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ABSTRACT. For sequences in the neutrosophic normed space (MN'S), we intro-
duce the notion of rough Zs-deferred statistical convergence in this work. Addi-
tionally, we explore rough Z,-deferred statistical cluster points for sequences in
NNS and analyze the interconnection between the set of these cluster points and
the set of rough Z-deferred statistical limit points associated with the mentioned
convergence.

1. INTRODUCTION AND BACKGROUND

In the realm of mathematics, the concept of sequence convergence has evolved
through various extensions, thanks to the introduction of diverse summability tech-
niques. Statistical convergence, initially proposed by Steinhaus [37] and Fast [9], ex-
tends the traditional convergence of sequences involving real and complex numbers.
Another innovative convergence approach, known as deferred statistical convergence
of sequences, was explored by Kiigiikaslan and Yilmaztiirk [26], incorporating de-
ferred density into the statistical convergence definition. Building upon this, Et
et al. [8] put forward the concept p-deferred statistical convergence for real-valued
functions, thereby significantly expanding the concept. Refer to [6,11,19,30,33-35]
for a comprehensive understanding of the fundamental characteristics and details
associated with these novel ideas.

The introduction of the concepts of roughness degree and rough convergence for
sequences in a finite-dimensional normed linear space was pioneered by Phu [31].
Subsequently, Phu extended these notions to an infinite-dimensional normed linear
space [32]. Going beyond the investigation of rough convergence, Phu explored an-
alytical properties such as convexity and the proximity of the set of rough limits.
Aytar [5] expanded the concept of rough statistical convergence, which includes nat-
ural density, and also explored the relationship between the set of rough statistical
limit points for a sequence and the set of statistical cluster points. Building on the
idea of rough convergence, various authors have further explored rough convergence
and statistical rough convergence for sequences in different contexts. This explo-
ration has even extended to the study of rough convergence and rough statistical
convergence for double sequences in [27,28].
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Zadeh [38] introduced the Theory of Fuzzy Sets (FS), a seminal contribution
that has had a significant impact on various scientific fields. However, FS faces
challenges in effectively handling uncertain membership degrees. To address this
limitation, Atanassov [4] extended the theory to Intuitionistic Fuzzy Sets (ZFS).
Kramosil and Michalek [20] explored Fuzzy Metric Spaces (FMS) by incorporat-
ing concepts from fuzzy and probabilistic metric spaces. Kaleva and Seikkala [12]
investigated F MS, considering the distance between two points as a non-negative
fuzzy number. George and Veeramani [10] outlined the requirements for FMS.
The practical applications of FMS in fixed-point theory, medical imaging, and
decision-making have garnered significant attention.

Smarandache [36] conducted a thorough investigation into the concept of 'Neu-
trosophic set’ (NS) as a generalization of FS and ZFS. The objective was to
address uncertainty in practical problem-solving. NS incorporates membership
functions for falsehood (F), indeterminacy (I), and truth (T). The unique aspect
of neutrosophy, representing impartial knowledge of thought, sets NS apart from
fuzzy, neutral, logic, and intuitive fuzzy sets.

In NS, uncertainty is characterized independently of the values of truth (T) and
falsehood (F), making NS more comprehensive than ZFS since there are no con-
straints among the degrees of T, F, and indeterminacy (I). The term neutrosophy
signifies impartial knowledge, and the concept of neutrality emphasizes a funda-
mental distinction from fuzzy, neutral, logic, and intuitive fuzzy sets.

Menger [29] introduced Triangular Norms (t-norms) (7AN) as a generalization
of probability distributions, incorporating the triangle inequality in terms of metric
spaces. Triangular Conorms (t-conorms) (7C), identified as dual operations to TN,
play a pivotal role in fuzzy operations, including intersections and unions. 7N and
TC serve as vital components for managing fuzzy operations within the framework
of metric spaces.

In NS, uncertainty is distinct from the values of T and F, making N'S more
encompassing than ZFS as there are no constraints among the degrees of T, F, and
I. The term neutrosophy signifies impartial knowledge, and the notion of neutrality
highlights the fundamental distinction from fuzzy, neutral, logic and intuitive fuzzy
sets.

Menger [29] introduced Triangular Norms (t-norms) (7N) as a generalization
of probability distributions, incorporating the triangle inequality in terms of metric
spaces. Triangular Conorms (¢-conorms) (7C), identified as dual operations to TN,
play a pivotal role in fuzzy operations, including intersections and unions. 7N and
TC serve as vital components for managing fuzzy operations within the framework
of metric spaces.

The concept of a neutrosophic metric space, characterized by continuous ¢t-norms
and continuous ¢-conorms, was initially introduced by Kirigci and Simsek [17]. Ex-
panding on their work, Kirisci and Simsek [18] further investigated neutrosophic
normed spaces (NVA'S) and explored statistical convergence within the NA/S frame-
work.

Antal et al. [2] introduced the notion of rough statistical convergence for se-
quences. Rahaman and Mursaleen [3] presented rough deferred statistical conver-
gence for difference sequences in £-fuzzy normed space. In another study [13], the
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authors proposed a modification to the definition of neutrosophic normed space,
originally presented in [17]. Debnath et al. [7] presented the concept of deferred
statistical convergence in the NNS. This study introduces the concept of rough
deferred statistical convergence of sequences within this adapted space. A signif-
icant number of academic publications related to their respective sequence spaces
are documented in the literature [14-16,21-25].

In specific cases, determining the precise values of terms in a convergent sequence
(¢ij) becomes challenging, especially for large values of u. To overcome this diffi-
culty, an alternative sequence (w;;) is used for approximation, thereby introducing
approximation errors. The concept of rough convergence has been introduced as a
solution in these situations.

Our research aims to extend the concept of convergence to sequences within NN'S
and explore various algebraic and topological properties. This unique convergence
allows the limit to manifest as a set rather than a single point, prompting a com-
prehensive investigation into the topological (closedness) and geometric properties
of the limit set. Additionally, we provided examples, for a given roughness degree
r > 0, demonstrating that the set of all rough Z,-deferred statistical convergent
sequences does not form a linear space. A rough Zo-deferred statistical cluster point
in NN'S was also introduced, and a relationship between the cluster point set and
the limit set under rough Z-deferred statistical convergence was developed.

By incorporating the notion of neutrosophy, which accounts for indeterminacy
alongside truth and falsehood, this study extends existing convergence theories,
providing a nuanced framework for analyzing sequences with uncertain behavior.
Additionally, the investigation into the relationship between these cluster points
and limit points offers new insights into sequence behavior in N NS, enhancing both
theoretical understanding and potential applications in complex data analysis.

2. AUXILIARY DEFINITIONS AND NOTATIONS

A few necessary definitions are provided in this section.

Assuming F is a linear space over the field V and ¢ and x are TN and TC,
respectively. Let ©,€Q and ¥ be single valued fuzzy sets on F x (0, 00). We designate
the 6-tuple (F,0,Q, ¥, 0, x) asa NN S if, for allw,y € F and 7, k > 0, the following
conditions are satisfied:

(A1) O(w,7) + Qw, 7) + ¥(w,T) < 3,

(A2) O(w,7) =1, Qw,7) =0 and ¥(w,7) =0 iff w =0,

(A3) ©(fw,T) = © (w, ﬁ), Q(Bw, ) = Q (w, ﬁ) and V(fw,7) = ¥ (w, ﬁ)
for any 0 # 8 € F,

(A4) O(w+v,7+K) > O(w, 7)0O(7, k), Qw+7v,7+ k) < Qw, ) *Q(y, k) and
W+ 9,7+ ) < W, ) Wy, ),

(A5) O(w,.), w,.) and ¥(w,.) are continuous on (0, c0),

(A6) lim; 00 O(w, 7) = 1, lim; 00 Q(w, 7) = 0 and lim, o0 ¥(w,7) = 0,

(A7) lim; 0 O(w,7) =0, lim, 0 Q(w,7) = 1 and lim, o ¥(w,7) = 1.

