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APPROXIMATES SOLUTIONS IN ROBUST MINIMAX
PROGRAMMING PROBLEMS WITH APPLICATIONS

ZHE HONG* AND DO SANG KIM

ABSTRACT. This paper is devoted to the study of approximate optimality con-
ditions and duality in robust minimax optimzaion problem under a suitable con-
straint qualification. Using some advanced tools of variational analysis and gener-
alized differentiation, we establish necessary conditions for approximate solutions
of a robust minimax optimization problem. Sufficient conditions for such solu-
tions to the considered problem are also provided by generalized convex functions.
We state a dual problem to the primal one and explore weak, strong and converse
duality relations between them. Finally, by using the obtained results, we derive
necessary and sufficient conditions for weak approximate Pareto solutions to the
robust multi-objective optimization problem.

1. INTRODUCTION

Optimization problems, in which both a minimization and maximization process
are performed, are known in the area of mathematical programming as minimax
problems. In the area of game theory, economics, best approximation theory and
great variety of situations involving optimal decision making under uncertainty,
problems of this type was treated maily. Minimax programming problems have been
the subject of immense interest in the past few years. Recently, many researchers
have studied optimality conditions and duality theorems for minimax programming
problems. For details, see e.g., [1-9]. But in classical optimization models, the data
are usually assumed to be known precisely. However, there are numerous situations
where the data are uncertain. Most frequently, it is not easy to find an optimal
solution which is satisfied all criteria at once. Hence, another important solution
concept, namely efficiency and properly efficiency should be taken into considera-
tion.

In 1973, Soyster [10], who was the first to consider, what now is called Robust
Linear Programming. To the best of our knowledge, in two subsequent decades there
were only two publications on the subject [11,12]. The activity in the area was re-
vived circa 1997, independently and essentially simultaneously, in the frameworks
of both Integer Programming (Kouvelis and Yu [13]) and Preface xvii Convex Pro-
gramming (Ben-Tal and Nemirovski [14], El Ghaoui et al. [15,16]). Since 2000, the
robust optimization area is witnessing a burst of research activity in both theory
and applications, with numerous researchers involved worldwide.
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An increasingly popular approach to optimization problems with data uncertainty
is robust optimization, where it is assumed that possible values of data belong to
some well-defined uncertainty set. In robust optimization, the goal is to find a
solution that satisfies all constraints for any possible scenario from the uncertainty
set and optimizes the worst-case value of the objective function. Theoretical and
applied aspects in the area of robust optimization have been studied intensively by
many researchers; for details, see e.g., [17-21]. The solutions of robust optimization
models are ”uniformly good” for realization of data from the uncertainty set.

Our approach in this paper is different from the earlier works. That is, we use
some advanced tools of variational analysis and generalized differentiation (e.g., the
nonsmooth version of Fermat’s rule, and the sum rule for the limiting/Mordukhovich
subdifferential) (see, [22]) to establish necessary conditions for approximate solu-
tions of a robust minimax programming problem with inequality constraints. Suffi-
cient conditions for such solutions to the considered problem are also provided by
means of the use of generalized convexity (see [23]) defined in terms of the limiting
subdifferential for locally Lipschitz functions.

Along with optimality conditions, we propose a dual problem to the primal one
and examine weak, strong, and converse-like duality relations under assumptions of
generalized convexity.

In addition, we employ the necessary and sufficient optimality conditions obtained
for the robust minimax programming problem to derive the corresponding ones for
a robust multi-objective optimization problem.

This paper is organized as follows. In Sect. 2, we describe some basic definitions
from variational analysis and several auxiliary results. In Sect. 3, we present some
results on robust minimax programming problem, to including necessary conditions
for approximate solutions, sufficient conditions for the such solutions, and duality
relations. In Sect. 4, we show the results on robust multi-objective optimization
problem, including necessary and sufficient conditions; duality relations. Finally,
we give some conclusions in Sect. 5.

