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An increasingly popular approach to optimization problems with data uncertainty
is robust optimization, where it is assumed that possible values of data belong to
some well-defined uncertainty set. In robust optimization, the goal is to find a
solution that satisfies all constraints for any possible scenario from the uncertainty
set and optimizes the worst-case value of the objective function. Theoretical and
applied aspects in the area of robust optimization have been studied intensively by
many researchers; for details, see e.g., [17–21]. The solutions of robust optimization
models are ”uniformly good” for realization of data from the uncertainty set.

Our approach in this paper is different from the earlier works. That is, we use
some advanced tools of variational analysis and generalized differentiation (e.g., the
nonsmooth version of Fermat’s rule, and the sum rule for the limiting/Mordukhovich
subdifferential) (see, [22]) to establish necessary conditions for approximate solu-
tions of a robust minimax programming problem with inequality constraints. Suffi-
cient conditions for such solutions to the considered problem are also provided by
means of the use of generalized convexity (see [23]) defined in terms of the limiting
subdifferential for locally Lipschitz functions.

Along with optimality conditions, we propose a dual problem to the primal one
and examine weak, strong, and converse-like duality relations under assumptions of
generalized convexity.

In addition, we employ the necessary and sufficient optimality conditions obtained
for the robust minimax programming problem to derive the corresponding ones for
a robust multi-objective optimization problem.

This paper is organized as follows. In Sect. 2, we describe some basic definitions
from variational analysis and several auxiliary results. In Sect. 3, we present some
results on robust minimax programming problem, to including necessary conditions
for approximate solutions, sufficient conditions for the such solutions, and duality
relations. In Sect. 4, we show the results on robust multi-objective optimization
problem, including necessary and sufficient conditions; duality relations. Finally,
we give some conclusions in Sect. 5.

2. Preliminaries

Let us recall some notations and preliminary results which will be used through-
out this paper; see e.g., [22,24]. Rn denotes the Euclidean space equipped with the
standard Euclidean norm ‖·‖. The nonnegative orthant of Rn is denoted by Rn

+. The

inner product (or scalar product) in Rn is defined by 〈a, b〉 := aT b for all a, b ∈ Rn.
The symbol B(x, τ) means the open ball centered at x ∈ Rn with the radius τ > 0.
Let Π ⊂ Rn be a given set, we denote by coΠ the convex hull of Π, and the notation

x
Π−→ x̄ stands for x → x̄ with x ∈ Π. We also denote by Π◦ the polar cone of a set

Π ⊂ Rn, where

Π◦ := {y ∈ Rn | 〈y, x〉 ≤ 0 for all x ∈ Π}.(2.1)

Let F : Rn ⇒ Rm be a multifunction (or set-valued mapping), we consider the
multifunction F with values F (x) ⊂ Rm in the collection of all the subsets of Rm.
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The limiting construction

Limsup
x→x̄

F (x) :=

{
y ∈ Rm | ∃ xk → x̄, yk → y

with yk ∈ F (xk) for all k ∈ N := {1, 2, . . .}
}

is known as the Painlevé–Kuratowski upper/outer limit of F at x̄.
Given Π ⊂ Rn, and x̄ ∈ Π, define the collection of Fréchet/regular normal cone

to Π at x̄ by

N̂(x̄; Π) = N̂Π(x̄) :=

{
v ∈ Rn

∣∣∣∣ lim sup

x
Π−→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0

}
.

If x̄ /∈ Π, we put N̂(x̄; Π) := ∅.
The Mordukhovich/limiting normal cone N(x̄; Π) to Π at x̄ ∈ Π ⊂ Rn is obtained

from regular normal cones by taking the sequential Painlevé–Kurotowski upper
limits as

N(x̄; Π) := Limsup

x
Π−→x̄

N̂(x; Π).

If x̄ /∈ Π, we put N(x̄; Π) := ∅.
For an extended real-valued function φ : Rn → R := (−∞,∞] = R ∪ {∞}, its

domain and epigraph are defined by

domφ :=
{
x ∈ Rn | φ(x) <∞

}
and epiφ :=

{
(x, µ) ∈ Rn × R | µ ≥ φ(x)

}
,

respectively. We say φ is a lower semicontinuous (l.s.c. in short) function if
lim infy→x φ(y) ≥ φ(x) for all x ∈ Rn, in addition, φ is a upper semicontinuous
(u.s.c. in short) function if lim supy→x φ(y) ≤ φ(x) for all x ∈ Rn.