In this scenario, we denote the 3-tuple (0, {2, ¥) as a neutrosophic norm (shortly,

NN) on F.
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Example 2.1. Let (F,||||.) be a normed space. Consider 71072 = 71 - 72 and
v % yo = min{y; + 2,1}, Vy1,7%2 € [0,1]. Additionally, define ©,Q, and ¥ as
follows:

T [l 2wl
— Y(w,7) = and ¥(w,7) = ———
7+ [Jw| T+ [lw]| 7+ 2w

for all w € F and 7 > 0. Then (F,0,Q,¥,0, ) is a NNS.

Consider a NNS (F,0,Q,¥,0,*) and let w € F. For a given r > 0 and
7 € (0,1), the set

O(w, 1) =

BOYY (r 7y ={ve F:0w—-uv,r)>1—7, Qw—v,7) <7 and ¥(w—v,7) < 7}
defines an open ball with centered at w and radius r w.r.t 7 € (0,1). Define
Se0u)(F) = {A CF:forallwe A Ir>0and 7 e (0,1): BOM)(r 1) A} .

Then S g o) (F) defines a topology on F, which is induced by NN (6,2, ¥). Since

1 1 1 1 1 1
{UG.F:@(Lu—U,) >1— -, Q(w—v,) <and\I/<w—v,> <}
s s s s s s

is a local base at w € F, the topology 3 g 0,w)(F) on F is first countable.

Definition 2.2. Let (F,0,Q, V¥, 0, %) be a NNS. A sequence (¢;) in F converges
to ¢p w.r.t. NN (0,Q, ), if

O (¢i — do,7) = 1, Q(¢i — ¢o,7) — 0 and ¥ (¢; — ¢o,7) — 0 as i — o0
supplies for each 7 > 0. We write the limit by (©,Q, ¥) — lim ¢; = ¢y.

We refer to the collections of all natural numbers and real numbers by N and
R, respectively, throughout this research. Assume that A C N. The natural or
asymptotic density of the set W, represented by 6 (W), may be expressed as follows:

(W)= lim —|{t<wu:teW},

1
u—00 U

given the existence of the limit. Here the cardinality of the set {...} is shown by
I{...}|. If, for any € > 0, we have

0 ({u € N:[d; — gl = €}) =0,

then a sequence (¢;) of numbers is said to be statistically convergent to ¢g (see [9],
[37]).

Definition 2.3. A sequence (¢;) in F is statistically convergent to ¢y € F w.r.t
NN (0,Q,0), if for all v € (0,1) and T > 0,

N
Jim —[{i <:0(¢ — do,7) <1—1
or Q¢ — ¢o, ) >y or (¢; — o, 7) >~} = 0.
We represent the limit as (0,9, U)g — lim ¢; = ¢g.
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Definition 2.4. We define a sequence (¢;) in F as rough convergent to ¢g € F
w.rt. NN (0,9Q,9) for some r > 0 if, for any v € (0,1) and 7 > 0, there exist
19 € N such that

O (i — po,r+7)>1—7, Q(¢i — do, 7 +7) <vand V(¢ — ¢o, 7 +7) <7,

for all i > ig. The convergence of the sequence (¢;) is characterized by the limit
expressed as (0,Q,¥)" — lim ¢; = ¢p.

Agnew [1] defined postponed Cesaro mean as follows in 1932, expanding on the
idea of Cesaro mean of real (or complex) sequences:
Let (ay), (by) be sequences of non-negative integers satisfying the conditions

Ay < by
(2.1) lim b, = oo.

wW—r 00

The postponed Cesaro mean of a real (or complex) valued sequence (¢;) is defined
by

b
(Dap (@) = ——— 3 G w=1,2,....

by — a
w W oi=aw+1

If the limit is present,

Doy (U) := lim

w—oo by, — a

HieN:ay, <i<by,, iU},

w

defines the deferred density of U for U C N. If, for any € > 0, we have

lim ‘{iGNSl—FGwSiSbw, ’¢z_¢0’26}|:07
W—00 0y — QAqp

then a sequence (¢;) of numbers is said to be deferred statistically convergent to ¢g
(see [26]).

The aforementioned definition aligns with the statistical convergence of (¢;) as
shown in [9] for a,, = 0 and b,, = w.

Let ¢ = (¢i;) be a double sequence and 9 (u) = g (u) —p (u), ¥ (v) = s (v) —7r (v);
and assume {p (u)},{q(u)},{r (v)} and {s (v)} be sequences of nonnegative integers
satisfying the conditions

p(u) <q(u), r(v) <s(v) and

(22) limy, 00 ¢ (u) = 00, lim,_s00 s (V) = 0.

Deferred Cesaro mean Dy, » of the double sequence ¢ = (¢;;) is identified by

(Dd,ﬁ@ﬁ) (u,v) =
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3. MAIN RESULTS

Within the context of NN'S (F, 0,0, VU, O, x), we introduce the concept of rough
Ts-deferred statistical convergence for sequences in this section. {p (u)},{q(u)},
{r (v)} and {s (v)} represent the sequences of non-negative integers that fulfill (2.2)
throughout this investigation. Any more limitations on {p (u)},{q (u)},{r (v)} and
{s(v)} (if any) will be provided in the instances and theorems that correspond to
them.

Definition 3.1. We say that a double sequence (¢;;) in F is rough Zr-deferred
statistically convergent to ¢9 € F w.r.t. NN (0,Q,¥) for some r > 0, provided
that for each ,p € (0,1) and 7 > 0

(3.1)

{(U v) € N?: w(u o (@ 0) i p(u) +1<i<qu),r(w)+1<j<s(v),
O (¢ij — ¢o,7“+7)Sl—’Y,Q(ébz‘j—ﬁboﬂ“JrT)Z’Y
or V(¢ — ¢o,7 +17) > v} > p} € Io.

In this instance, ¢q is said to be the IESM; 19}(@, Q, ¥)-limit of the the double se-

(6’97‘1’)
quence (¢;;) and it is demonstrated by ¢;; Dsw,g

lim (ﬁij = ¢0.

In the following comment, we discuss how the Z7, S 19}(6, Q, ¥)-convergence en-
compasses certain regular convergence methods within NNS.

Remark 3.2. Let (F,0,Q,¥, 0, ) be an NNS and (¢;;) € F. Then

(i) We refer to the Ihsip.) (@, Q, ¥)-convergence of (¢;;) as the Zy-deferred statisti-

cal convergence w.r.t. NN, given that the condition expressed in (3.1) is satisfied

for r = 0.

() For p(u) =0, ¢(u) = w and r(v) = 0, s(v) = v in (3.1), we refer to the
VAN /\} . 19 (©,Q, ¥)-convergence of (¢;;) as the rough Zy-statistical convergence w.r.t.

60 0r Thygpy (0,2, W) —

(iii) Assume p(u) = ky—1, ¢(u) = ky and 7 (v) = l,—1, s(v) = lU in (3.1), where
02 = (ky, 1) is a double lacunary sequence. Then, we refer to the 77, ST, 19](@, Q,0)-
convergence of (¢;;) as the rough Zp-lacunary statistical convergence w.r.t. NN.

Let (F,0,Q,7,0, %) bean NNS and (¢;;) € F. In this context, both (©,Q, U)"—
lim ¢;; and IDS[zp 19](6, 2, ¥) — lim ¢;; may not be unique. Hence, we introduce

(67 Qv \Ij) — LIM" (¢Z]) = {(Z)O € F: (@7 Q? \Il)r — lim (ij = d)O} >
and
T (0,9, ) — LIM () = {¢>0 € F : Tpgiy (0,2, 1) — lim ¢y = ¢0}
to represent the sets of all (0,2, ¥)" —lim ¢;; and the set of all Ihsyy, 19]((9, Q,0) —

lim ¢;; of the double sequence (¢;;), respectively. We define the double sequence
(¢i;) as rough convergent w.r.t. NN if (6,0, V) — LIM" (¢;;) # 0 and as rough
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Tr-deferred statistically convergent w.r.t. NN if Zpgpy, 9(©, 2, ¥) — LIM" (¢;;) # 0
for some r > 0. Certainly, if 0 < r; <y, then
(©,Q,¥) — LIM™ (¢i;) C (6,4, ¥) — LIM™ (¢4) ,
and
IDS[w,ﬁ](@a Q,¥) — LIM™ (¢5) C IDs[wﬂg](@, Q,¥) — LIM™ (¢5)

for a double sequence (¢;;) in F.