2. PRELIMINARIES

Let us recall some notations and preliminary results which will be used through-
out this paper; see e.g., [22,24]. R™ denotes the Euclidean space equipped with the
standard Euclidean norm ||-||. The nonnegative orthant of R" is denoted by R’;. The
inner product (or scalar product) in R™ is defined by (a,b) := a’b for all a,b € R™.
The symbol B(z,7) means the open ball centered at € R™ with the radius 7 > 0.
Let IT C R” be a given set, we denote by coll the convex hull of II, and the notation

o L # stands for x — 7 with 2 € II. We also denote by II° the polar cone of a set
II € R"™, where

(2.1) II° := {y e R" | (y,z) <0 for all z € II}.

Let F : R™ = R™ be a multifunction (or set-valued mapping), we consider the
multifunction F' with values F(z) C R™ in the collection of all the subsets of R™.
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The limiting construction

Limsup F(x) := {yERm | 3ok =2,y —y

T—T

with yx € F(xy) for all k € N:={1,2,.. }}

is known as the Painlevé—Kuratowski upper/outer limit of F' at Z.
Given II C R”, and z € II, define the collection of Fréchet/regular normal cone
to Il at = by

]V(:E;H) = Nn(z) = {v eR"” ‘ limsupw < O}.
A
If z ¢ 11, we put ]/\\T(:E;H) = 0.
The Mordukhovich/limiting normal cone N (z;1I) to Il at # € I C R™ is obtained

from regular normal cones by taking the sequential Painlevé-Kurotowski upper
limits as

N (z;1I) := Limsup N (z; IT).
xlhi
If 7 ¢TI, we put N(z;1II) := 0. B
For an extended real-valued function ¢ : R” — R := (—o00,00] = RU {00}, its
domain and epigraph are defined by
domy = {z € R" | p(x) < oo} and epip := {(z, 1) ER" xR | > p(z)},

respectively. We say ¢ is a lower semicontinuous (l.s.c. in short) function if
liminfy . o(y) > ¢(x) for all x € R”, in addition, ¢ is a upper semicontinuous
(ws.c. in short) function if limsup,_,, »(y) < ¢(z) for all z € R™.

Let ¢: R™ — R be finite at Z € dom ¢. Then the collection of basic subgradients,
or the (basic/Mordukhovich/limiting) subdifferential, of ¢ at Z is defined by

0p(x) := {v eR" | (v,-1) € N((:f,@(a‘:));epigo)}.

Consider the indicator function §(+;IT) defined by §(z;II) := 0 for = € II and by
d(x;II) := oo otherwise, we have a relation between the limiting normal cone and
the limiting subdifferential of the indicator function as follows (see [22, Proposition
1.19]):

N(z;II) = 00(z;11) for all z € II.

We say a function ¢ : R® — R is locally Lipschitz at z € R™ with rank L > 0,
i.e., there exists 7 > 0 such that

[p(21) = p(2)| < Lz — 22|, Vi, 22 € B(7,7),
and it also holds that [22, Theorem 1.22]
ol <L, e opa).
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The generalized Fermat’s rule is formulated as follows [22, Proposition 1.30]: Let
@ : R™ — R be finite at Z. If Z is a local minimizer of ¢, then
(2.2) 0 € Op(2).

The following lemmas which are related to the Mordukhovich/limiting subdiffer-
ential calculus are very useful.

Lemma 2.1 ([22, Corollary 2.21 and Theorem 4.10(ii)]). (i) Let ¢; : R™ — R,
i=1,2,...,m, m>2 be l.s.c. around T € R", and let all but one of these
functions be Lipschitz continuous around T. Then

g1+ @2+ ... + o) (T) C Op1(T) + 0p2(Z) + ... + 0o (Z).

