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It is called the resolvent of A. In case of Hilbert space H, accretive operators are
also called monotone. It is well-known that a monotone operator A is maximal if
and only if R(I + λA) = H ([13]). The best-known example of maximal monotone
is the subgradient mapping ∂ψ of a proper lower semicontinuous convex function
ψ : H → R ∪ {∞} ([14]).

The following variational inclusion problem in Banach space E:

(P) find z ∈ E such that 0 ∈ Az,

plays an essential role in the theory of nonlinear analysis, where A : E → 2E is
a multi-valued operator acting on E. In fact, the Problem (P) can be regarded
as a unified formulation of several important problems and covers a wide range of
mathematical applications: for example, variational inequalities, complementarity
problems and non-smooth convex optimization. In particular, if ψ : H → R ∪ {∞}
is a proper lower semicontinuous convex function, then its subdifferential ∂ψ is a
maximal monotone operator and a point z ∈ H minimizes ψ if and only if 0 ∈ ∂ψ(z).

Iterative algorithms have extensively been studied over the last fifty years for
constructions of zeros of accretive operators (see, e.q., [2, 3, 7, 10, 12, 15, 18, 23]).
One method for solving zeros of maximal monotone operators is proximal point
algorithm. Let A be a maximal monotone operator in a Hilbert space H. The
proximal point algorithm generates, for starting x1 ∈ H, a sequence {xn} in H by

(1.1) xn+1 = JA
rnxn for all n ∈ N,

where Jrn = (I + rnA)
−1 is the resolvent operator associated with the operator A

and {rn} is a regularization sequence in (0,∞). Note that (1.1) is equivalent to

xn ∈ xn+1 + rnAxn+1 for all n ∈ N.

This algorithm was first introduced by Martinet [12]. If ψ : H → R ∪ {∞} is a
proper lower semicontinuous convex function, then the algorithm reduces to

xn+1 = argminy∈H

{
ψ(y) +

1

rn
‖xn − y‖2

}
for all n ∈ N.

Rockafellar [15] studied the proximal point algorithm in the framework of Hilbert
space and proved that if A is a maximal monotone operator with A−10 6= ∅ and
if {xn} is a sequence in H defined by (1.1), where {rn} is a sequence in (0,∞)
such that lim infn→∞ rn > 0, then {xn} converges weakly to an element of A−10.
Rockafellar [14] has given a more practical method which is an inexact variant of
the method:

(1.2) xn + en ∈ xn+1 + rnAxn+1 for all n ∈ N,

where {en} is regarded as an error sequence and {rn} is a sequence of positive
regularization parameters. Note that the algorithm (1.2) can be rewritten as

xn+1 = JA
rn(xn + en) for all n ∈ N.

The method is called inexact proximal point algorithm. Güler [7] gave an example
for which the sequence generated by (1.1) converges weakly but not strong. In
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order to modify the proximal point algorithm so that strongly convergent sequence
is guaranteed, the Tikhonov method which generates a sequence {x̃n} by rule

x̃n = JA
µn
u for all n ∈ N,

where u ∈ H and µn > 0 such that µn → ∞, is studied by several authors (see, e.q.,
Wong et al. [22]). The detail of Tikhonov regularization can be found in [4, 20,21].

In [11], Lehdili and Moudafi introduced the prox-Tikhonov method which gener-
ates the sequence {xn} by the algorithm

(1.3) xn+1 = JAn
λn
xn for all n ∈ N,

where An = µnI+A, µn > 0 is viewed as a Tikhonov regularization of A. Note that
An is strongly monotone, i.e., 〈x − x′, y − y〉 ≥ µn‖x − x′‖2 for all (x, y), (x′, y′) ∈
G(An). Lehdili and Moudafi [11] proved strong convergence of the algorithm (1.3)
for solving Problem (P) when A is maximal monotone operator on H under certain
conditions imposed upon the sequences {λn} and {µn}. Note that An is a maximal
monotone operator and hence (1.3) can be written as

(1.4) xn ∈ [(1 + λnµn)I + λnA]xn+1 for all n ∈ N.

If λn := rn
1−αn

and µn := αn
rn

, then (1.4) reduces to

(1− αn)xn ∈ xn+1 + rnAxn+1 for all n ∈ N,

equivalently,

(1.5) xn+1 = JA
rn((1− αn)xn) for all n ∈ N.

In [16], Sahu and Yao investigated a prox-Tikhonov method which converges
strongly to solution of the Problem (P) in the framework of Banach space. In
particular, as a prox-Tikhonov method, they proposed the following algorithm:

(1− αn)xn + αnfxn ∈ xn+1 + rnAxn+1 for all n ∈ N,

equivalently,

(1.6) xn+1 = JA
rn(αnfxn + (1− αn)xn) for all n ∈ N.

where f : C → C is a contractive mapping (i.e., ‖fx − fy‖ ≤ k‖x − y‖ for all
x, y ∈ C and some k ∈ (0, 1)) and A ⊂ E × E is an accretive operator such that

A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I+λA), and obtained strong convergence of the
sequence {xn} generated by (1.6) to a zero of A in a reflexive Banach space with
a uniformly Gâteaux differentiable norm. Jung [10] also study the algorithm (1.6)
under the different control conditions in a uniformly convex Banach space having a
weakly continuous duality mapping Jφ with gauge function φ.

