2.14 ([5]). Suppose E is a Banach space and G1, G2 ⊆ E are bounded.
Then, the following properties satisfy.

(i) G1 is precompact iff ς(G1) = 0;
(ii) ς(G1) = ς(Ḡ1) = ς(conv(G1)), where conv(G1) and Ḡ1 denote the convex

hull and closure of G1,respectively;
(iii) If G1 ⊆ G2, then ς(G1) ≤ ς(G2);
(iv) ς(G1+G2) ≤ ς(G1)+ς(G2), such that G1+G2 = {b1+b2 : b1 ∈ G1, b2 ∈ G2};
(v) ς(G1 ∪G2) ≤ max{ς(G1), ς(G2)};
(vi) ς(λG1) =| λ | ς(G1) for every λ ∈ R, where E is a real Banach space.
(vii) If the operator S : D(S) ⊆ E → E1 is Lipschitz continuous and η is the

constant then we know µ(S(G1)) ≤ ης(G1) for any bounded subset G1 ⊂
D(S), where µ represent the Hausdorff mnc in the Banach space E1.

Lemma 2.15 ([5]). Assume that S is any equicontinuous and bounded subset of
C(J,E), then function z → ς(S(z)) is continuous on [0, d]. ς(S) = sup{ς(S(z))}
where S(z) = {w(z) : w ∈ S, z ∈ [0, d]}.
Lemma 2.16 ([15]). Let D be a closed convex subset of a Banach space E and
0 ∈ D. Assume that S : D → D be a continuous map which satisfies Mönch’s
condition, i.e., if D1 ⊂ D is countable and D1 ⊂ conv(0 ∪ S(D1)) implies D1 is
compact. Then S has a fixed point in D.

Definition 2.17 ([17]). Let 0 < v < 1, 0 < µ < π
2 , we define Θ−v

µ be the family
of closed linear operators, the sector Sµ = {z ∈ C\{0} with |argz| ≤ µ} and
A : D(A) ⊂ E → E such that

(i) σ(A) ⊆ Sµ ;
(ii) There exists a constant Cµ,

∥(z −A)−1∥ ≤ Cµ|z|−v, for all z /∈ Sµ,

then A ∈ Θ−v
µ is called almost sectorial operator on E.

Lemma 2.18 ([17]). Consider 0 < v < 1, 0 < µ < π
2 and A ∈ Θ−v

µ . Then

(i) F(z1 + z2) = F(z1) + F(z2), for all z1, z2 ∈ S0
π
2
−µ;

(ii) There exists a constant L > 0 such that ∥F(z)∥C ≤ Lzv−1, for all z > 0;
(iii) The range R(F(z)) of F(z), z ∈ S0

π
2
−µ which belongs D(A∞). Especially,

R(F(z)) ⊂ D(Aθ) for all θ ∈ C with Re(θ) > 0,

AθF(z) ≤ 1

2πi

∫
ΓE

zθe−zsR(z;A)yds, for every y ∈ E.
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(iv) If θ > 1− v, then D(Aθ) ⊂ ΣF = {y ∈ E : limz→0F(z)y = y};
(v) R(z;A) =

∫∞
0 e−k

′zF(z)dz, for every k′ ∈ C with Re(k′) > 0.

Definition 2.19 ([17]). Define the wright function Mk(ζ) by

Mk(ζ) =
∞∑
n=1

(−ζ)n−1

(n− 1)! Γ(1− kn)

which holds the following properties such that, −1 < λ <∞, r > 0:

(a) Mk(ζ) ≥ 0, z > 0;

(b)
∫∞
0 ζλMk(ζ)dζ = Γ(1+λ)

Γ(1+kλ) , for λ ≥ 0;

(c)
∫∞
0

k
ζ(k+1) e

−rζMk(
1
ζk
)dζ= e−r

k
.

3. An auxillary result

We represent C(J,R) the Banach space of all continuous functions w : J → R
where J = [0, d]. Consider the set Π = {w ∈ C : limz→0 z

−1+ϵ−kϵ+kw(z) ex-
ists and finite} which is a Banach space w.r.t the norm defined as ∥ w ∥Π=
supz∈J{z−1+ϵ−kϵ+k ∥ w(z) ∥}.