(i) Let p; :R®™ = R, i =1,2,...,m, m > 2 be Ls.c. around T for i € Iy (T)
and be u.s.c. at T for i & Inax(T), suppose that each @i, i = 1,...,m, is
Lipschitz continuous around T. Then we have the inclusion

d(max ;) (Z) cU{a( > (AL Am) eA(i)},

i€ Imax (T

Xigi) (T)
)

where the equality holds and the mazimum functions are lower reqular at T if
each ; is lower regular at this point and sets Inax(T) and A(Z) are defined
as follows:

Inax(T) := {Z e{l,...,m} | pi(z) = (maxgoi)(:ﬁ)},
AZ) = {()\1, s Am) [ A =0, ) TN =1, Xi(i(T) — (max ¢)(T)) = 0}-
i=1

Lemma 2.2 (Mean Value Inequality [22, Corollary 4.14(ii)]). If ¢ is Lipschitz
continuous on an open set containing [a,b] C R™, then

(x*,b—a) > p(b) — p(a) forsome z* € dp(c) with ¢ € [a,b)
where [a,b] := co{a,b}, and [a,b) := co{a,b}\{b}.

For a function ¢ : R™ — R being locally Lipschitz continuous at z, the generalized
directional derivative (in the sense of Clarke) of ¢ at Z in the direction v € R" is
defined as follows:

) —
©°(Z;v) := limsup pla + ) go(x)
220 A

In this case, the convexified/Clarke subdifferential of ¢ at Z is the set
Cp(z) = {z* € R" | (z*,0) < ¢°(30), Vo € R"},

which is nonempty, and the Clarke directional derivative is the support function of
the Clarke subdifferential, that is,

°(z,v) = max (z%,v),
©°(Z,v) x*ea%@)( )

for each v € R".
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It follows from [22] that the relationship between the above subdifferentials of ¢
at z € R" is as follows:

0p(Z) C 9% ().
3. ROBUST MINIMAX PROBLEM

Let us consider the following robust minimax programming problem,

P .
(RP) min max fi(2),

where F, is the feasible set of problem (RP), defined by

(3.1) F,={z eR" | gj(z,v;) <0, Yv; €V, je€ J},

and the functions f; : R” — R, k € K := {1,...,1}, are locally Lipschitz functions,
gi :R"xV; = R, j e J:={l,...,m} are given functions, v; € V;, j € J are
uncertain parameters, V; C RY, j € J are uncertainty sets.

Definition 3.1. Let € > 0 and ¢(z) := maxgex fr(z), € R". A point = € F; is

called a local quasi e-solution of problem (RP) if and only if there is a neighborhood
U of z such that

o) < p(x)+elx—z| VeeUnE,.

Let us make some assumptions for function g;, j € J, given in (3.1). We refer the
reader to [23] for more details.
(A1) For a fixed € R, there exists 7 > 0 such that the function v; € V;
gj(z,v;) € R is upper semicontinuous for each x € B(z, (5;’9), and the func-
tions g;(-,v;),v; € V}, are Lipschitz of given rank L; > 0 on B(z, 6;”), ie.,

‘gj(:vl,vj) — gj(CL‘Q,Uj) ’ < Lj”l‘l — ZEQH, Va1, T9 € B(:f,(;]g_:), VUj € Vj.

(A2) The multifunction (z,v;) € B(%,67) x V; = 0pgj(z,v5) C R™ is closed at
(z,v;) for each v; € V;(Z), where the symbol 0, stands for the limiting
subdifferential operation with respect to x, and the notation V;(z) signifies
active indices in V; at Z, i.e.,

(3.2) V(@) = {v; € Vy | 95 v)) = G4(2)}
with G;(Z) := sup,, ey, 9;(Z,v)).

The above assumptions have been widely used in nonsmooth analysis and robust
multi-objective optimization when dealing with computation of nonsmooth subgra-
dients of a supremum or max function over a compact set.

To obtain the necessary optimality condition of Karush—Kuhn—Tucker type for

a local quasi e-solution of problem (RP), we need the constraint qualification that
has been introduced, we would recall it as follows.