Let φ : Rn → R be finite at x̄ ∈ domφ. Then the collection of basic subgradients,
or the (basic/Mordukhovich/limiting) subdifferential, of φ at x̄ is defined by

∂φ(x̄) :=

{
v ∈ Rn | (v,−1) ∈ N

(
(x̄, φ(x̄)); epiφ

)}
.

Consider the indicator function δ(·; Π) defined by δ(x; Π) := 0 for x ∈ Π and by
δ(x; Π) := ∞ otherwise, we have a relation between the limiting normal cone and
the limiting subdifferential of the indicator function as follows (see [22, Proposition
1.19]):

N(x̄; Π) = ∂δ(x̄; Π) for all x̄ ∈ Π.

We say a function φ : Rn → R is locally Lipschitz at x̄ ∈ Rn with rank L > 0,
i.e., there exists τ > 0 such that

|φ(x1)− φ(x2)| ≤ L‖x1 − x2‖, ∀x1, x2 ∈ B(x̄, τ),

and it also holds that [22, Theorem 1.22]

‖v‖ ≤ L, ∀v ∈ ∂φ(x̄).
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The generalized Fermat’s rule is formulated as follows [22, Proposition 1.30]: Let
φ : Rn → R be finite at x̄. If x̄ is a local minimizer of φ, then

0 ∈ ∂φ(x̄).(2.2)

The following lemmas which are related to the Mordukhovich/limiting subdiffer-
ential calculus are very useful.

Lemma 2.1 ([22, Corollary 2.21 and Theorem 4.10(ii)]). (i) Let φi : Rn → R,
i = 1, 2, . . . ,m, m ≥ 2 be l.s.c. around x̄ ∈ Rn, and let all but one of these
functions be Lipschitz continuous around x̄. Then

∂(φ1 + φ2 + . . .+ φm)(x̄) ⊂ ∂φ1(x̄) + ∂φ2(x̄) + . . .+ ∂φm(x̄).

(ii) Let φi : Rn → R, i = 1, 2, . . . ,m, m ≥ 2 be l.s.c. around x̄ for i ∈ Imax(x̄)
and be u.s.c. at x̄ for i /∈ Imax(x̄), suppose that each φi, i = 1, . . . ,m, is
Lipschitz continuous around x̄. Then we have the inclusion

∂(maxφi)(x̄) ⊂
⋃{

∂
( ∑
i∈Imax(x̄)

λiφi

)
(x̄)

∣∣∣∣ (λ1, . . . , λm) ∈ Λ(x̄)

}
,

where the equality holds and the maximum functions are lower regular at x̄ if
each φi is lower regular at this point and sets Imax(x̄) and Λ(x̄) are defined
as follows:

Imax(x̄) :=
{
i ∈ {1, . . . ,m} | φi(x̄) = (maxφi)(x̄)

}
,

Λ(x̄) :=

{
(λ1, . . . , λm)

∣∣ λi ≥ 0,

m∑
i=1

λi = 1, λi
(
φi(x̄)− (maxφi)(x̄)

)
= 0

}
.

Lemma 2.2 (Mean Value Inequality [22, Corollary 4.14(ii)]). If φ is Lipschitz
continuous on an open set containing [a, b] ⊂ Rn, then

〈x∗, b− a〉 ≥ φ(b)− φ(a) for some x∗ ∈ ∂φ(c) with c ∈ [a, b)

where [a, b] := co{a, b}, and [a, b) := co{a, b}\{b}.

For a function φ : Rn → R being locally Lipschitz continuous at x̄, the generalized
directional derivative (in the sense of Clarke) of φ at x̄ in the direction v ∈ Rn is
defined as follows:

φ◦(x̄; v) := lim sup
x→x̄,λ↓0

φ(x+ λv)− φ(x)

λ
.

In this case, the convexified/Clarke subdifferential of φ at x̄ is the set

∂Cφ(x̄) :=
{
x∗ ∈ Rn | 〈x∗, v〉 ≤ φ◦(x̄; v), ∀v ∈ Rn

}
,

which is nonempty, and the Clarke directional derivative is the support function of
the Clarke subdifferential, that is,

φ◦(x̄, v) = max
x∗∈∂Cφ(x̄)

〈x∗, v〉,

for each v ∈ Rn.
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It follows from [22] that the relationship between the above subdifferentials of φ
at x̄ ∈ Rn is as follows:

∂φ(x̄) ⊂ ∂Cφ(x̄).

