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Then, with {zt}t∈T ⊂ Z, Z being a real linear space, we understand that∑
t∈T

λtzt =

{ ∑
t∈T (λ) λtzt if T (λ) ̸= ∅,

0 if T (λ) = ∅.

For gt, t ∈ T, ∑
t∈T

λtgt =

{ ∑
t∈T (λ) λtgt if T (λ) ̸= ∅,

0 if T (λ) = ∅,

and for {Yt}t∈T , a family of nonempty subsets of Rn,∑
t∈T

λtYt =

{ ∑
t∈T (λ) λtYt if T (λ) ̸= ∅,

0 if T (λ) = ∅.

The framework, which is modeled by problem (P), includes “minimax program-
ming (see e.g., [1, 2, 9, 13, 15, 16, 25, 26])” and “fractional programming (see e.g., [4–
6, 8, 14, 23–25])” as special cases. A remarkable feature of a fractional optimization
problem is that it usually admits an appealing feature that its objective function is
generally not a convex function, even under very restrictive convexity/concavity as-
sumptions. Also, it is worth noting that a great number of ground-breaking results
and applications on fractional programming were contributed by Dinkelbach [11]
and Schaible [21] (see e.g., [3, 8, 14, 17–19, 22]) and the references therein.

In this paper, we focus on the study of the theoretical aspects of problem (P). Us-
ing some advanced tools of variational analysis and generalized differentiation (e.g.,
the nonsmooth version of Fermat’s rule, the limiting subdifferential of maximum
functions, and the sum rule for the limiting subdifferential), we establish necessary
conditions for local optimal solutions of problem (P) under the limiting constraint
qualification and the constraint qualification. Also, we propose sufficient conditions
for global solutions for problem (P), by means of introducing generalized convex
functions defined in terms of the limiting subdifferential for locally Lipschitz func-
tions. In addition, we employ optimality conditions which are obtained for minimax
fractional optimization problem to apply the corresponding ones for multiobjective
optimization problem.

The rest of the paper is organized as follows. In Section 2, we provide some
notations and preliminaries. Section 3 presents some results on minimax fractional
optimization problem, including necessary conditions for locally optimal solutions
and sufficient conditions for globally optimal solutions under the limiting constraint
qualification and constraint qualification. And we perform applications to multiob-
jective optimization problem in Section 4.

2. Notations and preliminary results

Throughout the paper we use the standard notation of variational analysis; see
e.g., [20]. Unless otherwise specified, all spaces under consideration are assumed to
be Asplund. The canonical pairing between space X and its topological dual X∗ is
denoted by ⟨· , ·⟩, while the symbol ∥ · ∥ stands for the norm in the considered space.
As usual, the polar cone of a set Ω ⊂ X is defined by

Ω◦ := {x∗ ∈ X∗ | ⟨x∗, x⟩ ≦ 0, ∀x ∈ Ω}.(2.1)
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Let F : X ⇒ X∗ be a multifunction. The sequential Painlevé–Kuratowski up-
per/outer limit of F as x → x̄ is defined by

Limsup
x→x̄

F (x) :=

{
x∗ ∈ X∗ | ∃ xn → x̄, x∗n

ω∗
−→ x∗

with x∗n ∈ F (xn) for all n ∈ N := {1, 2, . . .}
}
,

where the notation
ω∗
−→ indicates the convergence in the weak∗ topology of X∗.

A set Ω ⊂ X is called closed around x̄ ∈ Ω if there is a neighborhood U of x̄ such
that Ω∩ clU is closed. Ω is said to be locally closed if Ω is closed around x for every
x ∈ Ω. We assume that sets under consideration are locally closed.

Given x̄ ∈ Ω, define the collection of regular/Fréchet normal cone to Ω at x̄ by

N̂(x̄; Ω) :=

{
x∗ ∈ X∗

∣∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≦ 0

}
,

where x
Ω−→ x̄ means that x → x̄ with x ∈ Ω. If x /∈ Ω, we put N̂(x; Ω) := ∅.

The limiting/Mordukhovich normal cone N(x̄; Ω) to Ω at x̄ ∈ Ω ⊂ X is obtained
from regular normal cones by taking the sequential Painlevé–Kurotowski upper
limits as

N(x̄; Ω) := Limsup

x
Ω−→x̄

N̂(x; Ω).