Definition 3.2 ([23, Definition 3.2]). Let Z € F,.. We say that constraint qualifica-
tion (CQ) is satisfied at  if

0 ¢ co{ Ud,g;(Z,v;) | v; € Vj(T), j € J}.

Now, we establish Karush—-Kuhn—Tucker type of necessary conditions for a local
quasi e-solution of problem (RP).
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Theorem 3.3. Let the (CQ) be satisfied at & € F,. If & is a local quasi e-solution
of (RP), then there exist ax > 0, k € K with ) peop, =1, and A := (A1,..., Ap) €
R’ such that

0€ Y apdfe() + > Ajco { Udag;(Z,v;) | v € V;(Z)} + B,
keK JjeJ

(3:3) o (fk(x) - maxfk(a:)> =0, keK,
keK
Aj sup gj(z,v5) =0, j € J.
v EVj
Proof. For j € J, we consider 67, L;, V;(Z), and G;(Z) as in assumptions (A1) and
(A2). Along with the proof of [23, Theorem 3.3| again, we can show that
co{ Ud,g;(Z,vj) | v; € V;(Z)}
is compact; and
(3.4) 8Gj(lf) C CO{ U 8xgj(:i,vj) ‘ v; € Vj(i‘)}

with the help of Lemma 2.2.
Let Z be a local quasi e-solution of problem (RP). Then Z is a local minimizer of
the following problem

. in h
(3.5) ,nin. (z),

where h(x) := ¢(x) + € || x — Z ||, and ¢(z) := maxgeg fr(z). Define a real-valued
function v by

P(x) = I}lea}{ {h(z) — nzZ),Gj(2)}, v € R,

We claim that
(3.6) »(Z) =0 <Y(z), Y e U.

Indeed, it is easy to see that the equality in (3.6) holds due to Z € F,.. Let us justify
the inequality therein. If x € U N F}., then ¢ (z) > 0. Otherwise, 1(z) < 0 leads to
that

h(z) — h(T) < 0,

which is a contradiction to (3.5). If # € U\F;, then there is jo € J such that
Gj,(z) > 0, which entails that 1(x) > 0.

Thus, (3.6) is valid, and this infers that Z is a local minimizer for . Invoking
now the nonsmooth version of Fermat’s rule (2.2), we have

0 € 9Y(x).

Applying further the formula for the limiting subdifferential of maximum functions
and the limiting subdifferential sum rule for local Lipschitz functions (Lemma 2.1),
we get

0e {uo@h(l’)—l-zujan(w) | po >0, pj >0, uiGj(x) =0, j € J, MO‘FZ/J]‘ = 1}.

jed JEj
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From (3.4) together with (3.2), we derive

0€ {ugﬁh(f) + Zujco{ U 8,9;(Z,v5) | v; € Vi(z)}

(3.7) 7e

‘ po >0, p; >0, pj sup g;(z,v;) =0, j € J, po +Zuj = 1}-
v €V jeJ

Note further that 0 || - — z || (z) = B, we get

Oh(z) =0(maxfi +e || -~ 7 )(&) € Omaxfi)(@) + eB

C{ Z aké?fk(.f) + €B

kEK ()

2 0, (o) - (max () ) = .

ke K@), > op= 1},
)

keK (&

where K(z) :={k € K | fi(Z) = ¢(Z)} # 0. Now, letting oy, := 0 for k € K\K ().
If the (CQ) be satisfied at z, then pg # 0, set \; = %, j € J, and (3.7) with (3.8)
establishes (3.3), which completes the proof. O

Definition 3.4. We say that (f, g) is generalized convex at & € R™ if for any x € R",
& € 0fk(Z), k € K, and n; € 0,9;(Z,vj), v; € Vj(Z), j € J, there exists h € R"
such that

Jr(@) = fiu(@) = (& h), k€K,
> (mj,h), v €V;(T), j €,
and
(W,h) <l|z -z, 9eB,
where V;(Z), j € J, are defined as in (3.2).
With the help of the generalized convexity, we can establish the following theorem.