3. Robust minimax problem

Let us consider the following robust minimax programming problem,

min
x∈Fr

max
k∈K

fk(x),(RP)

where Fr is the feasible set of problem (RP), defined by

Fr = {x ∈ Rn | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j ∈ J},(3.1)

and the functions fk : Rn → R, k ∈ K := {1, . . . , l}, are locally Lipschitz functions,
gj : Rn × Vj → R, j ∈ J := {1, . . . ,m} are given functions, vj ∈ Vj , j ∈ J are
uncertain parameters, Vj ⊂ Rq, j ∈ J are uncertainty sets.

Definition 3.1. Let ϵ ≥ 0 and ϕ(x) := maxk∈K fk(x), x ∈ Rn. A point x̄ ∈ Fr is
called a local quasi ϵ-solution of problem (RP) if and only if there is a neighborhood
U of x̄ such that

ϕ(x̄) ≤ ϕ(x) + ϵ ‖ x− x̄ ‖ ∀x ∈ U ∩ Fr.

Let us make some assumptions for function gj , j ∈ J, given in (3.1). We refer the
reader to [23] for more details.

(A1) For a fixed x̄ ∈ Rn, there exists δx̄j > 0 such that the function vj ∈ Vj 7→
gj(x, vj) ∈ R is upper semicontinuous for each x ∈ B(x̄, δx̄j ), and the func-

tions gj(·, vj), vj ∈ Vj , are Lipschitz of given rank Lj > 0 on B(x̄, δx̄j ), i.e.,∣∣ gj(x1, vj)− gj(x2, vj)
∣∣ ≤ Lj‖x1 − x2‖, ∀x1, x2 ∈ B(x̄, δx̄j ), ∀vj ∈ Vj .

(A2) The multifunction (x, vj) ∈ B(x̄, δx̄j ) × Vj ⇒ ∂xgj(x, vj) ⊂ Rn is closed at

(x̄, v̄j) for each v̄j ∈ Vj(x̄), where the symbol ∂x stands for the limiting
subdifferential operation with respect to x, and the notation Vj(x̄) signifies
active indices in Vj at x̄, i.e.,

Vj(x̄) :=
{
vj ∈ Vj | gj(x̄, vj) = Gj(x̄)

}
(3.2)

with Gj(x̄) := supvj∈Vj
gj(x̄, vj).

The above assumptions have been widely used in nonsmooth analysis and robust
multi-objective optimization when dealing with computation of nonsmooth subgra-
dients of a supremum or max function over a compact set.

To obtain the necessary optimality condition of Karush–Kuhn–Tucker type for
a local quasi ϵ-solution of problem (RP), we need the constraint qualification that
has been introduced, we would recall it as follows.

Definition 3.2 ([23, Definition 3.2]). Let x̄ ∈ Fr. We say that constraint qualifica-
tion (CQ) is satisfied at x̄ if

0 /∈ co
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄), j ∈ J

}
.

Now, we establish Karush–Kuhn–Tucker type of necessary conditions for a local
quasi ϵ-solution of problem (RP).
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Theorem 3.3. Let the (CQ) be satisfied at x̄ ∈ Fr. If x̄ is a local quasi ϵ-solution
of (RP), then there exist αk ≥ 0, k ∈ K with

∑
k∈Kαk = 1, and λ := (λ1, . . . , λm) ∈

Rm
+ such that

0 ∈
∑
k∈K

αk∂fk(x̄) +
∑
j∈J

λjco
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
+ ϵB,

αk

(
fk(x̄)−max

k∈K
fk(x̄)

)
= 0, k ∈ K,

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

(3.3)

Proof. For j ∈ J, we consider δx̄j , Lj , Vj(x̄), and Gj(x̄) as in assumptions (A1) and

(A2). Along with the proof of [23, Theorem 3.3] again, we can show that

co
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
is compact; and

∂Gj(x̄) ⊂ co
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
(3.4)

with the help of Lemma 2.2.
Let x̄ be a local quasi ϵ-solution of problem (RP). Then x̄ is a local minimizer of

the following problem

min
x∈U∩Fr

h(x),(3.5)

where h(x) := ϕ(x) + ϵ ‖ x − x̄ ‖, and ϕ(x) := maxk∈K fk(x). Define a real-valued
function ψ by

ψ(x) := max
j∈J

{
h(x)− h(x̄), Gj(x)

}
, x ∈ Rn.

We claim that

ψ(x̄) = 0 ≤ ψ(x), ∀x ∈ U.(3.6)

Indeed, it is easy to see that the equality in (3.6) holds due to x̄ ∈ Fr. Let us justify
the inequality therein. If x ∈ U ∩ Fr, then ψ(x) ≥ 0. Otherwise, ψ(x) < 0 leads to
that

h(x)− h(x̄) < 0,

which is a contradiction to (3.5). If x ∈ U\Fr, then there is j0 ∈ J such that
Gj0(x) > 0, which entails that ψ(x) > 0.