Example 3.3. Take NN'S (R?,0,Q, ¥, ,*), where (R?,].||) is the usual normed

space. Consider 7102 = 71072 and 71 *y2 = min {y; + 72,1}, Vy1,72 € [0,1]. Ad-
ditionally, let ./\/’(@’97\11) denote the neutrosophic fuzzy set on R x (0, 0o) characterized

by
T el el
N@Q\I/:< ’ )
S P e P

for all w € F and 7 > 0. The double sequence (¢;;) in R is established as follows:

1, ifdj=2t—1
(ﬁij_{ —1, if not tEN.

Let ¢o € (0,9, V) — LIM" (¢;;) for some r > 0. So, we write © (¢i; — ¢o, 7+ 1) >
Q(pij — ¢o, 7+ 1) <~ and ¥ (¢ij — ¢o, 7 + 7) < . Hence, we obtain
Y
(1—=7)

Let k be extremely small, expressed as k = % and similarly, let 7' = 1’;77. Then

(t+71) > |pij — ¢o|, Vy € (0,1) and 7 > 0.

'+ K> |¢i — ol = ¢o € [dij — 1, diy +17] .

For i,j = 2t — 1, we get ¢ € [1 —r',1+71']. When 4,5 # 2t — 1, then ¢y €
[-1—7",—147']. Now

0, ifr' <1

1—r 1+ ]n[-1=r —1+7] :{ =7 =1], ifr" > 1.

Hence
oy = { ) i
(0,0,¥) — LIM (é%) —{ 0, if not.

Define the double sequence (w;;) in R? as

o [dg, ifi=2tj=2h
w”{ Z1, if not b eN.

Take p (u) =0, ¢(u) =w and r (v) =0, s (v) = v2> + 1, Yu,v € N. Then

(1(}{( 7) i p(u) + 1 <i < qlu),

{(u,v) € N?: ]
r(0) +1 < < s(0)O(wy; — do,r+7) 1,
T) 2>
1

Al s +7) 2 o Bl - ¢o,r+rm}\2p}

={mv) e H{(6) () 1 <0 < aw), r(0) #1255 5(0)

P(u)d(v)
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(r+)

(117) > |wz’j — ¢o|} > P}

= {0 €N TS {60 () + 1< < a(u), r(0) +1< 5 < 5(0)

r 4+ k> | — ¢0|}} > p}.
Since r > 0, we have ' > 0. So, for each ' > 0, we obtain
(3.2) 7' + Kk > | — ¢o| implies 7' + k > |1 + ¢y
whenever p (u) +1<1i <q(u), 7 (v)+1<j <s(v)andi# 2, # 2" Since

{w0) €N s b 1) sp () +1 < < qu) r(0) + 1< < 5(0)
z#Qt,J#2h}} <p}eF(T),

from (3.2), we write

{wv) e N ool 6,5) (W) +1 <0 < q(w), 7 (0) +1 <5 < s(v)
do €[-1—=r" 1 =1} < p} € F(Z), ¥Vr' > 0.

As a result

- —1—r,r—1], ifr>0
IDS[¢,0}(@,Q7‘I’) — LIM (wij) = { é) ] if not.

Regarding the NN (0,9, V), both the double sequences (¢;;) and (cw;;) do not

demonstrate convergence in the ordinary sense. Moreover, the limit (©,Q, ¥)" —
lim w;; is not valid for r > 0.

In contrast to the ordinary convergence observed in an NN'S, the rough conver-
gence of a double sequence (¢;;) w.r.t. NA does not necessarily imply the rough
convergence of a subsequence of (¢;;) within the same context. For instance, con-
sider the double sequence (¢;;) = (ij) in the NNS specified in Example 3.3. It is
evident that (0,Q, V) —LIM" (¢;;) = [1 — r, 1+ r] for r > 0. However, when exam-
ining the subsequence (¢;2;2) = (i%%) of (¢y;), the (©,Q, ¥) — LIM" (¢;2;2) does
not exist for any r > 0. This ratlonale similarly extends to the Z DS[ , 19](@, Q,0)-
convergence of a double sequence (¢;;) in NN'S.

Example 3.4. Take NN'S (RQ, 0,000, *), where (]R{2, HH) is the usual normed
space. Consider 71072 = 71 - 72 and 71 * 2 = min {1 + 72,1}, V31,72 € [0,1] and
0, Q, VU is defined in Example (3.3). Establish the double sequence (¢;;) in R? as
follows:

if not

Then (¢ikjl) = ((1,1),(4,4),(9,9),(16,16),...). Take p(u) = 0, g(u) = u and
r(v) =0, s(v) =v, Yu,v € N. Then, we have

Ipspy.0(©,Q,¥) = LIM" (¢45) = [=r, 7], Vr = 0.

ij, if 4,5 =2,
@) ={ & i ren

and
55[1/1,19] (©,Q,¥) — LIM" (¢4,5,) = 0.
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Now we may provide our auxiliary theorem, which is crucial to the understanding
of the subsequent findings. Since the findings are evident, the Lemma’s proof is
omitted.

Lemma 3.5. Assume that (F,0,Q,V,0,%) is a NNS and that (¢i;) is a double
sequence in F. For any v,p € (0,1) and 7 > 0, the following statements are
interchangeable:

(1) IBS[@Z),&](@’Q’\I}) — hm(bw = ¢0.
(if
{(w) e N s 1,5) () +1 i< q(w), () + 1<) <5 (0)

O (¢ij — po, 7 +7) <1 =7, Q(dij — o, 7 +7) >
or W (¢ij — ¢o,7 +7T) > v} > p} € Is.

Theorem 3.6. Assume (F,0,Q,9, O, %) be a NNS. Then, for each double se-
quence (¢i;) in F and r > 0, the inclusion

(67 Qv \IJ) — LIM" (¢Z]) - IDS[w,ﬁ](@a Qv \Ij) — LIM" (¢1J) .
supplies.

Proof. Let ¢g € (0,9, ¥) — LIM" (¢;;). For all v € (0,1) and 7 > 0, Juy € N such
that

O (¢ij — do,7 +7) > 1=, Q(ij — ¢o,7 +7) <7 and ¥ (¢;; — do,7 +7) <7,
for all 4,7 > ug. Thus
{(.9): 04 — 0,7 +7) < 1=, Apis — do,7+7) = 7y or
(i — do,7+7) = 7} C ({1,200} X N) U (N x {12, u0}),
Since
{(u,v) € Nx N: govges [{6,7) : plu) + 1 < i < g(u), r(v) +1 < j < (),
(7)€ (11,2, 0} X N)U (N x {1,2,.;u))}| 2 p} € T,
We obtain
{(u,v) €N 1 s |{(0.4) - p(u) + 1 < i < g(u), r(v) +1 < j < 5(v),

O(pij — 0,7 +7) <1 -7, Q¢ij — dpo, 7 +7) >
or U(¢s; — o, 7+ 7) > 7} ZP} € Is.

Therefore, ¢po € Zpgy,9) (0,2, ¥) — LIM" (¢;). As a result, we obtain
(0,92,¥) — LIM" (¢i5) C Ipsjy,0(©, 2, ¥) — LIM" (¢45) -
O

The inclusion connection indicated above is in fact rigorous, as Example 3.3
shows.
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Theorem 3.7. Let (F,0,Q,¥,0,%) be a NNS and (¢;;) be a double sequence in
F. It follows that for all v > 0 and v € (0, 1), there is no pair of elements ¢1, P €
IpSp,9)(0,Q, W) —LIM" (¢i;) such that ©(¢1—¢2,qr) < 1—7 or Q(¢1—p2,q7) > v
or U(p1 — ¢o2,qr) >y for g > 2.