Theorem 3.5. Let & € F, satisfy the condition (3.3). If (f, g) is generalized convex
at T, then T is a global quasi e-solution of problem (RP).

Proof. Let ¢(z) := maxgek fr(x). Since T € F, satisfies condition (3.3), there exist
ap >0, > pexonr =1, & € 0fp(Z), k€ K,and A\j > 0,5 € J, \ji >0, 0 €
8xgj(a?,vji), Vji € Vj(i‘), 1€ Ij = {1, R ,ij}, 1; € N, Ziejj)\ji =1, and ¥ € B such
that

(3.9) 0= ap&r+ > N Nimji) + €0,

keK jeJ i€l

(3.10) o <fk(56) — maxfk(x)> =0, ke K,
keK

(311) )\j sup gj(i,vj) =0,j5¢€d.

v EV;
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Assume to the contrary that z is not a global quasi e-solution of problem (RP),
then there is & € F, such that

(3.12) o(7) > o)+ el @ —a .

By the generalized convexity of (f,g) at &, we deduce from (3.9) that for such z
there is h € R” such that

0= arl&rnh)+ D X <Z)\jz‘<77jz', h>> + €(d, h)

keK jeJ ic€l;
< S| £l8) — 5@ + s Talostavon) - staw] ) +e 1o -z 1.
keK jeJ icl;
Hence
(3.13) Zakfk + Z)\ (Z)\ﬂg] z,vji >
keK jeJ 1€l
(3.14) <Y arfr(@) + )N <ij,gj &, ) +ellz—z|.
keK jeJ USH

Since Vj; € Vj (SE),
9j(Z,v;i) = sup g;(z,v;), Vj € J, Vi€ I;.
v €V
Thus, it follows from (3.11) that A\;g;(Z,v;) = 0 for j € J and i € I;. In addition,
due to & € Fy, \jg;(Z,v;) < 0for j € Jand i € I;. So, we get by (3.13), (3.14) that

Zakfk Zakflc + Z<Z>‘]l)‘]gj T, Vji )

keK keK JjeJ Mgl
<Zakfk +Z)\ <Z)‘ﬂgﬂ azvﬂ>—|—6]|§:—a§||
keK jeJ i€l
(3.15) <Y arfr(@) +elli—z].
keK
From (3.10), we derive
(3.16) e fi(7) = ar(max fi)(7) = axe(2).

Hence, combine (3.15) and (3.16), we get

D akd(®@) = Y arf(@) <D anfr(@) +ell -z |

kek keK keK
<Y apo(@) +eli—z|
keK
This implies that

(3.17) o(z) < (@) +ell -2 |,

due to ) cxar = 1. Obviously, (3.17) contradicts (3.12), and so the proof is
complete. O
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Now, we formulate a dual problem for the robust minimax programming problems,
and explore weak and strong duality relations between them. Let z € R", a =
(a1,...,0q) € Rl_i_ with ZkeK ap =1,

)\ERI}IF = {)\2:()\j,)\ji),jGJ,iGIj:{l,...,ij}‘ijGN,

A =0, >0, Nji= 1}.
S

In connection with the robust minimax programming problem (RP), we consider a
dual problem in the following form:

@) e {300 = o)+ 0 (Tt |

jed el

Here, we denote ¢(z) := maxger fi(2) and

Fp = {(z,a,)\) eR" x RI{0} xRY | 0€ > andfin(2)+

keK
S N O Nimgi) + B, mji € {U0ag;(z,v5) | vji € Vy(2)},
jeJ i€l
ag <fk(z) - (;5(2)) =0, ke K, Z ap = 1},
keK

where V;(z) is defined as in (3.2) by replacing z by z.
a, A

Definition 3.6. A point (z,
lem (RD) if and only if

O(z,a,0) +e || (2@ ) = (z,0,2) |2 ¢z, @, N), V(z,0,A) € Fp.