Thus, (3.6) is valid, and this infers that x̄ is a local minimizer for ψ. Invoking
now the nonsmooth version of Fermat’s rule (2.2), we have

0 ∈ ∂ψ(x̄).

Applying further the formula for the limiting subdifferential of maximum functions
and the limiting subdifferential sum rule for local Lipschitz functions (Lemma 2.1),
we get

0 ∈
{
µ0∂h(x̄)+

∑
j∈J

µj∂Gj(x̄)
∣∣ µ0 ≥ 0, µj ≥ 0, µjGj(x̄) = 0, j ∈ J, µ0+

∑
j∈j

µj = 1

}
.



APPROXIMATES SOLUTIONS IN RP WITH APPLICATIONS 3199

From (3.4) together with (3.2), we derive

0 ∈
{
µ0∂h(x̄) +

∑
j∈J

µjco
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
∣∣∣∣ µ0 ≥ 0, µj ≥ 0, µj sup

vj∈Vj

gj(x̄, vj) = 0, j ∈ J, µ0 +
∑
j∈J

µj = 1

}
.

(3.7)

Note further that ∂ ‖ · − x̄ ‖ (x̄) = B, we get

∂h(x̄) =∂(max
k∈K

fk + ϵ ‖ · − x̄ ‖)(x̄) ⊂ ∂(max
k∈K

fk)(x̄) + ϵB

⊂
{ ∑

k∈K(x̄)

αk∂fk(x̄) + ϵB
∣∣∣∣ αk ≥ 0, αk

(
fk(x̄)− (max fk)(x̄)

)
= 0,

k ∈ K(x̄),
∑

k∈K(x̄)

αk = 1

}
,

(3.8)

where K(x̄) := {k ∈ K | fk(x̄) = ϕ(x̄)} 6= ∅. Now, letting αk := 0 for k ∈ K\K(x̄).
If the (CQ) be satisfied at x̄, then µ0 6= 0, set λj =

µj

µ0
, j ∈ J, and (3.7) with (3.8)

establishes (3.3), which completes the proof. □

Definition 3.4. We say that (f, g) is generalized convex at x̄ ∈ Rn if for any x ∈ Rn,
ξk ∈ ∂fk(x̄), k ∈ K, and ηj ∈ ∂xgj(x̄, vj), vj ∈ Vj(x̄), j ∈ J, there exists h ∈ Rn

such that

fk(x)− fk(x̄) ≥ 〈ξk, h〉, k ∈ K,

gj(x, vj)− gj(x̄, vj) ≥ 〈ηj , h〉, vj ∈ Vj(x̄), j ∈ J,

and

〈ϑ, h〉 ≤‖ x− x̄ ‖, ϑ ∈ B,

where Vj(x̄), j ∈ J, are defined as in (3.2).

With the help of the generalized convexity, we can establish the following theorem.

Theorem 3.5. Let x̄ ∈ Fr satisfy the condition (3.3). If (f, g) is generalized convex
at x̄, then x̄ is a global quasi ϵ-solution of problem (RP).

Proof. Let ϕ(x) := maxk∈K fk(x). Since x̄ ∈ Fr satisfies condition (3.3), there exist
αk ≥ 0,

∑
k∈Kαk = 1, ξk ∈ ∂fk(x̄), k ∈ K, and λj ≥ 0, j ∈ J, λji ≥ 0, ηji ∈

∂xgj(x̄, vji), vji ∈ Vj(x̄), i ∈ Ij = {1, . . . , ij}, ij ∈ N,
∑

i∈Ijλji = 1, and ϑ ∈ B such

that

0 =
∑
k∈K

αkξk +
∑
j∈J

λj
(∑
i∈Ij

λjiηji
)
+ ϵϑ,(3.9)

αk

(
fk(x̄)−max

k∈K
fk(x̄)

)
= 0, k ∈ K,(3.10)

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.(3.11)



3200 Z. HONG AND D. S. KIM

Assume to the contrary that x̄ is not a global quasi ϵ-solution of problem (RP),
then there is x̂ ∈ Fr such that

ϕ(x̄) > ϕ(x̂) + ϵ ‖ x̂− x̄ ‖ .(3.12)

By the generalized convexity of (f, g) at x̄, we deduce from (3.9) that for such x̂
there is h ∈ Rn such that

0 =
∑
k∈K

αk〈ξk, h〉+
∑
j∈J

λj

(∑
i∈Ij

λji〈ηji, h〉
)
+ ϵ〈ϑ, h〉

≤
∑
k∈K

αk

[
fk(x̂)− fk(x̄)

]
+
∑
j∈J

λj

(∑
i∈Ij

λji
[
gj(x̂, vji)− gj(x̄, vji)

])
+ ϵ ‖ x̂− x̄ ‖ .