Theorem 3.1. Let 0 < k < 1, 0 ≤ ϵ ≤ 1 and δ = k + ϵ − kϵ. Assume that
h(·, w(·), χ(·)) ∈ C1−δ;ψ[0, d] for any w ∈ C1−δ;ψ[0, d]. If w ∈ Cδ1−δ;ψ[0, d], then w

satisfies the problem (1.1)-(1.2) if and only if w satisfies the integral equation

w(z) =
(ψ(z)− ψ(0))δ−1

B1

[
w0 +Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)Aw(s)ds

+Σ
1

Γ(k)
cj

∫ τj

0
∧kψ(τj , s)F (s)ds+Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)Bv(s)ds

]
+

1

Γ(k)

(∫ z

0
∧kψ(z, s)(Aw(s) + F (s) +Bv(s))ds

)
where ∧kψ(τj , s) = ψ′(s)(ψ(τj) − ψ(s))k−1; F (z) = h(z, w(z), χw(z)) and 0 ̸= B1 =

[Γ(δ)− Σcj(ψ(τj)− ψ(0))δ−1].

Proof.

(3.1) Dk,ϵ,ψ
0+

[w(z)] = Aw(z) + h(z, w(z), χ(z)) +Bv(z), z ∈ J = (0, d],

I1−δ;ψ
0+

w(z)|z=0 = w0 +Σmj=1cjw(τj), τj ∈ (0, d),(3.2)

where δ = k + ϵ− kϵ.
By using Theorem 2.9, we have

Iδ;ψ
0+
Dδ,ϵ,ψ

0+
[w(z)] = w(z)−

I1−δ;ψ
0+

w(0)

Γ(δ)
(ψ(z)− ψ(0))δ−1.(3.3)

Now by using Lemma 2.5 and applying Iδ,ψ
0+

(.) to equation (3.1) both sides

Iδ;ψ
0+
Dδ,ϵ,ψ

0+
[w(z)] = Ik;ψ

0+
Dk,ϵ,ψ

0+
[w(z)] = Ik;ψ

0+
Aw(z) + Ik;ψ

0+
F (z) + Ik;ψ

0+
Bv(z).(3.4)
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Comparing (3.3) and (3.4), we get

w(z) =
I1−δ;ψ
0+

w(0)

Γ(δ)
(ψ(z)− ψ(0))δ−1 + Ik;ψ

0+
Aw(z) + Ik;ψ

0+
F (z) + Ik;ψ

0+
Bv(z).(3.5)

Substitute z = τj and multiply cj to both sides

Σcjw(τj) = Σ
cjI

1−δ;ψ
0+

w(0)

Γ(δ)
(ψ(τj)− ψ(0))δ−1

+ΣcjI
k;ψ
0+
Aw(τj) + ΣcjI

k;ψ
0+
F (τj) + ΣcjI

k;ψ
0+
Bv(τj)

which implies

Γ(δ)Σcjw(τj) = ΣcjI
1−δ;ψ
0+

w(0)(ψ(τj)− ψ(0))δ−1

+ Γ(δ)ΣcjI
k;ψ
0+
Aw(τj) + Γ(δ)ΣcjI

k;ψ
0+
F (τj) + Γ(δ)ΣcjI

k;ψ
0+
Bv(τj).

We can write above expression as

Γ(δ)(I1−δ;ψ
0+

w(0)− w0) = ΣcjI
1−δ;ψ
0+

w(0)(ψ(τj)− ψ(0))δ−1

+ Γ(δ)ΣcjI
k;ψ
0+
Aw(τj) + Γ(δ)ΣcjI

k;ψ
0+
F (τj)

+ Γ(δ)ΣcjI
k;ψ
0+
Bv(τj),

I1−δ;ψ
0+

w(0)[Γ(δ)− Σcj(ψ(τj)− ψ(0))δ−1]

= Γ(δ)w0 + Γ(δ)ΣcjI
k;ψ
0+
Aw(τj) + Γ(δ)ΣcjI

k;ψ
0+
F (τj) + Γ(δ)ΣcjI

k;ψ
0+
Bv(τj),

I1−δ;ψ
0+

w(0) =
Γ(δ)

B1

[
w0 +ΣcjI

k;ψ
0+
Aw(τj) + ΣcjI

k;ψ
0+
F (τj) + ΣcjI

k;ψ
0+
Bv(τj)

]
.