) € Fp is called a global quasi e-solution of prob-

The following theorem gives weak robust duality relations between (RP) and
(RD).

Theorem 3.7. Let x € F,, and let (z,a,\) € Fp. If (f, g) is generalized convez at
z, then

o(x) +ellz—z[>d(z,a,A).

Proof. Since (z,a,A) € Fp, there exist ap > 0, k € K with >, o =1, § €
Ofk(z), k € K, and )\j >0, € J, )\ji > 0, nji € &rgj(z,vji), Vji € Vj(z), i € Ij =

{1,...,i}, i; € N, Ziefj)‘ji =1, and ¥ € B such that

(3.18) 0= ar&+ > N Nimji) + €0,

keK jeJ i€l

(3.19) Qg <fk(z) — (;S(z)) =0, ke K.
Assume to the contrary that

¢('T) +e H r—2z ||< &(Z,Oé,)\),
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which is equivalent to
(3.20) $(x)+ellw—zlI<d(z)+D N <Z)‘ji9j(za vjz'))-
jeJ  Nel;

By the generalized convex property of (f,g) at z, we deduce from (3.18) that for
such z there is h € R"™ such that

0= San(gen ) + S0 ( Thitugl) ) + et0, )

kEK jel Vel
(3.21)
< Zak [fk(l“) - fk(z)] + Z)\j <Z)\ji[9j(xavji) - gj(z7vji)]> +ellz—=z].
kEK jes Vel

It stems from x € F, that
ZA]' <Z)\j¢9j(93,vjz’)) <0.
jeJ Vel
Thus, (3.21) gives us
(3.22) 0< Zak I:fk(.%') - fk(2>:| - Z)\j (Z)\jigj(z,vji)) +€ || r—z H .
keK jed el
Combining now (3.19) with (3.22), we have
0< S arfile) — Saro(z) - SNy (ZAﬂgj<z,vﬁ>) velz—z].
keK keK jed Vel
This gives us
$(2) + Y A <Z)\jigj(2, sz‘)) =Y apd(z) + DN <Z)\jigj(zyvji)>
jed el keK jed Vel

<Y arful@) ez -z

(3.23) e

< —
< Y anmas file) +e o |
keK
= o) tellz—2z],
where the equality in (3.23) holds due to ), . o = 1, which contradicts to (3.20).
The proof of the theorem is complete. O

The forthcoming theorem describes strong robust duality relations between (RP)
and (RD).

Theorem 3.8. Let T € F,. be a local quasi e-solution of problem (RP) such that the
(CQ) is satisfied at this point. Then there exists (&, \) € (RLA\{0}) x RY such that
(z,a,\) € Fp and

gb(f) = gb(f, a, 5‘)



APPROXIMATES SOLUTIONS IN RP WITH APPLICATIONS 3203

Furthermore, if (f,g) is generalized conver at any z € R", then (Z,a, \) is a global
quasi e-solution of problem (RD).

Proof. Applying Theorem 3.3, we find o, > 0, k € K with } , par =1, & €
afk(.f), ke K,and \; >0,5¢€ J, A\j; >20,nj € 8xgj(a_c,vji), Vj; € Vj(.f), 1€ 1 =
{1,...,4;},4; €N, Zielj)‘ji =1, and ¥ € B such that

(3.24) 0= e+ > N Nimi) + e,

keK jed  iel;
oy, <fk(i) — maxfk(i)) =0, ke K,
keK
(3.25) Ajsup g;(Z,v;) =0, jeJ
UjGVj

Letting & := (a1,...,q), and A= (Aj, Aji), we have (&, \) € (R} \{0}) x RY, and
so (Z,a,\) € Fp due to (3.24). Since vj; € V;(Z),