In this paper, as the prox-Tikhonov regularization method for proximal point
algorithm, we consider iterative algorithms for finding a zero for an accretive op-
erator A in a reflexive Banach space having a weakly continuous duality mapping
Jφ with gauge function φ. Under weaker control conditions than previous ones, we
establish strong convergence of the sequence generated by the iterative algorithm
(1.6) to a zero of A, which solves a certain variational inequality related to f . As
an application, we study an iterative algorithm for inexact variant of the algorithm
(1.6) with error sequence. As a continuation of study in this direction, our results
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can be viewed as improvement, complement and development of the corresponding
results in [10,11,16,18,23] and the references therein.

2. Preliminaries and lemmas

Throughout the paper, we use notations: “ ⇀ ” for weak convergence, “
∗
⇀ ” for

weak∗ convergence, and “ → ” for strong convergence.
Let E be a real Banach space with the norm ‖ · ‖, and let E∗ be its dual. The

value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉. The norm of E is said to be
Gâteaux differentiable (and E is said to be smooth) if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y in its unit sphere S = {x ∈ E : ‖x‖ = 1}.
By a gauge function we mean a continuous strictly increasing function φ defined

on R+ := [0,∞) such that φ(0) = 0 and limr→∞ φ(r) = ∞. The mapping Jφ : E →
2E

∗
defined by

Jφ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = φ(‖x‖)} for all x ∈ E

is called the duality mapping with gauge function φ. In particular, the duality
mapping with gauge function φ(t) = t, denoted by J , is referred to as the normalized
duality mapping. It is well known that a Banach space E is smooth if and only if the
normalized duality mapping J is single-valued. The following property of duality
mapping is also well-known:

(2.1) Jφ(λx) = sign λ

(
φ(|λ| · ‖x‖)

‖x‖

)
J (x) for all x ∈ E \ {0}, λ ∈ R,

where R is the set of all real numbers; in particular, J (−x) = −J (x) for all x ∈ E
([1, 6]).

We say that a Banach space E has a weakly continuous duality mapping if there
exists a gauge function φ such that the duality mapping Jφ is single-valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} ⊂ E

with xn ⇀ x, Jφ(xn)
∗
⇀ Jφ(x). For example, every lp space (1 < p < ∞) has a

weakly continuous duality mapping with gauge function φ(t) = tp−1 ([1, 6, 8]). Set

Φ(t) =

∫ t

0
φ(τ)dτ for all t ∈ R+.

Then it is known that Jφ(x) is the subdifferential of the convex functional Φ(‖ · ‖)
at x, that is, Jφ(x) = ∂Φ(‖x‖).

We need the following lemmas for the proof of our main result.

Lemma 2.1 ([1, 6]). Let E be a Banach space having a weakly continuous duality
mapping Jφ with gauge function φ. Define

Φ(t) =

∫ t

0
φ(τ)dτ for all t ∈ R+.

Then (i) the following inequalities hold:

Φ(kt) ≤ kΦ(t), 0 < k < 1,
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Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y,Jφ(x+ y)〉 for all x, y ∈ E.

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E. Then the
following identity holds:

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖) for all x, y ∈ E.

Lemma 2.2 ([24]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + αnδn + γn, for all n ∈ N,
where {αn}, {δn} and {rn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1] and
∑∞

n=1 αn = ∞ or, equivalently,
∏∞

n=1(1− αn) = 0;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 αn|δn| <∞,

(iii) γn ≥ 0 for all n ∈ N and
∑∞

n=1 γn <∞.

Then limn→∞ sn = 0.

An accretive operator A defined on a Banach space E is said to satisfy the range
condition if D(A) ⊂ R(I + λA) for all λ > 0, where D(A) denotes the closure of
the domain of A. It is well known that for an accretive operator A which satisfies
the range condition, A−10 = Fix(JA

λ ) for all λ > 0 (set of fixed points of JA
λ ).

We also know that if A is an m-accretive operator on a Banach space E, then
for each λ > 0, the resolvent JA

λ = (I + λA)−1 is a single-valued nonexpansive
mapping whose domain is the entire space E. Let C be a closed convex subset of a
Banach space E and let A ⊂ E × E be an accretive operator such that A−10 6= ∅
and D(A) ⊂ C ⊂ ∩λ>0R(I + λA). From Takahashi [19], we know that JA

r is a
nonexpansive mapping of C into itself and Fix(JA

r ) = A−10 for each r > 0.

Lemma 2.3 (The Resolvent Identity ([6])). For λ, µ > 0,

Jλ = Jµ

(
µ

λ
I +

(
1− µ

λ

)
Jλ

)
.

Let LIM be a continuous linear functional on l∞ and (a1, a2, . . . ) ∈ l∞. We
write LIMn(an) instead of LIM((a1, a2, . . . )). LIM is said to be Banach limit
if LIM satisfies ‖LIM‖ = LIMn(1) = 1 and LIMn(an+1) = LIMn(an) for all
(a1, a2, . . . ) ∈ l∞. If LIM is a Banach limit, the following are well-known ([1]):

(i) for all n ≥ 1, an ≤ cn implies LIMn(an) ≤ LIMn(cn),
(ii) LIMn(an+N ) = LIMn(an) for any fixed positive integer N ,
(iii) lim infn→∞ an ≤ LIMn(an) ≤ lim supn→∞ an for all (a1, a2, . . . ) ∈ l∞.