If x̄ /∈ Ω, we put N(x̄; Ω) := ∅.
For an extended real-valued function ϕ : X → R := [−∞,∞], its domain is

defined by

domϕ := {x ∈ X | ϕ(x) < ∞},
and its epigraph is defined by

epiϕ := {(x, µ) ∈ X × R | µ ≧ ϕ(x)}.
The limiting/Mordukhovich subdifferential of ϕ at x̄ ∈ X with |ϕ(x̄)| < ∞ is

defined by

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}.

If |ϕ(x̄)| = ∞, then one puts ∂ϕ(x̄) := ∅.
Considering the indicator function δ(·; Ω) defined by

δ(·; Ω) =
{

0, if x ∈ Ω,
+∞, otherwise,

we have a relation between the limiting/Mordukhovich normal cone and the limiting
subdifferential of the indicator function as follows [20, Proposition 1.79]:

N(x̄; Ω) = ∂δ(x̄; Ω), ∀x̄ ∈ Ω.(2.2)

The generalized Fermat’s rule is formulated as follows [20, Proposition 1.114]: Let
ϕ : X → R̄ be finite at x̄. If x̄ is a local minimizer of ϕ, then

0 ∈ ∂ϕ(x̄).(2.3)
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For establishing optimality conditions, the following lemmas which are related to
the limiting/Mordukhovich subdifferential calculus are quite useful.

Lemma 2.1. [20, Theorem 3.36] Let ϕi : X → R̄, i = 1, 2, . . . ,m, m ≧ 2 be lower
semi-continuous around x̄ ∈ X, and let all but one of these functions be Lipschitz
continuous around x̄. Then

∂(ϕ1 + ϕ2 + . . .+ ϕm)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) + . . .+ ∂ϕm(x̄).(2.4)

Combining this limiting subdifferential sum rule with the quotient rule (cf. [20,
Corollary 1.111(ii)]), we get an estimate for the limiting subdifferential of quotients.

Lemma 2.2. Let ϕi : X → R̄ for i = 1, 2 be Lipschitz continuous around x̄ with
ϕ1(x̄) ≤ 0 and ϕ2(x̄) > 0. Then we have

∂

(
ϕ1

ϕ2

)
(x̄) ⊂

ϕ2(x̄)∂ϕ1(x̄)− ϕ1(x̄)∂ϕ2(x̄)

[ϕ2(x̄)]2
.(2.5)

3. Optimality conditions

This section is devoted to studying optimality conditions for minimax fractional
optimization problems. By using the nonsmooth version of Fermat’s rule, the lim-
iting/Mordukhovich subdifferential of maximum functions and the sum rule as well
as the quotient rule for the limiting subdifferential, we first establish necessary con-
ditions for (local) optimal solutions of a minimax fractional optimization problem.
And then we provide sufficient conditions for the existence of such global solutions
by imposing assumptions of generalized convexity.

Definition 3.1. Let φ(x) := maxk∈K fk(x), x ∈ X. A point x̄ ∈ C is a local optimal
solution of problem (P) iff there is a neighborhood U of x̄ such that

φ(x̄) ≤ φ(x), ∀x ∈ U ∩ C.(3.1)

If the inequality in (3.1) holds for every x ∈ C, then x̄ is said to be a global optimal
solution of problem (P).

To obtain the necessary optimality condition of the Karush–Kuhn–Tucker (KKT)
type for a local optimal solution to problem (P), the following constraint qualifica-
tions are needed.

Definition 3.2. (see [7, 10]) Let x̄ ∈ C. We call that the limiting constraint quali-
fication (LCQ) is satisfied at x̄ iff

N(x̄;C) ⊂
⋃

λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+N(x̄; Ω),(3.2)

where A(x̄) := {λ ∈ R(T )
+ | λtgt(x̄) = 0 for all t ∈ T}.

Definition 3.3. We say that the constraint qualification (CQ) is satisfied at x̄ ∈ C

if λ ∈ R(T )
+ such that

0 ∈
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω),
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then λt = 0 for all t ∈ T (λ), which is equivalent to T (λ) = ∅.