Proof. For any v € (0,1), there exists 7; € (0,1) such that (1 —~1)0 (1 —~1) >
1 —~ and v *7v1 < 7. We establish this result through a proof by contradiction.
Consequently, there exist elements ¢1, g2 € IDSW;,&](@, 0, ¥) — LIM" such that

(33) O(p1 — ¢2,qr) <1 -7 or Q¢1 — p2,qr) > v or ¥(¢1 — d2,qr) > 7,
for ¢ > 2. For each 7 > 0 and construct the following sets

K — {(u,v) EN2:O(¢y; —b1,r+3) < 1—m,
Ui — 1,7+ 5) > v1 08 ¥(yj — 1,7+ F) > 71},

and
I — {(u,v) ENZ:O(¢ij — o, +3) <1 -1,

Qi — b2+ 5) = 71 00 Wby — b7+ 5) = |,
Hence, based on Lemma 3.5, we get
{(u,v) € N2: m {G,5) :pu) + 1 <i < qu), r(v) +1 < j < s(v)
(i) € K}| = p} e Ty,

and
{(ww) € N s 5l [{6.0) s p(w) +1 < < g(w), () +1 <5 < s(0)
(i,) € L}| Zp} € Io.
for p > 0. Now
{(w) € N2 el HG0) s plu) + 1< < g(w), r(v) +1 <5 < s(v)
(i,j) € K UL}| Zp} e D,
c {(uw0) e N2 s {() s p(w) + 1 <0 < glu), r(v) + 1< < 5(0)
(i.j) € K}| > p}
U{(u,v) e N2: WH(LJ') cp(u) +1<i<gqu), r(v)+1<j<s)
(i) € L}| = p} €T,
Hence
M = {(ujv) € N?: s (@) s p(w) +1 < i < gu), r(v) +1 < j < s(v)
(i) ¢ KULY < p} ¢ To.
Since ¢ > 2, take gr = 2r + 7 for some 7 > 0. Let (i,j) € M = KN L°. Take
O(¢p1 — ¢2,qr) < 1 —~ for ¢ > 2. Then, we write

1= >0(d1—do;2r+7) >0 (dij— 1,7+ %) 0O (¢ij — 2,7+ F)
>1=m)01=m)>1-7,
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which is absurd. If Q(¢1 — ¢2,qr) > v for ¢ > 2, then we have

TS Qo1 —d2r +7) <Q(dij — d1,7+ ) xQ(di; — P2, F)
<’Yl*’Yl<%

which is absurd. If ¥ (¢ — ¢2,qr) > 7 for ¢ > 2, then

V< U (pr— o, +7) <V (¢ij— b1, +5) %V (dij — 2, T)
<m*m <7

which is absurd. Hence,
(3.4) O(p1—2;2r+7) > 1—v and Q(¢1 —do; 2r+7) <y, V(p1 —2;2r+71) < 7.
Then, from (3.4) we get

O(d1 — d219r) > 1 — v and W(d1 — do;q7) <7, Q(P1 — ¢25qr) < for ¢ > 2

which is a contradiction to (3.3). Thus, no ¢1, 2 € Ipgjy,9) (0,2, ¥) — LIM" exist

such that ©(¢1 — ¢2;qr) < 1 — v or W(d1 — ¢a;qr) > 7, Q(p1 — d2;qr) > ~ for
q> 2. O

Proposition 3.8. Let (F,0,Q,V,0,*) be a NNS and (¢ij), (wij) be double se-
quences in F. IfIBS¢ﬁ](@,Q, U)—lim ¢;; = ¢o and Z; DS[w 19]((9,(2, U)—lim w;; = wo
for some r1,79 > 0, then

Igfq?ﬁ)}(@ Q,¥) — lim (dij + wij) = do + wo.
Proof. Given v € (0, 1), there exists 71 € (0,1) such that (1 — 1) <> (1- 71) >1-
and y; * y1 < 7. Suppose ITDSM) 79](6),9,\11) lim ¢;; = ¢o and T Ds[w 19]( \Il)
lim w;; = wp for a certain 1,72 > 0. For any 7 > 0, take into
P={(i): © (6 — do,m +3) > 1=,
Q (65 — b0, 71+ 5) <71 and U (¢5; — do, 71+ 5) < ’yl},
and
Q:{(i,j):@(wij—wo,r2+%) >1—,
Q (wij —wo, 2+ %) < and ¥ (wy; —wo,r2 + ) < 71}.

Then, we deduce

{wo) e M grb 6,5)  pw) +1 < < q(u),
r@+1<j<s(0), (,)) € PY < p} € F(T),

and
{wv) e N5 s [{G,9) p () +1 < i < g (),
) +1<j<s(0), (i) € QY < p} € F(Ta).

Construct
R={(i,j): (i,j) € PNQ}.
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Then, we get

{(u,v)EN2:m]{(i,j):p(u)—i-lgigq(u),
r@+1<j<s@), (1)) €RY <p} € F(T).

This yields that R # (. Let (i,7) € R. Then

O ((¢ij + wij) — (¢o +wo), 71+ 12 +7)
>0 <¢z’j — ¢o, 11 + g) 0O (wij —wo, T2 + I)

2
>(1=9)0(1—m)
>1_77

Q (i +wij) — (o +wo), 71 +ro+7)

< Q(¢z‘j —¢0,7“1+g> *Q<wij—WO,7“2+g>
<7 *M

<7,

and

U ((¢i5 + wi) — (¢o +wo), 71 + 12 +7)

< ‘I’(¢ij —¢0,T1+g> *\I’(wzj —woﬂ”2+%)
<7M*Em

<.

Hence

PRQC{(.3): (91 +wiy) — (do+wo)ra+rab7) > 17,
Q((¢ij +wiz) — (o +wo), 1 +12+7) <7
and W ((¢s; + wij) — (¢o +wo),m1 + 12 +7) < '7}'

This gives that

{(wo) e N s [{G,9)  p(w) +1 < < glw),
r() +1<j < s(v), (i) € PNQY < p}
c {(wv) e N2 s () s p(w) +1 <0 < g(w),
r(v) +1<j < s(v), O((¢ij +wij) — (do +wo),r1 +124+7) >1—7,
Q(¢ij + wij) = (¢o +wo), 11 + 12 +7) <7,
and W((¢s; + wij) — (¢o +wo), 71 + 12 +7) < fy‘ < p}.
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Thus, we obtain

{(wv) e N 5l [{6,9)  p(w) +1 < < q(w),
r(v) +1<j < s(v), O((dy +wij) — (do +wo)yr1 +r2+7) >1—7,
Q((pij + wij) — (¢o +wo),m1 + 712 +7) <7,
and \Il((d)w +wij) — (¢0+w0),rl + 12 +T) < ’Y’ < p} S f(IQ)

As a result, Igé,—[;:%)] (@, Q, \I/) —lim (¢U + wij) = ¢ + wo- 0

Remark 3.9. Proposition 3.8 is not valid for 0 < r < r1+79 when at least one of
and 79 is non-zero, namely, for 7y # 0 or 79 # 0 when Z} (0,9Q,¥)—lim¢;; = ¢o

DS[y,9]
and Igswm(@, Q,¥) — limw;; = wp, then Igé—[;:%)] (0,Q,7) — lim (¢;; + wi;) need

not to be equal to ¢g + wp for 0 < r < 71 + 7ro.