Lemma 2.4 ([17]). Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy the
condition LIMn(an) ≤ a for all Banach limit LIM . If lim supn→∞(an+1−an) ≤ 0,
then lim supn→∞ an ≤ a.

Finally, we recall that the sequence {xn} in E is said to be weakly asymptotically
regular if

w − lim
n→∞

(xn+1 − xn) = 0, that is, xn+1 − xn ⇀ 0

and asymptotically regular if

lim
n→∞

‖xn+1 − xn‖ = 0,

respectively.
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3. Main results

In our first result, we utilize contractive mappings as the Tikhonov regularization
of resolvent JA

r of accretive operator A. Define an operator Qt : C → C by

Qtv := JA
r (tfv + (1− t)v) for all v ∈ C,

where t ∈ (0, 1), r > 0 is a fixed constant and f : C → C is a contractive map-
ping with contractive constant k ∈ (0, 1). Then Qt is a contractive mapping with
contractive constant 1 − (1 − k)t. By the Banach contraction principle, for every
t ∈ (0, 1), there exists a unique fixed point vt ∈ C of the contractive mapping Qt

defined by

(3.1) vt = JA
r (tfvt + (1− t)vt)

Theorem 3.1. Let E be a reflexive Banach space having a weakly continuous duality
mapping Jφ with gauge function φ and let C be a closed convex subset of E. Let A ⊂
E×E be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I+λA)
and let f : C → C be a contractive mapping with contractive constant k ∈ (0, 1). Let
{vt} be a path defined by (3.1). Then {vt} converges strongly as t→ 0 to x̃ ∈ A−10,
which is the unique solution of the variational inequality:

(3.2) 〈(I − f)x̃,Jφ(x̃− z)〉 ≤ 0 for all z ∈ A−10.

Proof. We first show the uniqueness of a solution of the variational inequality (3.2).
Suppose that both x̃ and x∗ ∈ A−10 are solution to (3.2). Then

(3.3) 〈(I − f)x̃,Jφ(x̃− x∗)〉 ≤ 0

and

(3.4) 〈(I − f)x∗,Jφ(x
∗ − x̃)〉 ≤ 0

Adding up (3.3) and (3.4), we obtain

〈(I − f)x̃− (I − f)x∗,Jφ(x̃− x∗)〉 ≤ 0.

Noticing that for any x, y ∈ E

〈(I − f)x− (I − f)y,Jφ(x− y)〉 = 〈x− y,Jφ(x− y)〉 − 〈fx− fy,Jφ(x− y)〉
≥ ‖x− y‖φ(‖x− y‖)− k‖x− y‖φ(‖x− y‖)
= Φ(‖x− y‖)− kΦ(‖x− y‖)
= (1− k)Φ(‖x− y‖) ≥ 0,

we have x̃ = x∗ and uniqueness is proved. Below we use x̃ to denote the unique
solution of the variational inequality (3.2).

Next, from (3.1), we obtain t(fvt−vt)
r ∈ Avt and hence

(3.5) 〈vt − fvt,Jφ(vt − z)〉 ≤ 0 for all z ∈ A−10 and t ∈ (0, 1).
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Take p ∈ A−10. Using (3.5), we induce

‖vt − p‖φ(‖vt − p‖) = 〈vt − p,Jφ(vt − p)〉
= 〈vt − fvt + fvt − p,Jφ(vt − p)〉
= 〈vt − fvt,Jφ(vt − p)〉+ 〈fvt − p,Jφ(vt − p)〉
≤ 〈fvt − p,Jφ(vt − p)〉 ≤ ‖fvt − p‖φ(‖vt − p‖),

and so
‖vt − p‖ ≤ ‖fvt − p‖ ≤ ‖fvt − fp‖+ ‖fp− p‖

≤ k‖vt − p‖+ ‖fp− p‖,
which implies

‖vt − p‖ ≤ 1

1− k
‖fp− p‖.

Thus {vt} is bounded and {fvt} is bounded. By boundedness of {vt} and{fvt}, one
can easily see

‖vt − JA
r vt‖ =‖JA

r (tfvt + (1− t)vt)− JA
c vt‖

≤‖tfvt + (1− t)vt − vt‖ = t‖fvt − vt‖ → 0 as t→ 0.

It follows from reflexivity of E and the boundedness of sequence {vt} that there
exists {vtn} which is a subsequence of {vt} converges weakly to w ∈ C as n → ∞.
Since Jφ is weakly continuous, we have by Lemma 2.1(ii) that

lim sup
n→∞

Φ(‖vtn − x‖) = lim sup
n→∞

Φ(‖vtn − w‖) + Φ(‖x− w‖) for all x ∈ C.

Let

H(x) = lim sup
n→∞

Φ(‖vtn − x‖) for all x ∈ C.

Then it follows that

H(x) = H(w) + Φ(‖x− w‖) for all x ∈ C.

Since ‖vtn − JA
r vtn‖ ≤ tn‖fvtn − vtn‖ → 0 as n→ ∞, we obtain

(3.6)

H(JH
c w) = lim sup

n→∞
Φ(‖vtn − JA

r w‖)

= lim sup
n→∞

Φ(‖JA
r vtn − JA

r w‖)

≤ lim sup
n→∞

Φ(‖vtn − w‖) = H(w).

