


2992 J. LEE AND G.-M. CHO

In this paper, we propose a unified approach for the complexity analysis of small-
update IIPMs for LO, utilizing our new class of kernel functions. We demonstrate
that the new algorithm achieves the best known worst-case iteration bound of
O(n log(nϵ )). Our IIPM is motivated by Roos’s results [11] in 2006. Classical ker-
nel functions, such as self-concordant, self-regular, and eligible kernel functions, are
required to be at least twice continuously differentiable. However, the newly de-
fined kernel functions in this paper are continuously differentiable, making it easier
to check the conditions for kernel functions compared to classical ones. Further-
more, our new class of kernel functions includes many other classical kernel func-
tions [2,4,9,10]. In summary, we define a new search direction for the small-update
modified full-Newton IIPM using our newly defined class of functions and show the
computational complexity which is known to be the best in this methodology.

This paper is organized as follows. In Section 2, we introduce the IIPM for LO.
In Section 3, we define a new class of kernel functions. In Section 4, we present
some technical lemmas for complexity analysis. In Section 5, we prove the strict
feasibility and the crucial inequality for the proximity measure to achieve quadratic
convergence, where this process is called the feasibility step. In Section 6, we propose
the complexity result for the new algorithm. Finally, Section 7 concludes the paper
with conclusions and future research.

Some notations used in this paper are as follows. The nonnegative orthant and
positive orthant are denoted as Rn

+ and Rn
++, respectively. xs and x

s represent the
componentwise product and division of vectors x and s in Rn, respectively. For
x ∈ Rn, the diagonal matrix with the elements of x on its diagonal is denoted by
diag(x). For a ∈ R, ⌈a⌉ denotes the least integer greater than or equal to a. For

x ∈ Rn, ∥x∥ :=
(∑n

i=1 x
2
i

) 1
2 and ∥x∥∞ := maxi=1,...,n |xi|. If f(x) ≤ γg(x) for some

γ > 0, we write f(x) = O (g(x)).

2. Infeasible interior-point method

In feasible IPM, finding an initial point that satisfies the constraints and lies near
the central path is an additional optimization problem. To overcome this difficulty,
research on IIPMs has been conducted. Specifically, we utilize the following type of
IIPMs, motivated by [11]: As usual, we assume that there exists an optimal solution
(x∗, y∗, s∗) for LO (1.1) and (1.2) such that ∥x∗ + s∗∥∞ ≤ ζ for some ζ > 0. We
define the initial values by (x0, y0, s0) := ζ(e, 0, e), µ0e := x0s0, and ν0 := 1. Note
that the condition µ0e := x0s0 signifies that the initial iteration lies on central path.
For any 0 < ν ≤ 1, we define the perturbed primal problem for LO as follows:

(2.1) min{
(
c− ν

(
c−AT y0 − s0

))T
x : Ax = b− ν

(
b−Ax0

)
, x ≥ 0},

and its dual problem as follows:

(2.2) max{
(
b− ν

(
b−Ax0

))T
y : AT y + s = c− ν

(
c−AT y0 − s0

)
, s ≥ 0},

where x, s ∈ Rn, y ∈ Rm, and A ∈ Rm×n.
A point (x, y, s) is referred to as an ϵ-approximate solution for the primal-dual

problem for LO (1.1) and (1.2) if ∥b − Ax∥ ≤ ϵ, ∥c − AT y − s∥ ≤ ϵ, and xT s ≤ ϵ.
When ν = 1, the point (x0, y0, s0) becomes a feasible solution for (2.1) and (2.2).
Therefore, we have obtained a feasible starting point for the perturbed problems
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(2.1) and (2.2) when ν = 1. We say that LO satisfies interior-point condition (IPC)
if (1.1) has a feasible solution x > 0 and (1.2) has a feasible solution (y, s) with
s > 0. Note that, when ν = 1, the starting point (x0, y0, s0) satisfies the IPC for
the problems (2.1) and (2.2).

The following Lemma provides a result concerning the IPC for the perturbed
problem (2.1) and (2.2) when 0 < ν ≤ 1.

Lemma 2.1 (Theorem 3.1 in [11]). The original problems (1.1) and (1.2) are fea-
sible if and only if for each ν ∈ (0, 1] the perturbed problems (2.1) and (2.2) satisfy
the IPC.

According to Lemma 2.1, if (1.1) and (1.2) are feasible, then (2.1) and (2.2) satisfy
the IPC. That is, the following KKT optimality conditions for (2.1) and (2.2) have
a unique solution for every µ > 0:

b−Ax = ν
(
b−Ax0

)
c−AT y − s = ν

(
c−AT y0 − s0

)
xs = µe.