Example 3.10. Consider the NNS (R,0,Q,¥, 0, *) as outlined in Example 3.3.
Construct
D IS VR S N
%_{ ij, if not » PEN
and
—2)Tif i, # p,
“’”:{(() ) ifnc{t?ép » PN
Let p(u) =0, ¢(u) =wand r(v) =0, s(v) = 3v, Yu,v € N. Adopting the approach
illustrated in Example 3.3, we obtain

r 1—ry,rp—1], ifry >1
IDS[w,ﬁ]((—)?QJ\II)_LIM1¢2]:{Eﬂ 1 1 ] 1

if not,
and
N 2—1r9, 19— 2], ifreg >2
Ipsip,9(©,Q,¥) — LIM™ (w;;) = { é) | if not.
Now
R B G ) R Ry
(i + wij) = { i, if not » pEN.
Then
3—r,r—23], ifr>3
Tpsiy0) (0,2, ¥) — LIM (¢35 + wij) = { é) if not.
RS 0,0, ¥)—1lim ¢;; and Z'? 0,0, V) —limw;; are equal to 0 if 11 = 1 and
DS[1),9)] J DS[),0] j

ro = 2. We obtain Igjq?;;:%)}(@, Q,0) — LIM" (¢jj + wij) = 0 for 0 < r < ry+7r9 = 3.

Proposition 3.11. Assume (F,0,Q,V,0, %) is an NNS and let (¢i;) be a dou-
ble sequence in F. If IJTJS[w ﬂ](G,Q,\I/) —lim¢;; = ¢o for some r > 0, then

IBZ[M](@, Q,0) — lim cgij = cgg for any c € R.
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Proof. The result is evident when 0 = ¢ € R. Let 0 # ¢ € R. For given v € (0, 1),
one has 7, € (0,1) such that 1 —~ > 1 —~. Since IBSW; 19](@, Q,¥) —lim ¢y = ¢o,
we can consider the set

U= {(i,j) : © <¢z‘j —¢0,T+ﬁ> > 1=,
Q(@j—cﬁo’r-i-ﬁ) <72 and ¥ (d%‘j —¢07T+ﬁ) <72}
with
{wv) e N s ol G, 9) p (W) +1 < i < g (w),
r@)+1<j<s(0), () €U < p} € F(T).
Consider (i,7) € U. Then

O (coij — co, |clr +71) = O (¢ij — o, + T>

]

Z@<¢z‘j—¢oﬂ’+2’l|)

>1—v>1—7,

Q (cpij — coo, |c|r +7) = Q <<Z>z'j — ¢o, T+ T>

]

<0 <¢ij¢0v7"+7—)

2|c|
< 72 < v
and
-
VU (coyj — co, |c|r +7) =¥ <¢z‘j — o, + |C|>
<V (i — o, + i
>~ iJ 0,7 2’6’
< v < 7.
Consequently,
U CA{(i,j) : ©(cij — coo, |c|r + 1) >1—7,
Q (cpij — co, |c|r + 1) < v and ¥ (cdi; — coo, |c|r +7) <~} .
Therefore,

{wv) e N s s {G,0)  p (W) +1 i < g(u), r(0) +1 <5 < s(v)
O (cpij — coo, [c|r +7) > 1 =, Q(chij — coo, |c|r +T) <
and U (coi; — coo, [c|r +7) <y} < p} € F(Iy).

Consequently, I‘;‘g[w 19](@, 0, ¥) — lim cpi; = coo. O

Remark 3.12. When 0 < ¢ < |c|r, Proposition 3.11 is invalid for » > 0. Specifically,
for some r > 0 if IBS[w 19](@, Q,¥) — lim ¢;; = ¢o, then fDS[w 19}(6, Q,¥) — lim c¢;;
need not to be equal c¢g for 0 < t < |c|r and 0 # ¢ € R.
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Example 3.13. Take a look at Example 3.10 and assume ¢ = 2. It is obvious that
. e o ek
200 ={ Uipea, it RER
and
Tpsips)(©, 9, ¥) — LIM" (26;) = { %2 —hi=2) ﬁ fli?
Let r1 = 2. Then
Ipsip9) (0,9, ¥) — LIM? (¢5) = [~1,1]

and
Ipsip,0(0,Q, ) — LIM* (c¢y;) = [-2,2] = c[-1,1].

Conversely, Zpgy, (0, Q, ¥) — LIM (c¢y;) = [2 — t,t — 2] # ¢[—1,1] is obtained if
2<t <4

Theorem 3.14. Assume (F,0,Q,V,0, ) is a NNS and (¢i5) is a double sequence
in F. If there is a double sequence (wij) in F with Tpgpy9)(0,Q, ¥) — limw;; = ¢o
such that for each v, p € (0,1) we have © (¢ij — wij, ) > 1 =7y, Q(¢ij — wij, ) <7
and W (¢ij —wij,r) <y for alli,j € N, then ITDS[wﬁ](@va‘I’) —lim¢;; = ¢ for
some r > 0.

Proof. For given v € (0,1), choose 71 € (0,1) such that (1 =)0 (1 —71) >1—7
and 1 * 71 < 7. Assume Zpgpy 9)(0,Q, ¥) — limw;; = ¢o and

O (¢ij — wij, ) > 1 =7, Q(¢ij — wij,r) <7vand ¥ (dj; — wij, ) <7y
for each v € (0,1) and for all 4,5 € N. For every 7 > 0 and the sets
U={(i,j) : ©(wij — ¢0,7) < L=, Q(wij — do,7) =7 or ¥ (wi — ¢0,7) =N},
and
V ={(1,]) : ©(¢ij — wij,r) <1 =1, Q(ij — wij, ™) > 71 0or ¥ (dij —wij, ) >},
we get
{(u,v) e NZ: WH(L]') p(u)+1<i<q(u),r(v)+1<j<s(v)
(i,) €UY| = p} € Ty,
and
{(u,v) e N?: WH(Z’J) pu)+1<i<q(u),r(v)+1<j<s(v)
(i) eVH 2 p} € T
Hence
{{wv) e N gl {Gg) s p () + 1< i < q ), r(0) +1 <5 <5 (0)
(i) U < p} € F(T),

{(w) €N Gl [Gd) s p () 4 1< i S g (), r (0) +1 <5 < 5 (0)
(i) € VY < p} € F(Ta).
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Evidently, U¢ N V¢ # () and

{(u,v) e N?: mH(i,j) pu)+1<i<q(u),r()+1<j<s(v)
(i,5) € USN VY| < p} € F(Iy).
Consider (i,7) € U°N V. Then
O (¢ij — 0,7 +7) = O (¢ij —wij, 1) 0O (wij — o, T)
>1=7)00=m)>1-7,

Q(dij — g0, +7) < Q(dij — wij,7) * Q(wij — do, )
<T*7 <7,
and
U (dij — do, 7 +T) < W (Pij — wij, ) * ¥ (wij — do, 7) < 71 %71 < -
So,
Uuenvec {(’L,]) : @(gf)” *gf)o,TJrT) > 1*’)/,
Q(pij — po,7 +7) <7 and ¥ (¢i; — go,7 +7) <7},
follows, implying
{(wo) e N oo [0, 5) s p () +1 < i < g (w),
T(U)+1 S] SS(U)7 @(¢ij_¢07r+7-) > 1_’77
Q@i — do,7+7) <7 and W (g — do, 7 +7) <7} < p} € F(Ta).
Thus T}y, (0, 2, ¥) — lim ¢35 = ¢o. -
Definition 3.15. A double sequence (¢;;) in F is said to be Z-deferred statistically
bounded w.r.t. NN (0,Q,¥), if for all v, p € (0,1), 38 > 0 such that
{(wo) e N s [0,5) : p () +1 i < q(w), 7 (0) 1< < s(v)
O (¢i5,8) <1 -7 or Q(ei,B) >, ¥(gij, ) >~} > P} € Ip.
Theorem 3.16. Let (¢;;) be a double sequence in F and (F,0,0,¥, 0, %) be a

NNS. In such case, for some r > 0, (¢4;) is To-deferred statistically bounded iff
IDS[w,ﬂ}(@, Q,¥) — LIM" ¢; # 0 for some r > 0.