On the other hand, however

(3.7) H(JA
r w) = H(w) + Φ(‖JA

r w − w‖).

It follows from (3.6) and (3.7) that

Φ(‖JA
r w − w‖) = H(JA

r w)−H(w) ≤ 0.

This implies that JA
r w = w, that is, w ∈ A−10.
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Next, we show that vtn → w as n → ∞. In fact using Lemma 2.1 (i) and (3.5),
we derive

Φ(‖vtn − w‖) = Φ(‖vtn − fvtn + fvtn − fw + fw − w‖)
≤ Φ(‖fvtn − fw‖) + 〈vtn − fvtn + fw − w,Jφ(vtn − w)〉
≤ Φ(k‖vtn − w‖) + 〈vtn − fvtn ,Jφ(vtn − w)〉+〈fw − w,Jφ(vtn − w)〉
≤ kΦ(‖vtn − w‖) + 〈fw − w,Jφ(vtn − w)〉.

This implies that

(3.8) Φ(‖vtn − w‖) ≤ 1

1− k
〈fw − w,Jφ(vtn − w)〉.

Now observing that vtn ⇀ w implies Jφ(vtn − w)
∗
⇀ 0, we conclude from the last

inequality (3.8) that
Φ(‖vtn − w‖) → 0 as n→ ∞.

Hence vtn → w as n→ ∞.
Moreover, we have from (3.5)

〈(I − f)w,Jφ(w − z)〉 ≤ 0 for all z ∈ A−10.

So, w ∈ A−10 is a solution of the variational inequality (3.2) and hence w = x̃ by
the uniqueness.

In a summary, we have shown that each cluster point of {vt} as t → 0 equals x̃.
This completes the proof. □

In the proofs of the next theorems, we need the following result for the existence
of solutions of a certain variational inequality, which can be obtained by the similar
argument as in [5,9] and the argument of proof of Theorem 3.1. We omit its proof.

Theorem 3.2. Let E be a reflexive Banach space having a weakly continuous duality
mapping Jφ with gauge function φ and let C be a closed convex subset of E. Let A ⊂
E×E be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I+λA)
and let f : C → C be a contractive mapping with contractive constant k ∈ (0, 1).
Then for fixed r > 0 and every t ∈ (0, 1), there exists the unique fixed point zt ∈ C
of the contractive mapping C 3 z 7→ tfz + (1− t)JA

r z defined by

(3.9) zt = tfzt + (1− t)JA
r zt,

and the path {zt} defined by (3.9) converges strongly as t → 0 to q ∈ A−10, which
is the unique solution of the variational inequality:

〈(I − f)q,Jφ(q − p)〉 ≤ 0 for all p ∈ A−10.

Motivated by algorithm (1.5) and Theorem 3.1, we present the prox-Tikhonov
method for solving Problem (P) in the Banach space setting. As in [16], our prox-
Tikhonov method is defined to generate a sequence {xn} in C as follows: for x1 ∈ C,

(3.10) xn+1 = JA
rn((1− αn)xn + αnfxn) for all n ∈ N,

where {αn} is a sequence in (0, 1] and {rn} is a regularization sequence in (0,∞).
We consider our prox-Tikhonov method under the conditions:

(C1) limn→∞ αn = 0;
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(C2)
∑∞

n=1 αn = ∞;
(C3) limn→∞ rn = r > 0.

First of all, using Theorem 3.2, we give the following result.

Theorem 3.3. Let E be a reflexive Banach space having a weakly continuous duality
mapping Jφ with gauge function φ and let C be a closed convex subset of E. Let A ⊂
E×E be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I+λA)
and let f : C → C be a contractive mapping with contractive constant k ∈ (0, 1).
Let {xn} be a sequence in C generated by (3.10), where {αn} is a sequence in (0, 1)
and {rn} is a regularization sequence in (0,∞) satisfying conditions (C1) and (C3).
Let LIM be a Banach limit. Then

LIMn(〈(I − f)q,Jφ(q − xn)〉) ≤ 0,

where q := limt→0+ zt with zt being defined by zt = tfzt + (1 − t)JA
r zt for r =

limn→∞ rn.

Proof. Let zt = tfzt + (1 − t)JA
r zt for any t ∈ (0, 1). Then, by Theorem 3.2, we

know that {zt} is bounded and {zt} converges strongly to a point in A−10 as t→ 0,
which is denoted by q := limt→0 zt.

From now, let yn = αnfxn + (1− αn)xn for all n ∈ N.
First, we show that {xn} is bounded. In fact, since A−10 6= ∅, we take p ∈

A−10 = F (JA
λ ) for all λ > 0. Noting that

(3.11)
‖yn − p‖ = ‖αn(fxn − p) + (1− αn)(xn − p)‖

≤ (1− αn)‖xn − p‖+ αn‖fxn − p‖,

from (3.10), (3.11) and the nonexpansivity of JA
rn for all n, we obtain by induction

(3.12)

‖xn+1 − p‖ = ‖JA
rnyn − p‖

≤ ‖yn − p‖
≤ [αn‖fxn − fp‖+ (1− αn)‖xn − p‖+ αn‖fp− p‖]
≤ [αnk‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖fp− p‖]

= (1− (1− k)αn)‖xn − p‖+ (1− k)αn
‖fp− p‖
1− k

≤ max

{
‖xn − p‖, ‖fp− p‖

1− k

}
. . . . . . . . .