Hence ∑
k∈K

αkfk(x̄) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(x̄, vji)

)
(3.13)

≤
∑
k∈K

αkfk(x̂) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(x̂, vji)

)
+ ϵ ‖ x̂− x̄ ‖ .(3.14)

Since vji ∈ Vj(x̄),

gj(x̄, vji) = sup
vj∈Vj

gj(x̄, vj), ∀j ∈ J, ∀i ∈ Ij .

Thus, it follows from (3.11) that λjgj(x̄, vji) = 0 for j ∈ J and i ∈ Ij . In addition,
due to x̂ ∈ Fr, λjgj(x̂, vji) ≤ 0 for j ∈ J and i ∈ Ij . So, we get by (3.13), (3.14) that∑

k∈K
αkfk(x̄) =

∑
k∈K

αkfk(x̄) +
∑
j∈J

(∑
i∈Ij

λjiλjgj(x̄, vji)

)

≤
∑
k∈K

αkfk(x̂) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(x̂, vji)

)
+ ϵ ‖ x̂− x̄ ‖

≤
∑
k∈K

αkfk(x̂) + ϵ ‖ x̂− x̄ ‖ .(3.15)

From (3.10), we derive

αkfk(x̄) = αk(max
k∈K

fk)(x̄) = αkϕ(x̄).(3.16)

Hence, combine (3.15) and (3.16), we get∑
k∈K

αkϕ(x̄) =
∑
k∈K

αkfk(x̄) ≤
∑
k∈K

αkfk(x̂) + ϵ ‖ x̂− x̄ ‖

≤
∑
k∈K

αkϕ(x̂) + ϵ ‖ x̂− x̄ ‖ .

This implies that

ϕ(x̄) ≤ ϕ(x̂) + ϵ ‖ x̂− x̄ ‖,(3.17)

due to
∑

k∈Kαk = 1. Obviously, (3.17) contradicts (3.12), and so the proof is
complete. □
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Now, we formulate a dual problem for the robust minimax programming problems,
and explore weak and strong duality relations between them. Let z ∈ Rn, α =
(α1, . . . , αl) ∈ Rl

+ with
∑

k∈K αk = 1,

λ ∈ RN
+ :=

{
λ := (λj , λji), j ∈ J, i ∈ Ij = {1, . . . , ij}

∣∣ ij ∈ N,

λj ≥ 0, λji ≥ 0,
∑
i∈Ij

λji = 1

}
.

In connection with the robust minimax programming problem (RP), we consider a
dual problem in the following form:

max
(z,α,λ)∈FD

{
ϕ̃(z, α, λ) := ϕ(z) +

∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)}
.(RD)

Here, we denote ϕ(z) := maxk∈K fk(z) and

FD :=

{
(z, α, λ) ∈ Rn × Rl

+\{0} × RN
+

∣∣ 0 ∈
∑
k∈K

αk∂fk(z)+∑
j∈J

λj
(∑
i∈Ij

λjiηji
)
+ ϵB, ηji ∈ {∪∂xgj(z, vji) | vji ∈ Vj(z)},

αk

(
fk(z)− ϕ(z)

)
= 0, k ∈ K,

∑
k∈K

αk = 1

}
,

where Vj(z) is defined as in (3.2) by replacing x̄ by z.

Definition 3.6. A point (z̄, ᾱ, λ̄) ∈ FD is called a global quasi ϵ-solution of prob-
lem (RD) if and only if

ϕ̃(z̄, ᾱ, λ̄) + ϵ ‖ (z̄, ᾱ, λ̄)− (z, α, λ) ‖≥ ϕ̃(z, α, λ), ∀(z, α, λ) ∈ FD.

The following theorem gives weak robust duality relations between (RP) and
(RD).

Theorem 3.7. Let x ∈ Fr, and let (z, α, λ) ∈ FD. If (f, g) is generalized convex at
z, then

ϕ(x) + ϵ ‖ x− z ‖≥ ϕ̃(z, α, λ).