Put this term in equation (3.5)

w(z) =
(ψ(z)− ψ(0))δ−1

B1

[
w0 +ΣcjI

k;ψ
0+
Aw(τj) + ΣcjI

k;ψ
0+
F (τj) + ΣcjI

k;ψ
0+
Bv(τj)

]
+ Ik;ψ

0+
Aw(z) + Ik;ψ

0+
F (z) + Ik;ψ

0+
Bv(z),

w(z) =
(ψ(z)− ψ(0))δ−1

B1

[
w0 +Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)Aw(s)ds

+Σ
1

Γ(k)
cj

∫ τj

0
∧kψ(τj , s)F (s)ds+Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)Bv(s)ds

]
+

1

Γ(k)

(∫ z

0
∧kψ(z, s)(Aw(s) + F (s) +Bv(s))ds

)
,(3.6)

Conversly, we assume that w ∈ Cδ1−δ,ψ[0, d] satisfies the above integral equation.

We prove w(z) also satisfies (1.1)-(1.2) .
Multiply ck and put z = τk to the above equation

Σckw(τk) =
Σcj(ψ(τj)− ψ(0))δ−1

B1

[
w0 +Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)

(
Aw(s) + F (s)

+Bv(s)
)
ds
]
+

Σcj
Γ(k)

(∫ τj

0
∧kψ(τj , s)(Aw(s) + F (s) +Bv(s))ds

)
,
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Σckw(τk) =
[
1 +

Σcj(ψ(τj)− ψ(0))δ−1

B1

]
Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)

(
Aw(s) + F (s)

+Bv(s)
)
ds+

(Σcjψ(τj)− ψ(0))δ−1

B1
w0

which implies

Σckw(τk) =
Γ(δ)

B1

[
Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)

(
Aw(s) + F (s) +Bv(s)

)
ds
]

+

(
Γ(δ)

B1
− 1

)
w0,

Σckw(τk) + w0 =
Γ(δ)

B1

[
Σ

cj
Γ(k)

∫ τj

0
∧kψ(τj , s)

(
Aw(s) + F (s) +Bv(s)

)
ds+ w0

]
= I1−δ;ψ

0+
w(0).

Hence we obtain equation (3.2), with this we validate the problem. □

4. Existence and controllability result

In this section, we establish controllability result for given system.

Definition 4.1. The mild solution of the equation (1.1)-(1.2) is a function, that
satisfies

w(z) = Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)] +

∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,w(u), χw(s))du

+

∫ z

0
Kk,ψ(z, u)ψ

′(u)Bv(u)du

where Pk,ϵ,ψ(z) = I
ϵ(1−k);ψ
0 Kk,ψ(z), Qk,ψ(z) =

∫∞
0 kζMk(ζ)F((ψ(z)−ψ(u))kζ)d(ζ),

Kk,ψ(z, u) = (ψ(z)− ψ(u))k−1Qk,ψ(z), i.e.

w(z) = Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)]

+

∫ z

0
(ψ(z)− ψ(u))k−1ψ′(u)Qk,ψ(z)h(u,w(u), χw(s))du

+

∫ z

0
(ψ(z)− ψ(u))k−1ψ′(u)Qk,ψ(z)Bv(u)du.

Lemma 4.2. The system (1.1) and (1.2) is said to be controllable in J if for every
continuous initial value function, there exists v ∈ L2(J,R) and the mild solution
w(z) of (1.1) with (1.2) satisfies w(d) = w1.

To prove our main result, we require the following hypotheses :

(H1)
(a) Let A be the almost sectorial operator which generates analytic semigroup

{F(z), z > 0} in R such that ∥ F(z) ∥≤ L′ where L′ ≥ 0 is a constant.
(b) For any fixed z > 0, the linear operator Pk,ϵ,ψ(z) is such that, ∥Pk,ϵ,ψ(z)∥ ≤

K2.
(H2) The function h : J×C×R → R such that h(., w(.), (χw)(.)) ∈ C1−δ,ψ[J, C,R]

satisfies Caratheodory condition for all w(z) ∈ C :
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(a) h(., w(.), (χw)(.)) is measurable for all h(., w(.), (χw)(.)) and is continuous
for a.e. z ∈ J ,

(b) The function h : C1−δ,ψ[J, C,R] → R satisfies Lipschitz condition :

∥h(z1, w(z1), χ(z1)− h(z2, w(z2), χ(z2))∥ ≤ Lh∥z1 − z2∥.
(c) There exists a constant K0 > 0 such that ∥ h(., w(.), (χw)(.)) ∥≤ K0 for

every z ∈ J .
(H3) The linear operator W : L2(J,R) → E is defined by

W (v) =

∫ d

0
(ψ(d)− ψ(u))k−1ψ′(u)Qk,ψ(d, u)Bv(u)du.