≤ max

{
‖x1 − p‖, ‖fp− p‖

1− k

}
.

Hence {xn} is bounded. From (3.12), it also follows that {yn} and {fxn} are
bounded.
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Now, we show that LIMn(〈(I− f)q,Jφ(q−xn)〉) ≤ 0, where q = limt→0+ zt with
zt being defined by zt = tfzt + (1− t)JA

r zt for r > 0. Indeed, since

(3.13)

zt − xn+1 = (1− t)(JA
r zt − xn+1) + t(fxt − xn+1)

= (1− t)(JA
r zt − JA

r yn) + (1− t)(JA
r yn − JA

rnyn)

+ t(fzt − xn+1),

applying Lemma 2.1 (i) with (3.13), we have

(3.14)

Φ(‖zt − xn+1‖) ≤ Φ((1− t)‖JA
r zt − xn+1‖)

+ t〈fxt − xn+1,Jφ(xt − xn+1)〉
≤ Φ((1− t)(‖JA

r zt − JA
r yn‖+ ‖JA

r yn − JA
rnyn‖))

+ t〈fxt − xn+1,Jφ(xt − xn+1)〉.
We note from Lemma 2.3 that

(3.15)

‖JA
r yn − JA

rnyn‖ =

∥∥∥∥JA
r

(
r

rn
yn +

(
1− r

rn

)
JA
rnyn

)
− JA

r yn

∥∥∥∥
≤

∥∥∥∥( r

rn
yn +

(
1− r

rn

)
JA
rnyn

)
− yn

∥∥∥∥
≤

∣∣∣∣1− r

rn

∣∣∣∣‖yn − JA
rnyn‖

≤ |rn − r|
ε

(‖yn‖+ ‖JA
rnyn‖)

≤ |rn − r|
ε

M1,

where rn ≥ ε for some ε > 0 and some constant M1 > 0. Also we observe that

(3.16)

‖zt − yn‖ = ‖zt − (αnfxn + (1− αn)xn)‖
≤ ‖zt − xn‖+ αn‖xn − fxn‖
≤ ‖zt − xn‖+ αn(‖xn‖+ ‖fxn‖)
≤ ‖zt − xn‖+ αnM2,

where some constant M2 > 0. From (3.15) and (3.16), we derive

(3.17)

‖JA
r zt − xn+1‖ = ‖JA

r zt − JA
rnyn‖

≤ ‖JA
r zt − JA

r yn‖+ ‖JA
r yn − JA

rnyn‖
≤ ‖zt − yn‖+ ‖JA

r yn − JA
rnyn‖

≤ ‖zt − xn‖+ αnM2 +
|rn − r|

ε
M1

= ‖zt − xn‖+ εn,

where εn = αnM2 + |rn−r|
ε M1 → 0 as n → ∞ (by conditions (C1) and (C3)).

Moreover, we know that

(3.18)
〈fzt − xn+1,Jφ(zt − xn+1)〉 = 〈fzt − zt,Jφ(zt − xn+1)〉

+ ‖zt − xn+1‖φ(‖zt − xn+1‖).
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Hence, by (3.14), (3.17) and (3.18), we derive

(3.19)

Φ(‖zt − xn+1‖) ≤ Φ((1− t)(‖zt − xn‖+ εn)) + t〈fzt − zt,Jφ(zt − xn+1)〉
+ t‖zt − xn+1‖φ(‖zt − xn+1‖)

≤ Φ((1− t)‖zt − xn‖) + εnφ(‖zt − xn‖+ εn)

+ t〈fzt − zt,Jφ(zt − xn+1)〉
+ t‖zt − xn+1‖φ(‖zt − xn+1‖).

Applying the Banach limit LIM to (3.19) with limn→∞ εnφ(‖zt − xn‖ + εn) = 0,
we have

(3.20)

LIMn(Φ(‖zt − xn+1‖))
≤ LIMn(Φ((1− t)‖zt − xn‖) + LIMn(εnφ(‖zt − xn‖+ εn))

+ tLIMn(〈fzt − zt,Jφ(zt − xn+1)〉)
+ tLIMn(‖zt − xn+1‖φ(‖zt − xn+1‖))

≤ LIMn(Φ((1− t)‖zt − xn‖) + tLIMn(〈fzt − zt,Jφ(zt − xn+1)〉)
+ tLIMn(‖zt − xn+1‖φ(‖zt − xn+1‖)).

Hence, using the property LIMn(an+1) = LIMn(an) of Banach limit LIM to (3.20),
we obtain

(3.21)

LIMn(〈zt − fzt,Jφ(zt − xn)〉)

≤ 1

t
LIMn(Φ((1− t)‖zt − xn‖)− Φ(‖zt − xn‖))

+ LIMn(‖zt − xn‖φ(‖zt − xn‖))

= − 1

t
LIMn

(∫ ∥zt−xn∥

(1−t)∥zt−xn∥
φ(τ)dτ

)
+ LIMn(‖zt − xn‖φ(‖zt − xn‖))

= LIMn(‖zt − xn‖(φ(‖zt − xn‖)− φ(θn)))

for some θn satisfying (1 − t)‖zt − xn‖ ≤ θn ≤ ‖zt − xn‖. Since φ is uniformly
continuous on compact intervals on R+ and

‖zt − xn‖ − θn ≤ t‖zt − xn‖

≤ t

(
2

1− k
‖fp− p‖+ ‖x1 − p‖

)
→ 0 as t→ 0,

we conclude from (3.21) and q = limt→0+ zt that

LIMn(〈(I−f)q,Jφ(q − xn)〉)
≤ lim sup

t→0
LIMn(〈zt − fzt,Jφ(zt − xn)〉)

≤ lim sup
t→0

LIMn(‖zt − xn‖(φ(‖zt − xn‖)− φ(θn))) ≤ 0.