(2.3)

By applying the Newton’s method to the system (2.3) with updated ν as (1−θ)ν,
we have the following system for the search directions ∆x,∆y, and ∆s:

A∆x = θνr0b

AT∆y +∆s = θνr0c
s∆x+ x∆s = µe− xs,

(2.4)

where r0b := b−Ax0 and r0c := c−AT y0 − s0.
Let us define the following scalings:

(2.5) v :=
√
xs/µ, dfx := v∆x/x, dfs := v∆s/s, dfy := ∆y/µ.

By applying the scalings in (2.5) to the system (2.4), we obtain the following scaled
system: 

Adfx = θνr0b ,

A
T
dfy + dfs = θνvs−1r0c ,

dfx + dfs = v−1 − v,

(2.6)

where A := AV −1X, V := diag(v), and X := diag(x).
The right-hand side of the last equation in (2.6) is the negative gradient of the

logarithmic kernel function. After replacing the right-hand side of the last equation
in (2.6) with the negative gradient of a kernel function Ψ(v) :=

∑n
i=1 ψ(vi), for

which ψ will be defined in Definition 3.2 in Section 3, we obtain the following:
Adfx = θνr0b ,

A
T
dfy + dfs = θνvs−1r0c ,

dfx + dfs = −∇Ψ(v).

(2.7)

In the feasibility step, we compute the search direction (dfx, d
f
y , d

f
s ) by solving the

system (2.7). Then we update an iteration by modified full-Newton step as follows:
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(x, y, s) ← (x, y, s) + (xd
f
x

v , µdfy ,
sdfs
v ). After feasibility step, we need to reduce the

proximity measure to the desired threshold value τ . This process is called the
centering step. In the centering step, we compute the search direction (∆x,∆y,∆s)
by solving the following system with updated µ as (1− θ)µ:

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.
(2.8)

Then we update an iteration by full-Newton step as follows: (x, y, s) ← (x, y, s) +
(∆x,∆y,∆s).

Let us define the proximity measure as follows:

δ(x, s;µ) := δ(v) :=
1

2
∥v−1 − v∥,(2.9)

where v is defined in (2.5). Then, the following result is known:

Lemma 2.2 (Corollary 2.4 in [11]). If δ := δ(x, s;µ) ≤ 1/
√
2, then δ(x+, s+;µ) ≤

δ2, where x+ > 0 and s+ > 0 are strictly feasible and denote the new iteration after
a full-Newton step.

In the centering step, we can easily calculate the number of iterations needed to
reduce the proximity measure to the desired threshold value τ as follows. Assume
that δ(x, s;µ) ≤ 1/

√
2. Then by Lemma 2.2, after k centering steps, we have itera-

tion (x+, y+, s+) satisfying δ(x+, s+;µ) ≤
(
1/
√
2
)2k

. Thus to have δ(x+, s+, µ) ≤ τ ,
it suffices to show

(
1/
√
2
)2k ≤ τ, which equivalent to log2

(
log2

1
τ2

)
≤ k. Thus, by

iterating the smallest natural number greater than

log2
(
log2(1/τ

2)
)
,(2.10)

we can reduce the proximity measure to less than τ .
A formal description of the IIPM for LO is given in Algorithm 1.

3. New class of kernel function

In this section, we propose a new class of such functions.
For the system (2.6), the last term v−1 − v is precisely the negative gradient of

the logarithmic kernel function. There has been research on modifying this term
with another function.

The definition of the kernel function is as follows:

Definition 3.1 (Kernel function [1]). We call ψ : R++ → R+ a kernel function if
ψ is strictly convex and satisfies the following conditions: ψ(1) = ψ′(1) = 0, and
limt→0+ ψ(t) = limt→∞ ψ(t) =∞.

Now, we introduce a new class of kernel functions and demonstrate that we obtain
the best known worst-case iteration bound for new full-Newton step IIPMs using
the newly defined class of kernel functions. This new class of kernel functions is
defined in Definition 3.2 below.
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Algorithm 1 IIPM for LO

inputs:
accuracy parameter ϵ > 0
barrier update parameter θ, 0 < θ < 1
threshold parameter τ > 0
upper bound of optimal solution ζ > 0

initialize:
x = ζe, y = 0, s = ζe, µ = ζ2, ν = 1

while max
{
xT s, ∥b−Ax∥, ∥c−AT y − s∥

}
> ϵ do

feasibility step:
solve the system (2.7) to get (dfx, d

f
y , d

f
s )

update: (x, y, s)← (x, y, s) + (∆x,∆y,∆s) using (2.5)
ν ← (1− θ)ν and µ← (1− θ)µ
centering step:
while δ(x, s;µ) > τ do

solve the system (2.8) to get (∆x,∆y,∆s)
update: (x, y, s)← (x, y, s) + (∆x,∆y,∆s)

end
end

Definition 3.2. We call a kernel function ψ ∈ C1 : (0,∞) → [0,∞) a (1/t2)-

bounded kernel function if it is defined by ψ(t) := t2−1
2 − φ(t), where the barrier

term φ satisfies the following conditions:

1 ≤ φ′(t) ≤ 1

t2
, for 0 < t ≤ 1,(3.1)

1

t2
≤ φ′(t) ≤ t, for t > 1,(3.2)

inf
t>0

tφ′(t) >
3

10
.(3.3)

Roos’s result [11] in 2006, employing the logarithmic barrier function, adheres
to the conditions in Definition 3.2. Additionally, our new class of kernel functions
includes many other classical kernel functions in [2, 4, 9, 10].

Let us define the new (1/t2)-kernel function denoted by ψ̂, for example, as follows:

ψ̂(t) :=


t2 − 1

2
−
(
1− 1

t

)
, for 0 < t < 1,

t2 − 1

2
− (t− 1), for t ≥ 1.

Then ψ̂ does not belong to the class of self-concordant functions, self-regular func-
tions, and eligible functions. This observation illustrates the distinctiveness of our
newly defined class of kernel functions. Furthermore, the newly introduced ker-
nel function is continuously differentiable, simplifying the process of checking the
conditions compared to classical ones.
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4. Technical lemmas

In this section, we present several technical lemmas that are essential for the
complexity analysis.

For the use in the proof of Lemma 5.6, let us define a(ξ), b(n, ξ), and c(ξ) as
follows: For n ≥ 20 and ξ ∈ (0.3, 0.39),

a(n, ξ) := 1− 1.6n+
16

1− ξ
, b(n, ξ) := 15 + 16.8n− 16

1− ξ
, and

c(ξ) := −31 + 16ξ2 +
16

1− ξ
.

(4.1)

Lemma 4.1. Let a(n, ξ), b(n, ξ), and c(ξ) be defined in (4.1). Then, for n ≥
20 and ξ ∈ (0.3, 0.39), we have the following: (i) a(n, ξ) < 0, (ii) b(n, ξ) >
0, and (iii) c(ξ) < 0.

Proof. (i) a(n, ξ) is decreasing with respect to n and increasing with respect to ξ.
Since a(20, 0.39) ≈ −4.77, it follows that a(n, ξ) ≤ a(20, 0.39) < 0 for n ≥ 20 and
ξ ∈ (0.3, 0.39).
(ii) For n ≥ 20 and ξ ∈ (0.3, 0.39), it is clear that b(n, ξ) = 15 + 16.8n − 16

1−ξ > 0.

(iii) For ξ ∈ (0.3, 0.39), we have d
dξ c(ξ) = 32ξ+ 16

(1−ξ)2
> 0. Thus c(n, ξ) is increasing

with respect to ξ. Since c(0.39) ≈ −2.336, it follows that c(ξ) < 0. Thus the proof
is complete. □

Let us define T (n, ξ) as follows: For ξ ∈ (0.3, 0.39) and n ≥ 20,

T (n, ξ) :=17.64(1− ξ)n2 + 2
(
(1− ξ)(14.8 + 0.8ξ2)− 16

)
n

+ (ξ3 − 17ξ2 − 16ξ + 16).
(4.2)

Then we have the following lemma.

Lemma 4.2. Let T (n, ξ) be defined in (4.2) and let a(n, ξ), b(n, ξ), and c(ξ) be
defined in (4.1). Then, for n ≥ 20 and ξ ∈ (0.3, 0.39), we have

b(n, ξ)2 − a(n, ξ)c(ξ) > 0.