(a) W has an invertible operator W−1 which takes value in L2(J,R)/KerW and
there exists K3 such that ∥W−1∥ ≤ K3.

(b) There exists a constant KW such that for any bounded set D ⊂ E,
ς((W−1D)(z)) ≤ KW (z)ς(D).

(H4) There is a constant K̂ > 0 satisfying ς(D) ≤ K̂ς(D) for every bounded
subset D ⊂ E and following estimation holds true:

K̂ =
[
K1 +K0 +K2 +K1K3KW (wd − (K2 +K0))

]
< 1.

Theorem 4.3. Suppose assumptions (H1)− (H4) hold, then ψ-Hilfer fractional dif-

ferential equation (1.1)-(1.2) has a solution with K̂ = (K1+K0+K2+K1K3KW (wd−
(K2 +K0))) < 1.

Proof. Now we consider the operator S : Π → Π which is well defined and the fixed
point of this operator is the solution of our problem.

The operator S : Π → Π is defined as

Sw(z) = Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)] +

∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,w(u), χw(s))du

+

∫ z

0
Kk,ψ(z, u)ψ

′(u)Bv(u)du,

where

v(z) =W−1
[
w(d)− Pk,ϵ,ψ(d)[w0 +Σmj=1cjw(τj)]

−
∫ d

0
Kk,ψ(d, u)ψ

′(u)h(u,w(u), χw(s))du
]
.

Define a bounded, closed and convex set Bϵ = {w ∈ Π : ∥w∥ ≤ ϵ}.
By using Mönch fixed point theorem, we prove the existence of the solution in

following steps:

Step 1 : The operator S maps the set Bϵ into itself. i.e. SBϵ ⊂ Bϵ.

S(w(z)) = Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)] +

∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,w(u), χw(s))du

+

∫ z

0
Kk,ψ(z, u)ψ

′(u)Bv(u)du,

∥Sw(z)∥ ≤
∥∥∥z−1+ϵ−kϵ+k

[
Pk,ϵ,ψ(z)[w0 +Σmk=1ckw(τk)]
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+

∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,w(u), χw(s))du

+

∫ z

0
Kk,ψ(z, u)ψ

′(u)Bv(u)du
]∥∥∥

≤ ∥d−1+ϵ−kϵ+k∥
(
∥Pk,ϵ,ψ(z)∥∥w0 +Σmk=1ckw(τk)∥

+
∥∥∥ ∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,w(u), χw(s))du
∥∥∥

+
∥∥∥ ∫ z

0
∥Kk,ψ(z, u)ψ

′(u)∥∥B∥
∥∥∥W−1

∥∥∥[wd − ∥Pk,ϵ,ψ(d)[w0 +Σmj=1cjw(τj)]∥

−
∥∥∥ ∫ d

0
Kk,ψ(d, u)ψ

′(u)h(u,w(u), χw(s))du
∥∥∥])

≤ ∥dδ−1∥
(
K1 +K0 +K2 +K1K3(wd − (K2 +K0))

)
≤ ϵK̂.

It follows that ∥Sw∥Π < ϵ. Thus SBϵ ⊂ Bϵ.

Step 2 : S is continuous on Bϵ.
Let {wn}∞n=1 be a sequence such that wn → w in Bϵ as n → ∞ then for each

z ∈ J , we have

∥(Swn(z)− Sw(z))∥ ≤ ∥z−1+ϵ−kϵ+k∥
[∥∥∥ ∫ z

0
Kk,ψ(z, u)ψ

′(u)(h(u,wn(u), χwn(s))

− h(u,w(u), χw(s)))du
∥∥∥]

≤ ∥d−1+ϵ−kϵ+k∥
(
∥hwn − hw∥

)
−→ 0 as n→ ∞.

where hwn = h(u,wn(u), χwn(s)) and hw = h(u,w(u), χw(s)).
By Lebesgue convergence theorem, we conclude that ∥Swn−Sw∥ → 0 as n→ ∞.

Hence operator ς is continuous on Bϵ.