This completes the proof. □

Using Theorem 3.3, we establish the main theorem for solving the Problem (P)
in the Banach space setting.
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Theorem 3.4. Let E be a reflexive Banach space having a weakly continuous duality
mapping Jφ with gauge function φ and let C be a closed convex subset of E. Let A ⊂
E×E be an accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩λ>0R(I+λA)
and let f : C → C be a contractive mapping with contractive constant k ∈ (0, 1).
Let {xn} be a sequence in C generated by (3.10), where {αn} is a sequence in (0, 1)
and {rn} is a regularization sequence in (0,∞) satisfying conditions (C1), (C2)
and (C3). If {xn} is weakly asymptotically regular, then {xn} converges strongly to
q ∈ A−10, which is the unique solution of the variational inequality:

(3.22) 〈(I − f)q,Jφ(q − p)〉 ≤ 0 for all p ∈ A−10.

Proof. First, we note that by Theorem 3.2, there exists the unique solution q of
the variational inequality (3.22), where q := limt→∞ zt ∈ A−10 and zt is defined by
zt = tfzt + (1− t)JA

r zt for t ∈ (0, 1). Let yn = αnfxn + (1− αn)xn for all n ∈ N.
Now, we divide the proof into four steps.

Step 1. We obtain ‖xn − p‖ ≤ max{‖x1 − p‖, ‖fp − p‖/(1 − k)} for all n ≥ 1
and p ∈ A−10 as in the proof of Theorem 3.3, and hence {xn}, {yn} and {fxn} are
bounded. As a consequence, it follows from condition (C1) that

(3.23) ‖yn − xn‖ = αn‖fxn − xn‖ ≤ αn(‖fxn‖+ ‖xn‖) → 0 as n→ ∞.

Step 2. We show that lim supn→∞〈(I−f)q,Jφ(q−xn)〉 ≤ 0. To this end, put an :=
〈(I − f)q, Jφ(q− xn)〉 for all n ≥ 1. Then, Theorem 3.3 implies that LIMn(an) ≤ 0
for any Banach limit LIM . Since {xn} is bounded, Since {xn} bounded, there
exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+1 − an) = lim
j→∞

(anj+1 − anj )

and xnj ⇀ z ∈ E. Since {xn} is weakly asymptotically regular, this implies that
xnj+1 ⇀ z. Moreover, from the weak continuity of duality mapping Jφ, we have

w − lim
j→∞

Jφ(q − xnj+1) = w − lim
j→∞

Jφ(q − xnj ) = Jφ(q − z),

and so

lim sup
n→∞

(an+1 − an) = lim
j→∞

〈(I − f)q,Jφ(q − xnj+1)− Jφ(q − xnj )〉 = 0.

Thus, by Lemma 2.4, we obtain lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

〈(I − f)q,Jφ(q − xn)〉 ≤ 0.

Step 3. We show that lim supn→∞〈(I − f)q,Jφ(q − yn)〉 ≤ 0. In fact, let {yni} be
a subsequence of {yn} such that yni ⇀ v ∈ E and

lim sup
n→∞

〈(I − f)q,Jφ(q − yn)〉 = lim
i→∞

〈(I − f)q,Jφ(q − yni)〉.

Since limn→∞ ‖xn − yn‖ = 0 by (3.23), we have also xni ⇀ v. From the weak
continuity of Jφ, it follows that

w − lim
i→∞

Jφ(q − yni) = w − lim
i→∞

Jφ(q − xni) = Jφ(q − v).
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Hence, by Step 2, we obtain

lim sup
n→∞

〈(I − f)q,Jφ(q − yn)〉 = lim
i→∞

〈(I − f)q,Jφ(q − yni)− Jφ(q − xni)〉

+ lim
i→∞

〈(I − f)q,Jφ(q − xni)〉

= lim
i→∞

〈(I − f)q,Jφ(q − xni)〉

≤ lim sup
n→∞

〈(I − f)q,Jφ(q − xn)〉 ≤ 0.

Step 4. We show that limn→∞ ‖xn − q‖ = 0. Indeed, we derive from Lemma 2.1
(i) that

Φ(‖yn − q‖) = Φ(‖(1− αn)(xn − q) + αn(fxn − fq) + αn(fq − q)‖)
≤ Φ(‖(1− αn)(xn − q) + αn(fxn − fq)‖) + αn〈fq − q,Jφ(yn − q)〉
≤ Φ((1− αn)‖xn − q‖+ αnk‖xn − q‖) + αn〈fq − q,Jφ(yn − q)〉
= Φ((1− (1− k)αn)‖xn − q‖) + αn〈fq − q,Jφ(yn − q)〉
≤ (1− (1− k)αn)Φ(‖xn − q‖) + αn〈(I − f)q,Jφ(q − yn)〉.