Proof. From (4.1), it is easy to show that b(n, ξ)2 − a(n, ξ)c(ξ) = 16
1−ξT (n, ξ). Since

1 − ξ > 0, it suffices to show that T (n, ξ) > 0, for n ≥ 20 and ξ ∈ (0.3, 0.39). The
partial derivative of T (n, ξ) with respect to ξ is given by

∂T (n, ξ)

∂ξ
= (3− 4.8n)ξ2 + ξ(3.2n− 34)− (17.64n2 + 28.4n+ 16).(4.3)

Then the discriminant of (4.3) is −338.688n3 − 323.36n2 − 184n + 1348 and it is
negative for n ≥ 20. Since the leading coefficient of (4.3) is negative for n ≥ 20,
T (n, ξ) is decreasing on ξ ∈ (0.3, 0.39) for each n ≥ 20. For n ≥ 20, we have

T (n, ξ) ≥ T (n, 0.39) = 10.76n2 − 14.527n+ 7.233.(4.4)

The discriminant of the right-hand side of (4.4) is negative. Since the leading
coefficient of (4.4) is positive, it follows that T (n, ξ) ≥ T (n, 0.39) > 0. Thus the
proof is complete. □
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Lemma 4.3. Let a(n, ξ), b(n, ξ), and c(ξ) be defined in (4.1). Then, for n ≥ 20

and ξ ∈ (0.3, 0.39), a(n, ξ) (1/16n)2 + 2b(n, ξ) (1/16n) + c(ξ) ≤ 0.

Proof. By the definition of a(n, ξ) and b(n, ξ) in (4.1), a(n, ξ) is increasing with
respect to ξ and b(n, ξ) is decreasing with respect to ξ. From the proof of (iii) in
Lemma 4.1, c(ξ) is increasing with respect to ξ. For n ≥ 20, we have

a(n, ξ) (1/16n)2 + 2b(n, ξ) (1/16n) + c(ξ) ≤ a(n, 0.39)(1/16n)2

+ 2b(n, 0.3)(1/16n) + c(0.39)

< −0.236− 0.988/n+ 0.107/n2 < 0.

Thus the proof is complete. □

Lemma 4.4. Let a(n, ξ) and b(n, ξ) be defined in (4.1). Then, for n ≥ 20 and
ξ ∈ (0.3, 0.39), it holds that − (b(n, ξ)/a(n, ξ)) > 1/16n.

Proof. From Lemma 4.1, −a(n, ξ) > 0 and b(n, ξ) > 0. For n ≥ 20, we have

− b(n, ξ)
a(n, ξ)

≥ b(n, 0.39)

−a(n, 0.3)
>

16.8− 12/n

1.6− 23/n
>

1

16n
.

Thus the proof is complete. □

The following two lemmas are used to prove Lemma 4.7.

Lemma 4.5. Let n ≥ 20 and δ(v) ≤ 1/24, where δ is defined in Definition 2.9.
Then, 0.959 ≤ vi ≤ 1.043, i = 1, . . . , n.

Proof. From d
dt(t− 1/t)2 = 2(t− 1/t3) and d2

dt2
(t− 1/t)2 = 2 + 6/t4, it follows that

(t−1/t)2 has minimum at t = 1 and it is strictly convex. From δ(v) = 1
2 ∥v − 1/v∥ ≤

1/24, if vi is the possible minimum or maximum for some i = 1, . . . , n, then vi
satisfies the equation (vi−1/vi)

2 = 1/144, which is equivalent to v4i −(289/144)v2i +

1 = 0. Then the positive solutions are vi =
√(

289/144±
√
(289/144)2 − 4

)
/2,

which are approximately 0.9592, and 1.0425. Thus the proof is complete. □

The following lemma is used to prove Lemma 4.7.

Lemma 4.6. Let f±(w, z) :=
(
1 + w

z

)
±
√(

1 + w
z

)2 − 1 and g±(w, z) :=
√
f±(w, z)−

1
f±(w,z) , for w, z ∈ R++. Then the following holds:

(i) f+(w, z) is increasing and f−(w, z) is decreasing with respect to w ∈ R++,

(ii) For 0 < w < 1
50 , z (g+(w, z))

2 is increasing with respect to z ≥ 1,

(iii) For 0 < w < 1
50 , z (g−(w, z))

2 is decreasing with respect to z ≥ 1.

Proof. (i) Since ∂
∂w (f±(w, z)) =

1
z

(
1±1/

√
1− 1/ (1 + w/z)2

)
, f+(w, z) is increasing

and f−(w, z) is decreasing with respect to w ∈ R++.
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(ii) By taking the partial derivative with respect to z, we obtain

∂

∂z

(
z (g±(w, z))

2
)
=
(
g±(w, z)

)(
g±(w, z) + 2z

∂

∂z
g±(w, z)

)
.(4.5)

By the definition of f+, if follows that f+(w, z) > 1 for any w, z ∈ R++. Then by
the definition of g+, if follows that g+(w, z) > 0 for any w, z ∈ R++. By (4.5), to
prove (ii), it suffices to show that

g+(w, z) + 2z
∂

∂z
g+(w, z) > 0.(4.6)

The partial derivative g+(w, z) with respect to z is as follows:

∂

∂z
g+(w, z) = −

w

z2

1 +
(1 + w/z)√

(1 + w/z)2 − 1

( 1

2
√
f+(w, z)

+
1

f+(w, z)2

)
< 0.