It is worth to mention here that when considering x̄ ∈ C defined in (1.1) with
Ω = X and T (x̄) := {t ∈ T | gt(x̄) = 0}, T is finite in the smooth setting, the above-
defined (CQ) is guaranteed by the Mangasarian-Fromovitz constraint qualification
(see e.g., [20] for more details).

Theorem 3.4. Let the (LCQ) be satisfied at x̄ ∈ C. If x̄ ∈ C is a local optimal
solution to problem (P), then there exist multipliers α ∈ Rm

+\{0} and λ ∈ A(x̄)
such that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω)(3.3)

holds.

Proof. Suppose that x̄ ∈ C is a local optimal solution of problem (P). Then x̄ is a
local minimizer of the following problem

min
x∈C

φ(x),

where φ(x) := max
k∈K

fk(x). Thus, x̄ is a local minimizer of the following unconstrained

optimization problem

min
x∈X

φ(x) + δ(x;C).(3.4)

Applying the nonsmooth version of Fermat’s rule (2.3) to problem (3.4), we have

0 ∈ ∂
(
φ+ δ(·;C)

)
(x̄).(3.5)

Since the function φ is Lipschitz continuous around x̄ and the function δ(·;C) is
lower semi-continuous around this point, it follows from the sum rule (2.4) applied
to (3.5) and from the relation in (2.2) that

0 ∈ ∂φ(x̄) +N(x̄;C).(3.6)

Employing the formula for the limiting subdifferential of maximum functions (see [20,
Theorem 3.46(ii)]) and the sum rule (2.4), we obtain

∂φ(x̄) = ∂

(
max
k∈K

fk

)
(x̄) ⊂

 ∑
k∈K(x̄)

βk∂fk(x̄)

∣∣∣∣ βk ≥ 0, k ∈ K(x̄),
∑

k∈K(x̄)

βk = 1

 ,

where K(x̄) := {k ∈ K | fk(x̄) = φ(x̄)} ̸= ∅.
Taking (2.5) into account, we arrive at

∂φ(x̄) ⊂

 ∑
k∈K(x̄)

βk
qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

[qk(x̄)]2

∣∣∣∣ βk ≥ 0, k ∈ K(x̄),
∑

k∈K(x̄)

βk = 1

 .

(3.7)

The (LCQ) being satisfied at x̄ entails that

N(x̄;C) ⊂
⋃

λ∈A(x̄)

[∑
t∈T

µt∂gt(x̄)

]
+N(x̄; Ω),(3.8)
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where the set A(x̄) was defined in (3.2). It follows from (3.6)-(3.8) that

0 ∈

 ∑
k∈K(x̄)

βk
qk(x̄)

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

) ∣∣∣∣ βk ≥ 0, k ∈ K(x̄),
∑

k∈K(x̄)

βk = 1


+

⋃
λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+N(x̄; Ω).

Now, by letting αk := βk
qk(x̄)

for k ∈ K(x̄) and βk := 0 for k ∈ K\K(x̄). It is clear

that the above inclusion implies

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω),

and so the proof is complete. □
Theorem 3.5. Let the (CQ) be satisfied at x̄ ∈ C. If x̄ ∈ C is a local optimal

solution to problem (P), then there exist multipliers α ∈ Rm
+\{0} and λ ∈ R(T )

+ such
that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω)(3.9)

holds.

Proof. Suppose that x̄ ∈ C is a local optimal solution to problem (P). Then x̄ is a
local minimizer of problem (3.4).

Similar to the proof of Theorem 3.4, we have

∂φ(x̄) ⊂

 ∑
k∈K(x̄)

βk
qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

[qk(x̄)]2

∣∣∣∣ βk ≥ 0, k ∈ K(x̄),
∑

k∈K(x̄)

βk = 1

 .

The (CQ) being satisfied at x̄ entails that

0 ∈
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω)

has λt = 0 for all t ∈ T (λ). Thus, we obtain

0 ∈

 ∑
k∈K(x̄)

βk
qk(x̄)

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

) ∣∣∣∣ βk ≥ 0, k ∈ K(x̄),
∑

k∈K(x̄)

βk = 1


+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω).