95 (Z,v5;) = sup g;(Z,v;)
v;€V;

for j € J,and i € I; = 1,...,i;. Thus, it stems from (3.25) that X\;g;(z,v;;) = 0 for
j € J, and k € I;. This entails that

>N (Z)‘jigj(xvvji)> = Z(Z)‘ji)‘jgj(x7vji)> =0,
jed  Niel; jeJ Niel;
and therefore,
H(T) = ¢(Z) + DN <Z)\jigj($,vji)> = $(z,a, ).
jeJ  Niel;
Since (f, g) is generalized convex at any z € R™, by invoking Theorem 3.7, we obtain
37,3 M) + e || (7@ 2) = (2,0, A) | = 6(7) + € | (7,3 1) — (2,0, \) |
> ¢(z,a, )

for any (z,a,\) € Fp. This means that (z,a, ) is a global quasi e-solution of
problem (RD). O

The forthcoming theorem declares converse-like robust duality relations between
(RP) and (RD).

Theorem 3.9. Let (Z,a,)\) € Fp be such that $(Z) = ¢(z,a,N\). If & € F, and
(f, g) is generalized convex at T, then T is a global quasi e-solution of problem (RP).

Proof. Since (Z,a,\) € Fp, there exist & := (au,...,0q) € RL\{0}, & € 0fi(2),
ke K, A := ()\j,)\ji)a )\j > 0,5 € J, )\ji > 0, Nji € 8$gj(£,vji), Vj; € Vj(f),
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iely={1,...,ij}, i €N, Zielj)‘ji =1, and ¥ € B such that

(3.26) 0= ar&i+ Y Ai(D Njimji) + €0,

keK jeJ  iel;
(3.27) Qg <fk(i) — gf)(i)) =0, ke K.
As ¢(Z) = ¢(Z,a, \), we have

o(x) = 6(2) + 3N, (Dﬁgxx, vm) _ d@.a ),

jEJ  NiEl;
ie.,
(3.28) Y (ZAﬁgj(x,vm) = 0.
jeJ el
Since Vj; € Vj (56),
(3.29) 9;(Z,vji) = sup g;(Z,v;)
U]'EVJ'

for j € J,and i € I; = 1,...,4;. Combining now (3.28), (3.29) with Eielj)‘ji =1,

we derive
>N <Z%’z’9j(ﬂf7 sz')) => <Z>\ji)\j9j($, Uji))
jeJ  Nel; jeJ Niel;
(3.30) = Z<)\j sup gj(a_z,vj)) =0.
UjEVj

jeJ
Let € F,. Then ¢;(Z,v;) <0, for all v; € V;, j = 1,...,m. Thus, deducing from
(3.30), we obtain

Aj sup gj(Z,v;) =0, j e

v; €V
This together with (3.26) and (3.27) confirms that = satisfies condition (3.3). To
finish the proof, it remains to apply Theorem 3.5. O

4. ROBUST MULTI-OBJECTIVE PROBLEM

This section is devoted to optimality conditions of robust minimax programming
problem to robust multi-objective optimization problems. More precisely, we employ
necessary and sufficient conditions obtained for (RP) in the previous sections to
derive the corresponding ones for (RMOP).

A multi-objective optimization problem with locally Lipschitzian data in the face
of data uncertainty in the constraints is of the form

(UMOP) Ming: {f(z) | gj(z,v;) <0, j € J},

where z € R™ is the vector of decision variables, f(z) := (fi(x),..., fi(z)), fr :
R" - R, k € K := {1,...,1}, are locally Lipschitz functions, g; : R® x V; — R,
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jeJ:={1,...,m} are given functions, v; € V;, j € J are uncertain parameters,
V; CRY, j € J are uncertainty sets.

We will treat problem (UMOP) by robust optimization approach, its robust coun-
terpart is as follows,

(RMOP) MinRi{f(:c) | x € F,.},
where F) is the feasible set of problem (RMOP), defined by
F.={z eR" | gj(z,vj) <0, Vv €V;, je J}

Definition 4.1. Let € := (€1,...,€¢) € Rﬂr, we say T € F) is a weakly quasi e-Pareto
solution of problem (RMOP) if and only if

fla)+e||lz—7| —f(z) ¢ —intR,, Vo € F,.