Step 3 : S is equicontinuous on Bϵ.
For any z1, z2 ∈ J such that 0 < z1 < z2 < d,w ∈ Bϵ, we have

∥Sw(z2)− Sw(z1)∥ ≤
∥∥∥z1−ϵ+kϵ−k2 (Pk,ϵ,ψ(z2)[w0 +Σckw(τk)]

+

∫ z2

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)h(u,w(u), χw(s))du

+

∫ z2

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)Bv(u)du)

−
[
z1−ϵ+kϵ−k1 (Pk,ϵ,ψ(z1)[w0 +Σckw(τk)]

+

∫ z1

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du
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+

∫ z1

0
(ψ(z1)− ψ(u))k−1ψ′(u)Qk,ψ(z1)Bv(u)du)

]∥∥∥.
≤ ∥(z1−ϵ+kϵ−k2 Pk,ϵ,ψ(z2)− z1−ϵ+kϵ−k1 Pk,ϵ,ψ(z1))(w0 +Σckw(τk))∥

+
∥∥∥z1−ϵ+kϵ−k2

∫ z2

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)h(u,w(u), χw(s))du

− z1−ϵ+kϵ−k1

∫ z1

0
(ψ(z1)− ψ(u))k−1ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du

∥∥∥
+
∥∥∥z1−ϵ+kϵ−k2

∫ z2

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)Bv(u)du

− z1−ϵ+kϵ−k1

∫ z1

0
(ψ(z1)− ψ(u))k−1ψ′(u)Qk,ψ(z1)Bv(u)du

∥∥∥
≤

∥∥∥z1−ϵ+kϵ−k2 Pk,ϵ,ψ(z2)− z1−ϵ+kϵ−k1 Pk,ϵ,ψ(z1)
∥∥∥(w0 +Σckw(τk))

+
∥∥∥z1−ϵ+kϵ−k2

∫ z1

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du

− z1−ϵ+kϵ−k1

∫ z1

0
(ψ(z1)− ψ(u))k−1ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du

∥∥∥
+
∥∥∥z1−ϵ+kϵ−k2

∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)h(u,w(u), χw(s))du
∥∥∥

+
∥∥∥z1−ϵ+kϵ−k2

∫ z1

0
(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z1)Bv(u)du

− z1−ϵ+kϵ−k1

∫ z1

0
(ψ(z1)− ψ(u))k−1ψ′(u)Qk,ψ(z1)Bv(u)du

∥∥∥
+
∥∥∥z1−ϵ+kϵ−k2

∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)Bv(u)du
∥∥∥

≤
∥∥∥z1−ϵ+kϵ−k2 Pk,ϵ,ψ(z2)− z1−ϵ+kϵ−k1 Pk,ϵ,ψ(z1)∥(w0 +Σckw(τk))

+ d1−ϵ+kϵ−kv
∥∥∥ ∫ z1

0
((ψ(z2)− ψ(u))k−1 − (ψ(z1)− ψ(u))k−1)

× ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du∥

+ d1−ϵ+kϵ−k∥
∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)h(u,w(u), χw(s))du∥

+ d1−ϵ+kϵ−k
∥∥∥ ∫ z1

0
((ψ(z2)− ψ(u))k−1

− (ψ(z1)− ψ(u))k−1)ψ′(u)Qk,ψ(z1)Bv(u)du
∥∥∥

+ d1−ϵ+kϵ−k
∥∥∥ ∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)Bv(u)du
∥∥∥.

≤ Σ5
i=1Ii

where

(4.1) I1 = ∥z1−ϵ+kϵ−k2 Pk,ϵ,ψ(z2)− z1−ϵ+kϵ−k1 Pk,ϵ,ψ(z1)∥(w0 +Σckw(τk)).
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(4.2)
I2 = d1−ϵ+kϵ−k

∥∥∥ ∫ z1

0
((ψ(z2)− ψ(u))k−1

− (ψ(z1)− ψ(u))k−1)ψ′(u)Qk,ψ(z1)h(u,w(u), χw(s))du
∥∥∥.

(4.3) I3 = d1−ϵ+kϵ−k
∥∥∥ ∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)h(u,w(u), χw(s))du
∥∥∥.

(4.4)
I4 = d1−ϵ+kϵ−k

∥∥∥ ∫ z1

0
((ψ(z2)− ψ(u))k−1

− (ψ(z1)− ψ(u))k−1)ψ′(u)Qk,ψ(z1)Bv(u)du
∥∥∥.