Hence, from (3.10), we obtain

Φ(‖xn+1 − q‖) = Φ(‖JA
rnyn − q‖)

≤ Φ(‖yn − q‖)
≤ (1− (1− k)αn)Φ(‖xn − q‖) + αnσn,

where σn = 〈(I − f)q,Jφ(q − yn)〉. Note
∑∞

n=1 αn = ∞ by condition (C2) and
lim supn→∞ σn ≤ 0 by Step 3. Therefore, we conclude from Lemma 2.2 with γn = 0
that limn→∞Φ(‖xn − q‖) = 0, and hence limn→∞ ‖xn − q‖ = 0. This complete the
proof. □

Corollary 3.5. Let E, Jφ, C, A and f be as in Theorem 3.4. Let {xn} be a
sequence in C generated by (3.10), where {αn} is a sequence in (0, 1) and {rn} is
a regularization sequence in (0,∞) satisfying conditions (C1), (C2) and (C3). If
{xn} is asymptotically regular, then {xn} converges strongly to q ∈ A−10, which is
the unique solution of the variational inequality (3.22).

Remark 3.6. If {αn} and {rn} in Corollary 3.5 satisfy the following additional
conditions:

(C4)
∑∞

n=1 |αn+1 − αn| <∞; or limn→∞
|αn+1−αn|

αn+1
= 0; or

(C5) |αn+1−αn| ≤ o(αn+1)+σn,
∑∞

n=1 σn <∞ (the perturbed control condition);
(C6)

∑∞
n=1 |rn+1 − rn| <∞,

then the sequence {xn} generated by (3.10) in Theorem 3.4 is asymptotically regular.
Now we give only the proof in case when {αn} and {rn} satisfy the conditions

(C2), (C3), (C5) and (C6). First, let yn = αnfxn + (1−αn)xn for all n ≥ 1. Then,
from Theorem 3.4, we note that {xn}, {yn} and {fxn} are bounded. In order to
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show that ‖xn+1 − xn‖ → 0 as n→ ∞, we observe that

(3.24)

‖yn − yn−1‖
= ‖(1− αn)xn + αnfxn − (1− αn−1)xn−1 − αn−1fxn−1‖
= ‖(1− αn)xn − (1− αn)xn−1 − (1− αn)xn−1 + αn(fxn − fxn−1)

+ αnfxn−1 − (1− αn−1)xn−1 − αn−1fxn−1‖
≤ (1− αn)‖xn − xn−1‖+ αnk‖xn − xn−1‖

+ |αn − αn−1|(‖xn−1‖+ ‖fxn−1‖)
≤ (1− (1− k)αn)‖xn − xn−1‖+ |αn − αn−1|K1

≤ (1− (1− k)αn)‖xn − xn−1‖+ (o(αn) + σn−1)K1

for some constant K1 > 0. Let K2 > 0 be a constant such that ‖JA
rnyn − yn‖ ≤ K2

for all n ∈ N. Without loss of generality, we may assume that rn ≥ ε for all n ∈ N
and for some ε > 0. If rn ≤ rn+1, then by Lemma 2.3, we obtain

JA
rnyn = JA

rn−1

(
rn−1

rn
yn +

(
1− rn−1

rn

)
JA
rnyn

)
and hence

‖JA
rnyn − JA

rn−1
yn−1‖ ≤

∥∥∥∥rn−1

rn
(yn − yn−1) +

(
1− rn−1

rn

)
(JA

rnyn − yn−1)

∥∥∥∥
=

∥∥∥∥rn−1

rn
(yn − yn−1) +

(
1− rn−1

rn

)
(yn − yn−1)

+

(
1− rn−1

rn

)
(JA

rnyn − yn)

∥∥∥∥
≤ ‖yn − yn−1‖+

rn − rn−1

ε
K2.

If rn > rn+1, then again by Lemma 2.3,

JA
rn−1

yn−1 = JA
rn

(
rn
rn−1

yn−1 +

(
1− rn

rn−1

)
JA
rn−1

yn−1

)
,

and hence

‖JA
rnyn − JA

rn−1
yn−1‖ ≤

∥∥∥∥ rn
rn−1

(yn−1 − yn) +

(
1− rn

rn−1

)
(JA

rn−1
yn−1 − yn)

∥∥∥∥
=

∥∥∥∥ rn
rn−1

(yn−1 − yn) +

(
1− rn

rn−1

)
(yn−1 − yn)

+

(
1− rn

rn−1

)
(JA

rn−1
yn−1 − yn−1)

∥∥∥∥
≤ ‖yn − yn−1‖+

rn−1 − rn
ε

K2.

Hence, from the above inequality, we have

‖JA
rnyn − JA

rn−1
yn−1‖ ≤ ‖yn − yn−1‖+

|rn − rn−1|
ε

K2.
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It follows from (3.10) and (3.24) that

‖xn+1 − xn‖ = ‖JA
rnyn − JA

rn−1
yn−1‖

≤ ‖yn − yn−1‖+
|rn − rn−1|

ε
K2

≤ (1− (1− k)αn)‖xn − xn−1‖+ |αn − αn−1|K1 +
|rn − rn−1|

ε
K2

≤ (1− (1− k)αn)‖xn − xn−1‖+ (o(αn) + σn−1)K1 +
|rn − rn−1|

ε
K2.

Using conditions (C2), (C3), (C5), (C6) and Lemma 2.2, we obtain ‖xn+1−xn‖ → 0.