Then, by letting αk := βk
qk(x̄)

for k ∈ K(x̄) and βk := 0 for k ∈ K\K(x̄). It is clear

that the above inclusion implies

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω).

Thus, the proof is complete. □
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The following example shows that the conclusions of Theorem 3.4 and Theo-
rem 3.5 may fail if the (LCQ) and the (CQ) are not satisfied at the point under
consideration, respectively.

Example 3.6. Let f : R → R2 be defined by f(x) :=
(
p1(x)
q1(x)

, p2(x)q2(x)

)
, where p1(x) :=

p2(x) := x, q1(x) := q2(x) := 2x2 + 1, x ∈ R, and let gt : R → R be given by

gt(x) = tx2, x ∈ R, t ∈ T := [0,+∞).

We consider problem (P) with m := 2 and Ω := (−∞, 0] ⊂ R. Then C = {0} and
thus x̄ := 0 is a local optimal solution of problem (P). Since N(x̄; Ω) = [0,+∞)
and ∂gt(x̄) = {0} for all t ∈ T, we have

⋃
λ∈A(x̄)

[∑
t∈T

λt∂gt(x̄)

]
+N(x̄; Ω) = [0,+∞).

Hence, the (LCQ) in Theorem 3.4 is not satisfied at x̄ due to N(x̄;C) = R. Actually,
condition (3.3) fails to hold.

On the other hand, since ∂gt(x̄) = 0 for all t ∈ T, there exist λt > 0 for t ∈ T (λ)
such that

0 ∈
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω) = [0,+∞).

So, the (CQ) is not satisfied at x̄, which means that (3.9) fails to hold.
In order to obtain sufficient condition for the existence of (global) optimal so-

lutions of problem (P) presented in the next theorem, we recall [6] the notion of
generalized convexity for a family of locally Lipschitz functions.

Definition 3.7. (i) We say that (f, gT ) is generalized convex on Ω at x̄ ∈ Ω if for
any x ∈ Ω, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K and any ηt ∈ ∂gt(x̄), t ∈ T, there exists
ν ∈ N(x̄; Ω)◦ such that

pk(x)− pk(x̄) ≥ ⟨ξk, ν⟩, qk(x)− qk(x̄) ≥ ⟨ζk, ν⟩, k ∈ K,

gt(x)− gt(x̄) ≥ ⟨ηt, ν⟩, t ∈ T.

(ii) We say that (f, gT ) is strictly generalized convex on Ω at x̄ ∈ Ω \ {x̄} if for any
x ∈ Ω, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K and any ηt ∈ ∂gt(x̄), t ∈ T, there exists
ν ∈ N(x̄; Ω)◦ such that

pk(x)− pk(x̄) > ⟨ξk, ν⟩, qk(x)− qk(x̄) ≥ ⟨ζk, ν⟩, k ∈ K,

gt(x)− gt(x̄) ≥ ⟨ηt, ν⟩, t ∈ T.

We are now ready to provide sufficient condition for a feasible point of problem (P)
to be a global optimal solution.

Theorem 3.8. Let x̄ ∈ C. Assume that x̄ satisfies condition (3.3). If (f, gT ) is
generalized convex at x̄, then x̄ is a global optimal solution of problem (P).
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Proof. Since x̄ satisfies condition (3.3), there exist multipliers α ∈ Rm
+\{0}, λ ∈ A(x̄)

and ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K, ηt ∈ ∂gt(x̄), t ∈ T such that

−

[∑
k∈K

αk

(
ξk −

pk(x̄)

qk(x̄)
ζk

)
+
∑
t∈T

λtηt

]
∈ N(x̄; Ω).(3.10)

Assume that x̄ is not a global optimal solution of (P), then there exist x̂ ∈ C
such that

φ(x̂) < φ(x̄),(3.11)

where φ(x) := max
k∈K

fk(x).

Since (f, gT ) is generalized convex on Ω at x̄, for x̂ above, there exists ν ∈ N(x̄; Ω)◦

such that∑
k∈K

αk

(
⟨ξk, ν⟩ −

pk(x̄)

qk(x̄)
⟨ζk, ν⟩

)
+
∑
t∈T

λt⟨ηt, ν⟩

≤
∑
k∈K

αk

[
pk(x̂)− pk(x̄)−

pk(x̄)

qk(x̄)
(qk(x̂)− qk(x̄))

]
+
∑
t∈T

λt(gt(x̂)− gt(x̄))

=
∑
k∈K

αk

(
pk(x̂)−

pk(x̄)

qk(x̄)
qk(x̂)

)
+
∑
t∈T

λt(gt(x̂)− gt(x̄)).