The following result is a Karush-Kuhn-Tucker (KKT) necessary condition for
weakly quasi e-Pareto solutions of problem (RMOP

).
Theorem 4.2. Let ¢ := (€1,...,€) € RL, and the (CQ) be satisfied at & € R™. If
T is a weakly quasi e-Pareto solution of problem (RMOP), then there exist ay > 0,
ke K with Y o =1, Nj >0, j € J, such that

0e Zakafk(i) + Z/\jco{ U 8,95(Z,v)) | vj € V;(Z)} + B,

(41) keK jeJ
Aj sup g;(Z,vj) =0, j € J,
v EV;

where € = maxger {€k}-

Proof. Let T be a weakly quasi e-Pareto solution of problem (RMOP) and let
fi(@) = fe(x) = fu(2), k€K, zeR"

We will show that Z is a quasi eg-solution of the minimax programming problem

4.2 i F().
(4.2) min max fi(x)

To do this, let us put gg(x) ‘= maxXgex ﬁ;(x) and prove that
(43) @) <)+ ez -7 |, Vo€ Fr.
Indeed, if (4.3) is not valid, then there exists xg € F; such that
3zo) + e | 70 — 7 1< 3(a).
Since ¢(z) = 0, it holds that
max { fi.(z0) = fr(2)} + € || 20 — 2 [ < 0.

Thus,
f(wo) = f(Z) +¢ [l w0 — & ||€ —int R,
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which contradicts the fact that z is a weakly quasi e-Pareto solution of problem
(RMOP). So, we can apply (KKT) condition obtained in Theorem 3.3 to problem
(4.2). Then we find o, > 0, k € K with ), _par =1, A\; >0, j € J, such that

0€e Zakﬁfk(i‘) + Z)\jco{ U 0,9;(Z,v) | v; € Vj(2)} + €¢;B,
keK jeJ

(44)  op(fu(@) — max fi(2)) =0, k € K,

Ajsup g;(Z,v;) =0, jeJ

Vj EVJ'
It is now clear that (4.4) implies (4.1) and thus, the proof is complete. O

The following theorem describes sufficient optimality conditions for a weakly
quasi e-Pareto solutions of problem (RMOP).

Theorem 4.3. Let ¢ := (e,....¢;) € Ry, and & € F, satisfy condition (4.1).
If (f,qg) is generalized convex at T, then T is a weakly quasi e-Pareto solution of

problem (RMOP).

Proof. Similar to the proof of Theorem 4.2, we put
Fu(@) = fu(z) — fu(@), keK, zeR"

Now, it is easy to see that T satisfies condition (4.4). Let fo= (fl, e ,ﬁ) Since

(f,g) is generalized convex on R™ at Z, it follows that (f,g) is generalized convex
on R™ at this point as well. We apply Theorem 3.5 to conclude that Z is a quasi
ez-solution of the robust minimax programming problem

min ma £ .
xGlFIql~ kel}({ fk(x)

It means that
o(7) < b(a) + e ||z — 2 |, Vo € F,
where @Z(x) = maXke K fk(x) In other words, we obtain
0< I,g?[?{fk(x) — @)} +e ||z —2 |, Vo e F,
which entails that
fle)—f(@)+eé||lz—2|¢ —int]Rﬂr, Vo € F.

Consequently, Z is a weakly quasi e-Pareto solution of problem (RMOP). O

5. CONCLUSIONS

In this paper, we investigated approximate optimality conditions and duality in
robust minimax optimzaion problem under a suitable constraint qualification. Fi-
nally, by using the obtained results, we derive necessary and sufficient conditions for
weak quasi e-Pareto solutions to the robust multi-objective optimization problem.
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