Proof. Assume that (¢;;) is Zp-deferred statistically bounded. For each v, p € (0, 1),
there exists § > 0 such that the set

K=1{(i,7): ©(¢ij,8) <1 -7 or Q(¢y,B) >, ¥(¢is,8) >}
has
{wv) e N s i G, 9) p () +1 < i < g (),
r@)+1<j<s(), () €K} = p} €T,
Thus, we obtain

K¢ ={(i,5) : © (95, 8) > 1 —v and Q (¢, B) <, ¥ (ij, 8) <}
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and
{{(wv) e N2 ol [( ) s p () +1 < < g (w),
P +1<j<s ), (i5) €KY < pl e F(T).
Consider (i,7) € K¢. For each 7 > 0, we get
O (¢ij, B+7) >0 (¢i;,8)00(0,7)
> (1—7)01
:1777
Q(pij, B+71) < Q(ij,B8) *Q0,7)
<%0,
=7
and

<7 x0,

:’)/‘
So, we obtain
Kec{(i,j): ©(¢ij, B+7)>1—1,
Q(pij, B+ 1) <vand ¥ (¢i;, 5+ 7) <~}

and
{(w0) €N sobis G ) p (W) + 1< i < g (),
r)+1<5<s(), 06, 8+7)>1-7,
i, B+7) <y and ¥ (635, 8+ 7) <7} < p} € F(Ta).

Consequently, we have 0 € Zpgy (0,9, ¥) — LIM? Gij- S0, Ipgpy,e(©,Q,¥) —
LIMP ¢ # 0.

On the contrary, assume Zpgjy9(0,Q2, ¥) — LIM" ¢;; # 0 for some r > 0. So,
there exist ¢g € F such that ¢g € Zpgjy9(©,Q2, ¥) — LIM" ¢;;. Therefore, for each
v € (0,1) and 7 > 0, we get

L={(i,7):©(dij — 0,7 +7) >1—7
Q(pij — 0,7 +7) <7vand ¥ (¢i; — ¢o,7 +7) <7}
with
{wv) e N2 ol (i) s p (W) + 1< < g (w),
rH+1<j<s(0), (i) €L} <p} € F(T).
Select an T' > 0 large enough such that @ =T — (r +7) > 0, O(¢p, Q) = 1 and
Q(po, Q) = V(po,Q) =0. Let (i,7) € L. Then

O (¢ij, T) = O (¢ij — po,7 + 7) OO(0, Q)
> (1—7)01
=1 -7
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(i, T) < Q(¢ij — do,7 + 7) * Qbo, Q)
<7vx0

= ’)/'
Likewise, we obtain ¥ (¢;;,7") < 7. Thus,

LC{(i,7):0(0i,T) >1—7, Q(¢i;,T) <vand ¥ (¢;,T) <~}
and so, we get
{wv) e N s o G, 9) p () +1 < i< g ), r(0) +1< ) < s (v),
O (¢33, T) > 1=, (¢35, T) <7 and ¥ (63, T) <7} < p} € F (Ta).
As a result, the double sequence (¢;;) is Zo-deferred statistically bounded. U

Theorem 3.17. Let (F,0,Q,V,0,x) be a NNS and (¢;) be a double sequence in
F. Then, Ipgpy(0,Q, V) — LIM" (¢i;) is a convex set for each r > 0.

Proof. Assume that v € (0,1) and ¢1,¢2 € Ipgjy,9) (0,2, ¥) — LIM" (¢;). Then,
there exists v1 € (0,1) such that (1 —71)0 (1 —7v1) > 1 —vy and 7 *xvy1 <. We
show that
ne1 + (1 —n)d2 € Ipgy,9)(0,Q, ¥) — LIM" (¢i;)
for any n € [0,1]. The proof is straightforward when 7 = 0 and n = 1. Consider
€ (0,1). For any 7 > 0, we define

T={(13):0 (65— 1.7+ %) >1-m
Q<¢ij—¢1,r+ﬁ> <m and‘I’(@'j—qﬁl,?‘-i-ﬁ) <’Y1},
and
V:{(i '):@<¢ij—¢2,r+ﬁ> >1—,
Q (61— d,7 + o) < 7 and W (45— G2+ ) < |-
Since ¢1, 2 € Ipgjy,9) (0,2, ¥) — LIM" (¢;5), we get

{{wv) e N sbs ) s pw + 1< i < g (),
()+1§J§5(%(%ﬁ€TH<p}€f@ﬂ,
and
{wv) e N gl 6,5)  p() +1 < < q(u),
rH+1<j<s (), (i) €V <pheF(T).
So, TNV # () and
{wo) eV srdis 6,5)  p(w) +1 < < q(u),
r)+1<j<s@), (,5) TNV} <p} e F(Is).
Consider (i,7) € TNV. Next

O (¢i5 — [nd1 + (1 —n)ga], 7+ 7)
=0 ((1 —n) (dij — ¢2) +n(Pij — ¢1), (L —m)r +nr+7)
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T T
>0 ((1=n) (d4 — 62), (1= mr + 2) 00 (n {6y = d1) 1w + 7 )

—@<¢w i )>oe(¢w ¢1,r+277>
>(1=7)0(1—m)>1-7,

and
Q(¢pij — o1+ (1 = n)ga], 7+ 7)
=Q((1—=n)(dij — ¢2) + 1 (dij — 1), (L —n)r +nr+71)

gQ((l—n) (fij — ¢2), (1 — )7"+2> (n(¢ij—¢1)’nr+%>

= <¢z’j — ¢2,7 + 2(17_?7)) * Q) <¢z’j - ¢1,7+ 22)
<mx*m <7.
In a similar vein
W (gij — [nd1 + (L —=n)ga],m +7) < 7.
This indicates that the set
{6.9):© (0 — g1+ (1= mal,r+7) > 17,
Q(ij — np1 + (L —n)ga],r +7) < v
and W (¢i; — [n¢1 + (1 —n)ga],r +7) <

contains TNV as a subset. Consequently, we have

{(u,v)€N2:m]{(i,j):p(u)—klgigq(u),
r(v)+1<3j<s(v), 0(gij — g1+ (L=m)da],r +7) >1 -7,
Q(¢ij — N1+ (L —m)ga],r +7) <

and W (63; — [161 + (1= n)al,r +7) <7} < p} € F(To).
for each ~y,p € (0,1) and for all 7 > 0. Thus
né1 + (1 —n)¢2 € Ipspys) (0,2, W) — LIM" (¢4;) .
U

Theorem 3.18. Let (F,0,Q,V,0,%) be a NNS and (¢;5) be a double sequence in
F. After that, for each v >0, Zpgjy9(0,Q, ¥) — LIM" is closed.

Proof. We do not need to establish a proof since Zpgyy, (0,2, ¥) — LIM" (¢;;) is
an empty set. Suppose Zpgy (0,2, ¥) — LIM" (¢;;) # 0 for some r > 0. Let

b0 € Ipgpy,(©,Q, W) — LIM" (¢;;). Then, we have a convergent double sequence

(wij) in Tps(ps)(0, 2, W) — LIM" (¢1;) w.r.t. 00 such that w;j =5 ¢p. Select
m € (0,1) for v € (0,1) such that (1 —1)0 (1 —91) > (1 —~) and 71 * 71 < 7.