By definition of polar cone (2.1), it follows from (3.10) and the relation ν ∈ N(x̄; Ω)◦

that

0 ≤
∑
k∈K

αk

(
⟨ξk, ν⟩ −

pk(x̄)

qk(x̄)
⟨ζk, ν⟩

)
+
∑
t∈T

λt⟨ηt, ν⟩.

Thus,

0 ≤
∑
k∈K

αk

(
pk(x̂)−

pk(x̄)

qk(x̄)
qk(x̂)

)
+
∑
t∈T

λt(gt(x̂)− gt(x̄)).(3.12)

In addition, due to the fact that λtgt(x̄) = 0 and λtgt(x̂) ≤ 0 for t ∈ T, we get
by (3.12) that

0 ≤
∑
k∈K

αk

(
pk(x̂)−

pk(x̄)

qk(x̄)
qk(x̂)

)
.(3.13)

By (3.13), we have ∑
k∈K

αk
pk(x̄)

qk(x̄)
≤

∑
k∈K

αk
pk(x̂)

qk(x̂)
.(3.14)

According to the fact that αk ≥ 0 for k ∈ K(x̄) with
∑

k∈K(x̄) αk = 1 and αk = 0

for k ∈ K\K(x̄), the inequality in (3.14) is equivalent to

φ(x̂) ≥ φ(x̄),

which contradicts (3.11) and, therefore, the proof is complete. □
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4. Applications to multiobjective optimization problem

We consider the following constrained multiobjective fractional optimization prob-
lem

minRm
+

{
f(x) :=

(
p1(x)

q1(x)
, · · · , pm(x)

qm(x)

) ∣∣∣∣x ∈ C

}
,(MOP)

where the constraint set C is defined by (1.1), and “minRm
+
” is understood with

respect to the ordering cone Rm
+ .

More clearly, one says that x̄ ∈ C is a local weak Pareto solution of prob-
lem (MOP) iff there exists a neighborhood U of x̄ such that

f(x)− f(x̄) /∈ −intRm
+ , ∀x ∈ U ∩ C,(4.1)

and x̄ ∈ C is a local Pareto solution of problem (MOP) iff there exists a neighbor-
hood U of x̄ such that

f(x)− f(x̄) /∈ −Rm
+\{0}, ∀x ∈ U ∩ C,(4.2)

where intRm
+ stands for the topological interior of Rm

+ .
If the inclusion in (4.1) and (4.2) holds for every x ∈ C, then x̄ is said to be a

weak Pareto solution and Pareto solution of problem (MOP) (see [12]), respectively.
The following results are the KKT necessary conditions for local weak Pareto

solutions of problem (MOP).

Theorem 4.1. Let the (LCQ) be satisfied at x̄ ∈ C. If x̄ is a local weak Pareto
solution of (MOP), then there exist multipliers α ∈ Rm

+\{0} and λ ∈ A(x̄) such
that the inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω)(4.3)

holds.

Proof. Let x̄ be a local weak Pareto solution of (MOP), and let

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ X.

We will show that x̄ is a local optimal solution of the following problem

min
x∈C

max
k∈K

f̂k(x).(P̂)

To do this, let us put φ̂(x) := maxk∈K f̂x(x) and prove that

φ̂(x̄) ≤ φ̂(x), ∀x ∈ U ∩ C.(4.4)

Indeed, if (4.4) is not valid, then there exists x0 ∈ U ∩C such that φ̂(x̄) > φ̂(x0).
Since φ̂(x̄) = 0, it holds that

max
k∈K

{fk(x0)− fk(x̄)} < 0.

Thus,

f(x0)− f(x̄) ∈ −intRm
+ ,

which contradicts the fact that x̄ is a local weak Pareto solution of (MOP). Then, we

can employ the KKT condition in Theorem 3.4, but applied to problem (P̂). Since
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K(x̄) = K due to f̂k(x̄) := maxk∈K f̂k(x̄), then we find multipliers α ∈ Rm
+\{0} and

λ ∈ A(x̄) such that

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω).