In view of these observations, by Corollary 3.5, we have following results:

Corollary 3.7. Let E, Jφ, C, A and f be as in Theorem 3.4. Let {xn} be a
sequence in C generated by (3.10), where {αn} is a sequence in (0, 1) and {rn} is a
regularization sequence in (0,∞) satisfying conditions (C1), (C2), (C3), (C5) and
(C6) (or, the conditions (C1), (C2), (C3), (C4) and (C6)). Then {xn} converges
strongly to q ∈ A−10, which is the unique solution of the variational inequality
(3.22).

Corollary 3.8. Let E be a reflexive Banach space having a weakly continuous
duality mapping Jφ with gauge function φ. Let A ⊂ E × E be an m-accretive
operator with A−10 6= ∅ and let f : E → E be a contractive mapping with contractive
constant k ∈ (0, 1). Let {xn} be a sequence in E generated by (3.10), where {αn}
is a sequence in (0, 1) and {rn} is a regularization sequence in (0,∞) satisfying
conditions (C1), (C2), (C3), (C5) and (C6) (or, the conditions (C1), (C2), (C3),
(C4) and (C6)). Then {xn} converges strongly to q ∈ A−10, which is the unique
solution of the variational inequality (3.22).

Now, in order to study the pro-Tikhonov regularization for inexact proximal
point algorithm (1.2) in the Banach space setting, we define our inexact iterative
algorithm to generate a sequence {zn} as follows: for z1 ∈ E,

(3.25) (1− αn)zn + αnfzn + en ∈ zn+1 + rnAzn+1 for all n ∈ N,
where A ∈ E × E is an m-accretive operator with A−10 6= ∅, {αn} is a relaxation
parameter in (0, 1], {rn} is a regularization sequence in (0,∞) and {en} is a sequence
of errors in E satisfying the condition:

(C7)
∑∞

n=1 ‖en‖ <∞, or limn→∞ ‖en‖/αn = 0.

Note that the algorithm (3.25) can be rewritten as

(3.26) zn+1 = JA
rn((1− αn)zn + αnfzn + en) for all n ∈ N.

In case of Hilbert space H, if fx = u, then (3.26) reduces to the proximal point
algorithm studied by Xu [23] and Song and Yang [18].

Utilizing Corollary 3.8, we obtain the following result for inexact variant of algo-
rithm (3.10) with error sequence.

Theorem 3.9. Let E, Jφ, A and f be as in Corollary 3.8. Let {zn} be a sequence
in E generated by (3.26), where {αn} is a sequence in (0, 1), {rn} is a regularization
sequence in (0,∞), and {en} is a sequence of errors in E satisfying conditions (C1),
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(C2), (C3), (C5), (C6) and (C7) (or, the conditions (C1), (C2), (C3), (C4), (C6)
and (C7)), respectively. Then {zn} converges strongly to q ∈ A−10, which is the
unique solution of the variational inequality (3.22).

Proof. For x1 = z1 ∈ E, let {xn} be a iterative sequence in E defined by (3.10).
It follows from Corollary 3.8 that {xn} converges strongly to q ∈ A−10, where q is
the unique solution of the variational inequality (3.22). From (3.10) and (3.26), we
derive

‖zn+1 − xn+1‖ = ‖JA
rn((1− αn)zn + αnfzn + en)− JA

rn((1− αn)xn + αnfxn)‖
≤ ‖(1− αn)(zn − xn) + αn(fzn − fxn) + en‖
≤ (1− (1− k)αn)‖zn − xn‖+ ‖en‖ for all n ∈ N.

By Lemma 2.2, we obtain ‖zn − xn‖ → 0. Therefore, {zn} converges strongly to
q. □
Remark 3.10. (1) Theorem 3.1 is a new result for solving Problem (P) in this

direction in framework of Banach space. In particular, Theorem 3.1 develops
Theorem 3.1 of Xu [23] in the Banach space setting different from ones in
Sahu and Yao [16].

(2) Theorem 3.3 improves Theorem 3.1 of Jung [10]. In particular, the conver-
gence condition limn→∞ ‖yn − JA

rnyn‖ = 0 in Theorem 3.1 of Jung [10] was
dispensed.

(3) Theorem 3.4 develops Theorem 3.5 in Sahu and Yao [16] to the Banach
space having a weakly continuous duality mapping Jφ with gauge function
φ together with using weaker control conditions than ones in [16]. Theorem
3.4 also improves Theorem 3.2 and Corollary 3.1 of Jung [10] by assuming
only reflexivity instead of uniformly convexity on the space in [10].

(4) Corollary 3.8 extends the convergence result in Lehdili and Moudafi [11] to
the Banach space setting without using the variational distance between two
maximal monotone operator.

(5) Theorem 3.1, Theorem 3.2, Corollary 3.7 and Corollary 3.8 develop and
supplement the corresponding results of Sahu and Yao [16] to the Banach
space having a weakly continuous duality mapping Jφ with gauge function
φ.

(6) Theorem 3.9 is an extension of Theorem 2 of Song and Yang [18] and Theo-
rem 3.3 of Xu [23] to the Banach space having a weakly continuous duality
mapping Jφ with gauge function φ together with error sequence {en} which
doesn’t necessarily satisfy the convergence condition

∑∞
n=1 ‖en‖ <∞.
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