(@&\p) ¢, then, for all 7 > 0 and ip € N such that

Since wj;

T
(W’LJ ¢07 ) - 71, (W'Lj ¢07 ) < Y1 and ¥ (OJZ] — ¢0, 5) < Y1
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for all 4,5 > do. Adjust t,k > ig so that wy € Tpgpy,g(O, 2, V) — LIM" (¢;5). Thus,
using

{wv) e N s s 1{G,9) p (W) +1 i < g (),

(3.5)
r)+1<j<s@), (4,5 €k} <p} € F(Ty),

we obtain
.. T
’CZ{(%J)39<¢ij—wtk,T+§) >1—m,

Q <¢ij — Wy, T+ g) <7 and ¥ (sz'j — Wk, T+ %) < 71}-
If (i,5) € K, then we get
O (91 — 0.7 +7) = © (61 — wir + 3 ) 0O (wir — g0, 7 )

>(1=y)0(1—m)>1-7,

Q(¢ij_¢07r+7)§Q<¢ij_wtkar+%> (wtk %o, )

<T1x71 <7,
and
‘I’(¢z'j—¢0,7“+7)S‘I/(ﬁbij—wtk,r-i-%) (wtk b0, = )
<7*x7 <7
As a result

K - {(Za]) : @(¢Z] *¢0,7’+’7') >1 -7
Q(qblj *qf)o,TjLT) <’yand \I’(¢Z] *gf)o,T‘JrT) <’7}‘
According to the (3.5), we obtain
{wo) e N srdis 16,5)  p(w) +1 < < q(u),
()+1§]§8() (¢Z] ¢077’+7')>1—%Q(¢ij—¢0aT+7)<7
and W (65— 60,7 +7) <7} < p} € F (o),

or g9 € Lpgjy,9 (0,2, ¥) — LIM" (¢;). Consequently, the outcome guarantees. [
Theorem 3.19. In the event that Ipgpy (0,2, ¥) — lim (¢i5) = ¢o, 7 € (0,1)
occurs such that, for some r > 0, Bé?’g’\y) (r,7) C Ihsiw ﬁ](@, Q, ) — lim (¢;5).

Proof. If v € (0,1) is known, find 3y; € (0,1) such that (1 —91)0(1—71)>1—x
and v, * 71 < 7. Assume that Zpgpy 9)(0,Q2, ¥) — lim (¢4;) = ¢o. For every 7 > 0
and consider the set

£={(i.5): © (@ —d0,7) > 1—m

Q (¢ — 60.7) < 71 and ¥ (b — 60,7) < 71 }.
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Then, we get

{(wv) e N g G, 5) s p () +1 i < g ),
r+1<j<s(0), (i4) €LY <p} € F(T).

Select a such that « € Bé(;)’g’qj) (rym1), r>0.

O(¢o —a,7) 21 =71, Qo —,7) <71 and ¥(¢o — a,7) <
in such case. Likewise, for (i,7) € £, we get
O (pij —a,r+7)>1—7, Q(psj —a,7+7) <vyand ¥ (¢; — o, 7+ 7) < 7.
Consequently,
LC{(t,7):0(dij —a,r+7)>1—7
Q(pij —a,r+7) <vyand ¥ (¢;; —a,r +7) <~}.
So, we obtain
{(u,v) €N2:m\{(i,j) p(u)+1<i<q(u),rw)+1<j<s(v),
O(pij—a,r+717)>1—7, Q(dsj —a,r+7) <%y
and W (¢, — a,r +7) <7}| < p} € F (D).
Thus, a € IBSW,&](@’ Q,¥) — lim (¢;;). This gives that

S(0,00), | - .
Bébo Wr,1) € Ipsjp,0(©, 8, ¥) — lim (¢;;) -
[l

Now, let’s introduce and explore the concept of a rough deferred statistical cluster
point in a NG as stated below:

Definition 3.20. Let (F,0,Q, ¥, 0, %) be a NNS and consider (¢;;) as a double
sequence in F. For each r > 0, we define p € F as a rough Zs-deferred statistical
cluster point of (¢;;) w.r.t. NN (©,Q,¥) if
dIQ{(“?”) €N2 : m’{(%]) :p(u)+1 SZSQ(U), T(U)+1 S] < S(’U),
@(¢Zj 7p7r+7—) > 1 -7 Q(¢Z] 7pa’r+7—) < v,
U (¢ij —pr+7) <7H < p} # 0,

where

Iy (4) =T = B s () () + 11 < g(w),

rw)+1<j<s(v), (i,5) € A},
holds for every 7 > 0 and v, p € (0,1). Equivalently
{wo)eN: b |[{ ) i p(w) + 1< i < g (),
r()+1<j<s(v), ©(¢i —p,r+7)>1-7,
Q(pij —p,r+71) <~vand ¥ (¢;; —p,r+7) <'y}} <,0} e F(I,).



2116 I. A. DEMIRCI, O. KISI, AND M. GURDAL

We use ' 910.0,0) (Z) (¢4j) to represent the collection of all Z7,

cluster points of the double sequence (¢;;).

S[v,9] (Ga Qa \Ij)_

When r equals 0, we refer to the rough Zs-deferred statistical cluster point of a
double sequence (¢;;) in F as the deferred Z-statistical cluster point of (¢;;) w.r.t
NN (0,Q,7), denoted as Ipsip,0 (0,2, ¥)-cluster point. In this scenario, we repre-
sent the collection of all Zpgpy »](©, 2, ¥)-cluster points of (¢i;) by I pgpy,9) (Z) (¢ij)-

This is how we now display the set FESW,@](@,Q,\I’) (Z) (¢ij)’s topological property:

Theorem 3.21. Let (F,0,Q,V,0,%) be a NNS and consider (¢i;) as a double
sequence in F. It follows that for any r > 0, FTDS[zp 91(6,0,) (Z) (¢ij) is a closed set.

Proof. Assume that v € (0,1). Then, there exists v € (0,1) such that
(1=7)0(1—=71)>1—~and v 7 <.

Suppose w € hswoe.00) (Z) (¢ij). Then, there is a double sequence (wj;) of

members in Iy 06 0w (Z) (¢i5) such that (©,Q,¥) — limw;; = w. Thus, for
each 7 > 0, 37,5 € N such that

@(wij—w,%> >1—n, Q(wij—w,%) <M andW(wij—w,%) <M
for all ¢ > ig and j > jo. Assign t > ig, k > jo. Next,

@(wtk—w,g> >1—, Q(wtk—w,g> <7 and@(wtk—w,g> < 71.

Also, we have
.. T
W= {(Z,J) : 0 (¢ij — Wi, T+ 5) >1—m,

Q<¢ij_wtkvr+g> <7 and ‘I’(¢ij _Wtkar“‘%) <71}
with
{wv) e N s s 1{G,9) p (W) +1 < i < g (),
r@)+1<j<s(0), () EWH <p}eF(T).
If (i,7) € W, then we get
O (¢ij —w,r+71) > @(qﬁij —wtk,r—i—g) OO <wtk—w, g)
>A=m) 00 —m)>1-7,

Q(pij —w,r+7) Sﬂ(éij—wtk,r+%> *Q<wtk_w,f>

2
<mx*m <7,
and
T T
U (pij —w,r+7)< V¥ (qﬁw — Wi, T+ 5) * U (wtk —w, 5)
<M x7 <7
Thus, we get

W CA{(i,j) : O (pjj —w,r+7)>1—7
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Q(¢ij —w,r+7) <~vand ¥ (p;; —w,r+7) <~}

=>@wm6N% {Gd) p) +1<i<qu), r(v) +1<5<s(),

1
¥ (u) 9 (v)
O(pij —w,r+7)>1—7, Q(pij —w,r+7) <7
and ¥ (¢;; —w,r +7) <~} < p} € F(Zo).
w € Iy 010.0,0) (Z) (¢4j) as a result, and Lhsioe.00) (Z) (¢4j) is closed. O

Theorem 3.22. Let (F,0,Q,V, O, %) be a NNS and let (¢i;) be a double sequence
in F. Assume k € U'pgpy ) 0,0,9) (L) (¢iz). If, for each v € (0,1),

O—r,r)>1—7, Q(c—kr,7) <7y and ¥ (s — k1) <.
hold for some r > 0, then ¢ € L s 0(0,0,0) (Z) (¢4j)-

Proof. For given v € (0,1), 3y, € (0,1) such that (1 —~1)0 (1 —~) > 1—+ and
71 %71 < 7. Suppose that & € I'pgjy 9)(0,0,w) (#ij). Then, for all 7> 0, the set