(4.5) I5 = d1−ϵ+kϵ−k
∥∥∥ ∫ z2

z1

(ψ(z2)− ψ(u))k−1ψ′(u)Qk,ψ(z2)Bv(u)du
∥∥∥.

By equicontinuity and absolute continuity of Lebesgue integral assumed in our hy-
pothesis, we can see that the right-hand side of (4.1)-(4.5) tends to zero as z2 → z1.

Step 4 : Now we show Mönch Condition.
Let B0 ⊆ Bϵ be a countable and B0 ⊆ conv(0 ∪ ς(B)). We will show that

ς(B0) = 0.
Suppose {xn}∞n=1 ⊆ S(B0) is a countable set. Then there exists a set {wn}∞n=1

such that xn = (Swn)(z) for all z ∈ J, n ≥ 1.
Using Lemmas 2.14 and 2.15, we have

ς({xn(z)}∞n=1) = ς({(Swn)(z)}∞n=1)

= Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)]

+

∫ z

0
Kk,,ψ(z, u)ψ

′(u)h(u,wn(u), χwn(s))du

+

∫ z

0
Kk,,ψ(z, u)ψ

′(u)Bv(u)du.

= J1 + J2.

where

J1 = Pk,ϵ,ψ(z)[w0 +Σmj=1cjw(τj)]

≤
(
K2

)
ς(B0).

J2 = ς
(∫ z

0
Kk,ψ(z, u)ψ

′(u)h(u,wn(u), χwn(s))du+

∫ z

0
Kk,ψ(z, u)ψ

′(u)Bv(u)du
)

≤ (K0 +K1K3(wd − (K2 +K0)))KW ς(B0).

J1 + J2 ≤ (K1 +K0 +K2 +K1KWK3(wd − (K2 +K0)))∥w∥ς(B0).

≤ K̂ ς(B0), where K̂ = (K1 +K0 +K2 +K1K3KW (wd − (K2 +K0)))

ς(B0) ≤ K̂ς(B0).

ς(B0) = 0.
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So, by Lemma 2.16, S has a fixed point w in Bϵ. Then w is a mild solution of (1.1)-
(1.2) such that w(d) = w1.Hence the system (1.1)-(1.2) is controllable on J . □

5. An illustrative example

In this section, we demonstrate the applicability of the obtained results to the
following fractional differential equation:
(5.1)

D
1
2
, 1
3
, t
3

0+
w(z) =

∂2

∂z2
w(z) +

1

5

(
sin(w(z)) +

∫ z

0
e−

1
2
w(s)ds

)
+ ρv(z), z ∈ J = (0, π]

I
1− 2

3
; t
3

0+
w(z)|z=0 = w0 +

2

5
w
(2
3

)
.(5.2)

where D
1
2
, 1
3
, t
3

0+
is a ψ-Hilfer fractional derivative operator and I

1− 2
3
; t
3

0+
is ψ-RL frac-

tional integral operator and ψ(t) = t
3 .

The operator A is defined as

Aw =
∂2

∂z2
w(t, z)

and

D(A) = {w ∈ C2[0, π] : w(t, 0) = w(t, π) = 0}.
Here A is the infinitesimal generator of analytic semigroup {F(t)} on [0, π], F(t) is
not a compact semigroup with ς(F(t)D) ≤ ς(D) and there exists L′ ≥ 0 such that
supt∈(0,π] ∥F(t)∥ ≤ L′.

The bounded linear operator B : L2(J,R) → R is defined as B(v(z)) = ρv(z),
ρ > 0.

The above problem (5.1)-(5.2) can be written in abstract form as :

(5.3) D
1
2
, 1
3
, t
3

0+
[w(z)] = Aw(z) + h(z, w(z), χ(z)) +Bv(z), z ∈ J = (0, π]

I
1− 2

3
; t
3

0+
w(z)|z=0 = w0 +

2

5
w
(2
3

)
.(5.4)

Hence the existence and controllability of equation (5.1)-(5.2) follow from Theorem
4.3.

6. Conclusion

In this study, we used uniform boundedness, measure of noncompactness and
Mönch fixed point theorem, to investigate the abstract fractional evolution control
system is controllable in a Banach space. As we considered ψ-Hilfer fractional
differential equation which represents general form of differential equations. It is
well known that the compactness criterion for the operator can be decreased to
equicontinuity. We proved controllabillity of system with generalized differential
system along with non-local type conditions. The outcome of this study represents
sufficient condition for controllability of the given system.
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