Proof. Since (z, α, λ) ∈ FD, there exist αk ≥ 0, k ∈ K with
∑

k∈K αk = 1, ξk ∈
∂fk(z), k ∈ K, and λj ≥ 0, j ∈ J, λji ≥ 0, ηji ∈ ∂xgj(z, vji), vji ∈ Vj(z), i ∈ Ij =
{1, . . . , ij}, ij ∈ N,

∑
i∈Ijλji = 1, and ϑ ∈ B such that

0 =
∑
k∈K

αkξk +
∑
j∈J

λj
(∑
i∈Ij

λjiηji
)
+ ϵϑ,(3.18)

αk

(
fk(z)− ϕ(z)

)
= 0, k ∈ K.(3.19)

Assume to the contrary that

ϕ(x) + ϵ ‖ x− z ‖< ϕ̃(z, α, λ),



3202 Z. HONG AND D. S. KIM

which is equivalent to

ϕ(x) + ϵ ‖ x− z ‖< ϕ(z) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)
.(3.20)

By the generalized convex property of (f, g) at z, we deduce from (3.18) that for
such x there is h ∈ Rn such that

0 =
∑
k∈K

αk〈ξk, h〉+
∑
j∈J

λj

(∑
i∈Ij

λji〈ηji, h〉
)
+ ϵ〈ϑ, h〉,

≤
∑
k∈K

αk

[
fk(x)− fk(z)

]
+
∑
j∈J

λj

(∑
i∈Ij

λji[gj(x, vji)− gj(z, vji)]

)
+ ϵ ‖ x− z ‖ .

(3.21)

It stems from x ∈ Fr that ∑
j∈J

λj

(∑
i∈Ij

λjigj(x, vji)

)
≤ 0.

Thus, (3.21) gives us

0 ≤
∑
k∈K

αk

[
fk(x)− fk(z)

]
−
∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)
+ ϵ ‖ x− z ‖ .(3.22)

Combining now (3.19) with (3.22), we have

0 ≤
∑
k∈K

αkfk(x)−
∑
k∈K

αkϕ(z)−
∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)
+ ϵ ‖ x− z ‖ .

This gives us

ϕ(z) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)
=

∑
k∈K

αkϕ(z) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(z, vji)

)
≤

∑
k∈K

αkfk(x) + ϵ ‖ x− z ‖

≤
∑
k∈K

αk max
k∈K

fk(x) + ϵ ‖ x− z ‖

= ϕ(x) + ϵ ‖ x− z ‖,

(3.23)

where the equality in (3.23) holds due to
∑

k∈Kαk = 1, which contradicts to (3.20).
The proof of the theorem is complete. □

The forthcoming theorem describes strong robust duality relations between (RP)
and (RD).

Theorem 3.8. Let x̄ ∈ Fr be a local quasi ϵ-solution of problem (RP) such that the
(CQ) is satisfied at this point. Then there exists (ᾱ, λ̄) ∈ (Rl

+\{0})× RN
+ such that

(x̄, ᾱ, λ̄) ∈ FD and

ϕ(x̄) = ϕ̃(x̄, ᾱ, λ̄).



APPROXIMATES SOLUTIONS IN RP WITH APPLICATIONS 3203

Furthermore, if (f, g) is generalized convex at any z ∈ Rn, then (x̄, ᾱ, λ̄) is a global
quasi ϵ-solution of problem (RD).

Proof. Applying Theorem 3.3, we find αk ≥ 0, k ∈ K with
∑

k∈Kαk = 1, ξk ∈
∂fk(x̄), k ∈ K, and λj ≥ 0, j ∈ J, λji ≥ 0, ηji ∈ ∂xgj(x̄, vji), vji ∈ Vj(x̄), i ∈ Ij =
{1, . . . , ij}, ij ∈ N,

∑
i∈Ijλji = 1, and ϑ ∈ B such that

0 =
∑
k∈K

αkξk +
∑
j∈J

λj
(∑
i∈Ij

λjiηji
)
+ ϵϑ,(3.24)

αk

(
fk(x̄)−max

k∈K
fk(x̄)

)
= 0, k ∈ K,

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.(3.25)

Letting ᾱ := (α1, . . . , αl), and λ̄ := (λj , λji), we have (ᾱ, λ̄) ∈ (Rl
+\{0})× RN

+, and
so (x̄, ᾱ, λ̄) ∈ FD due to (3.24). Since vji ∈ Vj(x̄),

gj(x̄, vji) = sup
vj∈Vj

gj(x̄, vj)

for j ∈ J, and i ∈ Ij = 1, . . . , ij . Thus, it stems from (3.25) that λjgj(x̄, vji) = 0 for
j ∈ J, and k ∈ Ij . This entails that∑

j∈J
λj

(∑
i∈Ij

λjigj(x̄, vji)

)
=

∑
j∈J

(∑
i∈Ij

λjiλjgj(x̄, vji)

)
= 0,

and therefore,

ϕ(x̄) = ϕ(x̄) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(x̄, vji)

)
= ϕ̃(x̄, ᾱ, λ̄).