T={(,7):0(¢ij — K, T7) >1—1,
Q(pij — K, 7) <7 and ¥ (¢i; — K, T) <711}
has
{wo) e M sodi 6,5) P +1 < < q(u),

(3.6)
()+1§J§s(%(uﬁ€TH<p}€f@ﬁ,
for each 7, p € (0,1) and 7 > 0. Consider ¢ € F such that
O —kr)>1—7, Q(c—k,r) <y and ¥ (¢ —K,7) <™

for some r > 0. For any pair (i,7) € T, following a similar approach as mentioned
above, we derive

O (i —s,r+7)>1—7, Q(¢ij —¢,r+7) <~vand V(¢ —s,7+7) <7.
Therefore,

Tc{(i7):© (b —s,r+7)>1-7,
Q(¢ij—<,r+7)<’7and U (ij —<,r+7) <7}

:>{(u,v)€N2 D@ Hz] w)+1<i<q(u),
Mw+1éjés@%(aﬁ€TH<p}
{0 e Nt s ) )+ 1 < < g (),

r(v)+1<j<s(), O(pij —s,r+7)>1—7,

Q(pij — s, +7) <~vand ¥ (¢j; — <, 7+ 7) <} <p}.
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Since the (3.6) holds, we obtain

{(w0) €N oo [0, 5) s p () +1 < i < g (w),
r()+1<j<s), O(¢ij —¢,r+7)>1=7, Qi —s,r+7) <7
and\IJ(qbl-j—q,r+T)<7}|<p}€.7:(I2).

The aforementioned theorem makes it abundantly evident that there is a cor-
responding rough Zo-deferred statistical cluster point for each deferred statistical
cluster point in a double sequence in a NNS. The following theorem is presented
in view of this fact.

Theorem 3.23.
0.0,V
PrDS[d),ﬂ](@,Q,\I/) () (¢ij) = U beo )(7"7 )
#0€L psy,v)(0,0,%) (L) (#i5)
exists for some r >0 and v € (0,1).

Proof. Suppose v € (0,1) is given. So, 371 € (0,1) such that (1 —~1)0 (1 —~1) >
1—vand vy, xy; <~y. For some r > 0, let

0,Q,v
(S U Béo )(Tv 71)'
#0€L psiy,9)(0,9,%) (2) (i)

Then, 3o € T'pgjy9)0,0,9) () (¢ij) such that ¢ € B((b?’g’@) (r,71), that is,

(g0 —s,7) > 1 =1, Qo —<,7) < 1 and ¥(dg —¢,7) < 1.
By ¢o0 € I'pgpy.v0,0,w) (Z) (¢ij), for each 7 > 0 and the set
H ={(i,7) : © (¢ij — ¢o,7) > 1 — 1,
Q(¢ij — do,7) <71 and ¥ (¢ — do,7) <71}
we get
{wv) e N g G, 5) s p () +1 i < g ),
r+1<j<s @), (i4) € BY <p} e F(T).
Consider (i,7) € H. In a similar vein, we get
O(pij—s,r+717)>1—7, Q(¢sj —s,r+7) <yand ¥ (¢;; —¢,7+7) <7,
as mentioned earlier. Thus,
HcC{(,j):0(dij —s,r+7)>1—1,
Q(pij —s,r+7) <vand ¥ (¢ —s,r+7) <~}
N {(u,v) GNQ:W\{(i,j):p(u)+l§i§q(u),
r(v)+1<j<s@), O(pij—s,r+7)>1—7, Q(¢sj —s,7+7) <7

and VU (¢i; — ¢, +7) <7} <P} € F (L),
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that is, ¢ € L hsw.00.00) (Z) (¢4j). So, we have

@,Q,\P r
(3.7) U By (r,m) € Ty e (Z) (6i)
#0€L psy,v](0,02,%) (L) (¢is)

Conversely, if ¢ € T g1, 910.0,0) (Z) (¢4j), then let on contrary

< ¢ U By (r,m).

$0€l psiy,9)(0,9,v) (L) (¢ij)

So, for all ¢g € I'pgiy,9)0,0,9) (Z) (¢ij), We obtain ¢ ¢ Bé)?’g’\p)(r, 1), i.e.,

6(50 - §,’I”) <1- Y1, Q(SO - §,’I“) > M and \II(SO - §7T) > V1

2119

Therefore, by Theorem 3.22, we have ¢ ¢ IV (©,0,0) (Z) (¢i5), which goes

DS[,9]
against what we assumed. Thus

r 0,0,v
(38)  Thswaeaw ) (6y) C U B (1),
#0EL D5y, v1(0,0,7) (L) (#i5)

Combining (3.7) and (3.8), yields the following outcome.

0

Theorem 3.24. Let (F,0,Q,U,0,%) be a NNS. Given a double sequence
(¢IJ) m f, let IDS[w,ﬁ](G):Qv \If) — lim Qbij = (250. Then PTDS[Q[;,'&}(@,Q,\P) (I) ((Zﬁw) C

Ipsip9(0,Q, ¥) — LIM" (¢;5) for some r > 0.

P?"OOf. Assume IDs[wﬂg](@, Q, \Il) —lim (ﬁw‘ = (b(). Thus (250 € FDS[T/J,Iﬂ(@,Q,\I/) (I) ((b”)

By Theorem 3.23, for some r > 0 and v € (0,1),

T 9797
(3.9) Ipsiw.oe.09) () (6i) = 3250 ).

Also, by Theorem 3.19,

(3.10) Bég’Q’\p)(r, Y1) C Zpsip9 (0,2, ¥) — LIM" (¢y) -

Hence by (3.9) and (3.10), we have

Upsioo.00) (L) (9ij) C Ipspy,9 (0,2, ¥) — LIM" (¢4;) .

0

Definition 3.25. A double sequence (¢;;) in F is said to be strongly Z,-deferred
Cesaro convergent or Ip,, 19](@, Q, V) summable to ¢g w.r.t. the NN (©,Q, V) for

some r > 0, provided that for each v € (0,1) and 7 > 0, there exist ig, jo € N such
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that
q(u),s(v)
(u,v) € N2 s O (¢ij — po,7 +7) < 1—7
i=p(u)+1
j=r(v)+1
q(u),s(v)
o sagaey DL ey —dor+T) 27,
i=p(u)+1
j=r(v)+1
q(u),s(v)
W VU (¢ij — ¢o, 7 +7) >0 p €Iy
i=p(u)+1
j=r(v)+1

Using symbols, we represent the expression as ¢;; — ¢ (IB[ " ﬂ]((%, Q, \II))

From Definition 3.25 and as a consequence of the previous theorems, we can give
the following result.

Theorem 3.26. Let (F,0,Q, ¥, 0, ) be a NNS, and let (¢;5) be a double sequence
in F.

(i) If (0.2, 0)" — lim gy = o holds, then dij — do (T, (0.2, ).

(ii) @i — qﬁg(IEw’ﬂ](@,Q,\D)) implies Tpygr, (0,2, ¥) —lim ¢i; = .

(i) Zgpy0(©: QW) —lim ¢i; = do implies dij — do(Lpy, 50,2 ) for (4ij)
to be bounded.

4. CONCLUSION

In the context of a convergent double sequence (¢;;), where estimating terms be-
comes challenging for sufficiently large 4, j, an auxiliary sequence (w;;) is employed
to approximate values, introducing errors. To address this challenge, rough conver-
gence has emerged as a solution. Numerous mathematicians actively explore the re-
lationship between statistical convergence and various convergence concepts within
neutrosophic normed space. However, the more general idea in this theory remains
insufficiently investigated, particularly with consideration given to the Pringsheim
limit. This study, extending neutrosophic theory, significantly contributes to the ex-
isting literature. It introduces two valuable additions in the realm of neutrosophic
theory for double sequences in NNS: (i) a form of rough Zs-deferred statistical
convergence; (ii) rough Zs-deferred statistical limit and cluster points. These con-
cepts and findings can serve as theoretical tools for examining optimal approaches
within the framework of turnpike theory in a fuzzy environment.
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