Thus, we complete the proof. □

Theorem 4.2. Let the (CQ) be satisfied at x̄ ∈ C. If x̄ is a local weak Pareto

solution of (MOP), then there exist α ∈ Rm
+\{0} and λ ∈ R(T )

+ such that the
inclusion

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω)(4.5)

holds.

Proof. Suppose that x̄ is a local weak Pareto solution of (MOP). Then we will show

that x̄ is a local optimal solution of (P̂).
Similar to the proof of Theorem 4.1, let us prove that the inequality in (4.4) holds

for every x ∈ U ∩ C. If (4.4) is not valid, then there exists x0 ∈ U ∩ C such that
φ̂(x̄) > φ̂(x0). Since φ̂(x̄) = 0, we obtain

max
k∈K

{fk(x0)− fk(x̄)} < 0.

Thus,

f(x0)− f(x̄) ∈ −intRm
+ ,

which contradicts the assumption at the beginning of the proof. Let us employ the
KKT condition in Theorem 3.5, but applied to problem (P̂). Then we can find

multipliers α ∈ Rm
+\{0} and λ ∈ R(T )

+ such that

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
t∈T

λt∂gt(x̄) +N(x̄; Ω),

which completes the proof of the theorem. □

Remark 4.3. We consider problem (MOP) with Ω := (−∞, 0] in Example 3.6.
Then C = {0} and thus x̄ := 0 is a local weak Pareto solution of problem (MOP).
Hence, the (LCQ) in Theorem 4.1 is not satisfied at x̄, and (4.3) fails to holds. Also,
the (CQ) in Theorem 4.2 is not satisfied at x̄, which means that (4.5) fails to hold.

The next result is a sufficient condition for the existence of a weak Pareto/or
Pareto solution of problem (MOP).

Theorem 4.4. Let x̄ ∈ C. Assume that x̄ satisfies condition (4.3).

(i) If (f, gT ) is generalized convex at x̄, then x̄ is a weak Pareto solution
of (MOP).

(ii) If (f, gT ) is strictly generalized convex at x̄, then x̄ is a Pareto solution
of (MOP).
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Proof. We put

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ X.

Let f̂ := (f̂1, . . . , f̂m). Since (f, gT ) is generalized convex on Ω at x̄, it follows that

(f̂ , gT ) is generalized convex at this point as well.
We first prove (i). We apply the sufficient criteria in Theorem 3.8 to conclude

that x̄ is a global optimal solution of the following problem

min
x∈C

max
k∈K

f̂k(x).(P̂)

It means that

φ̂(x̄) ≤ φ̂(x), ∀x ∈ C,

where φ̂(x) := maxk∈K f̂k(x). In other words, we obtain

0 ≤ max
k∈K

{fk(x)− fk(x̄)}, ∀x ∈ C,

which entails that

f(x)− f(x̄) /∈ −intRm
+ , ∀x ∈ C.

Consequently, x̄ is a weak Pareto solution of problem (MOP). Therefore, the proof
of (i) is complete.

Then, we prove (ii). Similar to the proof of (i), we conclude that

φ̂(x̄) < φ̂(x), ∀x ∈ C,

So, we have

0 < max
k∈K

{fk(x)− fk(x̄)}, ∀x ∈ C.

Thus,

f(x)− f(x̄) /∈ −Rm
+\{0}, ∀x ∈ C.

Hence, x̄ is a Pareto solution of problem (MOP), which completes the proof of
(ii). □

5. Conclusions

In this paper, we investigated optimality conditions for nonsmooth minimax frac-
tional optimization problems with an infinite number of constraints. Employing the
Fermat’s rule, the limiting subdifferential sum rule and the limiting subdifferential
quotient rule, we establish necessary optimality conditions for local optimal solu-
tions under the limiting constraint qualification and the constraint qualification.
Sufficient conditions for the existence of global solutions to the considered prob-
lem are also provided by means of introducing the concepts of generalized convex
functions. In addition, some optimality results are applied to nonsmooth fractional
multiobjective optimization problems.
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