Since (f, g) is generalized convex at any z ∈ Rn, by invoking Theorem 3.7, we obtain

ϕ̃(x̄, ᾱ, λ̄) + ϵ ‖ (x̄, ᾱ, λ̄)− (z, α, λ) ‖ = ϕ(x̄) + ϵ ‖ (x̄, ᾱ, λ̄)− (z, α, λ) ‖

≥ ϕ̃(z, α, λ)

for any (z, α, λ) ∈ FD. This means that (x̄, ᾱ, λ̄) is a global quasi ϵ-solution of
problem (RD). □

The forthcoming theorem declares converse-like robust duality relations between
(RP) and (RD).

Theorem 3.9. Let (x̄, ᾱ, λ̄) ∈ FD be such that ϕ(x̄) = ϕ̃(x̄, ᾱ, λ̄). If x̄ ∈ Fr and
(f, g) is generalized convex at x̄, then x̄ is a global quasi ϵ-solution of problem (RP).

Proof. Since (x̄, ᾱ, λ̄) ∈ FD, there exist ᾱ := (α1, . . . , αl) ∈ Rl
+\{0}, ξk ∈ ∂fk(z),

k ∈ K, λ̄ := (λj , λji), λj ≥ 0, j ∈ J, λji ≥ 0, ηji ∈ ∂xgj(x̄, vji), vji ∈ Vj(x̄),
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i ∈ Ij = {1, . . . , ij}, ij ∈ N,
∑

i∈Ijλji = 1, and ϑ ∈ B such that

0 =
∑
k∈K

αkξk +
∑
j∈J

λj
(∑
i∈Ij

λjiηji
)
+ ϵϑ,(3.26)

αk

(
fk(x̄)− ϕ(x̄)

)
= 0, k ∈ K.(3.27)

As ϕ(x̄) = ϕ̃(x̄, ᾱ, λ̄), we have

ϕ(x̄) = ϕ(x̄) +
∑
j∈J

λj

(∑
i∈Ij

λjigj(x̄, vji)

)
= ϕ̃(x̄, ᾱ, λ̄),

i.e., ∑
j∈J

λj

(∑
i∈Ij

λjigj(x̄, vji)

)
= 0.(3.28)

Since vji ∈ Vj(x̄),

gj(x̄, vji) = sup
vj∈Vj

gj(x̄, vj)(3.29)

for j ∈ J, and i ∈ Ij = 1, . . . , ij . Combining now (3.28), (3.29) with
∑

i∈Ijλji = 1,

we derive ∑
j∈J

λj

(∑
i∈Ij

λjigj(x̄, vji)

)
=

∑
j∈J

(∑
i∈Ij

λjiλjgj(x̄, vji)

)

=
∑
j∈J

(
λj sup

vj∈Vj

gj(x̄, vj)

)
= 0.(3.30)

Let x̄ ∈ Fr. Then gj(x̄, vj) ≤ 0, for all vj ∈ Vj , j = 1, . . . ,m. Thus, deducing from
(3.30), we obtain

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

This together with (3.26) and (3.27) confirms that x̄ satisfies condition (3.3). To
finish the proof, it remains to apply Theorem 3.5. □

4. Robust multi-objective problem

This section is devoted to optimality conditions of robust minimax programming
problem to robust multi-objective optimization problems.More precisely, we employ
necessary and sufficient conditions obtained for (RP) in the previous sections to
derive the corresponding ones for (RMOP).

A multi-objective optimization problem with locally Lipschitzian data in the face
of data uncertainty in the constraints is of the form

MinRl
+
{f(x) | gj(x, vj) ≤ 0, j ∈ J},(UMOP)

where x ∈ Rn is the vector of decision variables, f(x) := (f1(x), . . . , fl(x)), fk :
Rn → R, k ∈ K := {1, . . . , l}, are locally Lipschitz functions, gj : Rn × Vj → R,
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j ∈ J := {1, . . . ,m} are given functions, vj ∈ Vj , j ∈ J are uncertain parameters,
Vj ⊂ Rq, j ∈ J are uncertainty sets.

We will treat problem (UMOP) by robust optimization approach, its robust coun-
terpart is as follows,

MinRl
+
{f(x) | x ∈ Fr},(RMOP)

where Fr is the feasible set of problem (RMOP), defined by

Fr = {x ∈ Rn | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j ∈ J}.

Definition 4.1. Let ε := (ϵ1, . . . , ϵl) ∈ Rl
+, we say x̄ ∈ Fr is a weakly quasi ε-Pareto

solution of problem (RMOP) if and only if

f(x) + ε ‖ x− x̄ ‖ −f(x̄) /∈ −intRl
+, ∀x ∈ Fr.

The following result is a Karush–Kuhn–Tucker (KKT) necessary condition for
weakly quasi ε-Pareto solutions of problem (RMOP).

Theorem 4.2. Let ε := (ϵ1, . . . , ϵl) ∈ Rl
+, and the (CQ) be satisfied at x̄ ∈ Rn. If

x̄ is a weakly quasi ε-Pareto solution of problem (RMOP), then there exist αk ≥ 0,
k ∈ K with

∑
k∈Kαk = 1, λj ≥ 0, j ∈ J, such that

0 ∈
∑
k∈K

αk∂fk(x̄) +
∑
j∈J

λjco
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
+ ϵk̄B,

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J,
(4.1)

where ϵk̄ = maxk∈K{ϵk}.

Proof. Let x̄ be a weakly quasi ε-Pareto solution of problem (RMOP) and let

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ Rn.

We will show that x̄ is a quasi ϵk̄-solution of the minimax programming problem

min
x∈Fr

max
k∈K

f̂k(x).(4.2)

To do this, let us put ϕ̂(x) := maxk∈K f̂k(x) and prove that

ϕ̂(x̄) ≤ ϕ̂(x) + ϵk̄ ‖ x− x̄ ‖, ∀x ∈ Fr.(4.3)

Indeed, if (4.3) is not valid, then there exists x0 ∈ Fr such that

ϕ̂(x0) + ϵk̄ ‖ x0 − x̄ ‖< ϕ̂(x̄).

Since ϕ̂(x̄) = 0, it holds that

max
k∈K

{
fk(x0)− fk(x̄)

}
+ ϵk̄ ‖ x0 − x̄ ‖< 0.

Thus,

f(x0)− f(x̄) + ε ‖ x0 − x̄ ‖∈ −intRl
+,
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which contradicts the fact that x̄ is a weakly quasi ε-Pareto solution of problem
(RMOP). So, we can apply (KKT) condition obtained in Theorem 3.3 to problem
(4.2). Then we find αk ≥ 0, k ∈ K with

∑
k∈Kαk = 1, λj ≥ 0, j ∈ J, such that

0 ∈
∑
k∈K

αk∂f̂k(x̄) +
∑
j∈J

λjco
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄)

}
+ ϵk̄B,

αk

(
f̂k(x̄)−max

k∈K
f̂k(x̄)

)
= 0, k ∈ K,

λj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

(4.4)

It is now clear that (4.4) implies (4.1) and thus, the proof is complete. □

The following theorem describes sufficient optimality conditions for a weakly
quasi ε-Pareto solutions of problem (RMOP).

Theorem 4.3. Let ε := (ϵk̄, . . . , ϵk̄) ∈ Rl
+, and x̄ ∈ Fr satisfy condition (4.1).

If (f, g) is generalized convex at x̄, then x̄ is a weakly quasi ε-Pareto solution of
problem (RMOP).

Proof. Similar to the proof of Theorem 4.2, we put

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ Rn.

Now, it is easy to see that x̄ satisfies condition (4.4). Let f̂ := (f̂1, . . . , f̂l). Since

(f, g) is generalized convex on Rn at x̄, it follows that (f̂ , g) is generalized convex
on Rn at this point as well. We apply Theorem 3.5 to conclude that x̄ is a quasi
ϵk̄-solution of the robust minimax programming problem

min
x∈Fr

max
k∈K

f̂k(x).

It means that

ϕ̂(x̄) ≤ ϕ̂(x) + ϵk̄ ‖ x− x̄ ‖, ∀x ∈ Fr,

where ψ̂(x) := maxk∈K f̂k(x). In other words, we obtain

0 ≤ max
k∈K

{fk(x)− fk(x̄)}+ ϵk̄ ‖ x− x̄ ‖, ∀x ∈ Fr,

which entails that

f(x)− f(x̄) + ε̄ ‖ x− x̄ ‖/∈ −intRl
+, ∀x ∈ Fr.

Consequently, x̄ is a weakly quasi ε-Pareto solution of problem (RMOP). □

5. Conclusions

In this paper, we investigated approximate optimality conditions and duality in
robust minimax optimzaion problem under a suitable constraint qualification. Fi-
nally, by using the obtained results, we derive necessary and sufficient conditions for
weak quasi ε-Pareto solutions to the robust multi-objective optimization problem.
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