Let t :=
(
1 + w

z

)2
− 1. Since 0 < w < 1

50 and z ≥ 1, 0 < t <
(
1 + 1/50

1

)2
− 1 ≤ 0.1.

Then, consider the following term in (4.5). Since f+(w, z) =
√
t+
√
t+ 1,

g+(w, z) + 2z
∂

∂z
g+(w, z)

=
√
f+(w, z)−

1

f+(w, z)
−
√
t+ 1− 1√

t

(√
f+(w, z) + 2f+(w, z)

−1
)
.

(4.7)

By (4.7) and since f+(w, z) =
√
t+
√
t+ 1 > 0 and

√
t−
√
t+ 1+1 > 0 for t > 0,

the following equivalences hold:

g+(w, z) + 2z
∂

∂z
g+(w, z) > 0

⇔ h(t) :=
(√

t+
√
t+ 1

)1.5
−
√
t+ 2

√
t+ 1− 2√

t−
√
t+ 1 + 1

> 0.

(4.8)

By multiplying (
√
t−
√
t+ 1 + 1)2 to the derivative of h, we have

h′(t)(
√
t−
√
t+ 1 + 1)2 =

1.5(
√
t+ 1− 1)√
t
√
t+ 1

(
(
√
t+
√
t+ 1)0.5 − 1

)
> 0,

for t > 0. Since (
√
t −
√
t+ 1 + 1)2 > 0, it follows that h′(t) > 0 for t > 0.

By the L’Hôpital’s rule, limt→0+

√
t+2

√
t+1−2√

t−
√
t+1+1

= 1. Then, by the definition of h

in (4.8), limt→0+ h(t) = 0. Since h is continuous and differentiable on t > 0,
h(t) > 0 for t > 0. Indeed, let us assume that there exists a point α > 0 such
that h(α) < 0. Then, from limt→0+ h(t) = 0, there exists 0 < β < α such that
h(α) < h(β). Then, by the mean value theorem, there exists γ ∈ (β, α) such that

h′(γ) = h(α)−h(β)
α−β < 0, which contradicts to the fact that h′(t) > 0 for t > 0.

Therefore, by (4.8), g+(w, z) + 2z ∂
∂zg+(w, z) > 0 for w ∈ (0, 1

50) and z ≥ 1. This
implies that (4.6) holds.
(iii) It can be derived in a similar way as in case (ii). Thus the proof is complete. □
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Let us define

σ(v) :=
1

2

∥∥v − φ′(v)
∥∥ ,(4.9)

where φ(t) is defined in Definition 3.2.
We use the following lemma to prove Theorem 6.4.

Lemma 4.7. Suppose that δ(v) ≤ 1/24, where δ is defined in (2.9). Then σ(v) ≤
0.1, where v is defined in (2.5) and σ is defined in (4.9).

Proof. By the condition (3.1) in Definition 3.2, for 0 < t ≤ 1, we have

0 < 1− t < φ′(t)− t < 1/t2 − t.(4.10)

By the condition (3.2) in Definition 3.2, for 1 < t, we have

1/t2 − t ≤ φ′(t)− t ≤ 0.(4.11)

From (4.10) and (4.11), we have:

4σ(v)2 ≤
(
v1 − 1/v21

)2
+ · · ·+

(
vn − 1/v2n

)2
=
∥∥v − 1/v2

∥∥ .(4.12)

Without loss of generality, we assume that δ := δ(v) ̸= 0. From the definition of δ,

4δ2 =
∑n

i=1 (vi − 1/vi)
2 . To derive the upper bound for σ(v), consider the following

problem

minimize −
n∑

i=1

(
vi − 1/v2i

)2
subject to

n∑
i=1

(vi − 1/vi)
2 = 4δ2.(4.13)

Then, by the first-order optimality condition, the optimal solution v of (4.13) sat-
isfies the following:(

−vi − 1/v2i + 2/v5i
)
+ λ

(
vi − 1/v3i

)
= 0, i = 1, . . . , n,(4.14)

where λ is the Lagrange multiplier.
Let I be the collection of indices such that vi ̸= 1. Then from (4.14),

λ =
v6i + v3i − 2

v6i − v2i
=

(v3i + 2)(v2i + vi + 1)

v2i (v
2
i + 1)(vi + 1)

, i ∈ I.(4.15)

Combining (4.15) with Lemma 4.5, we have λ > 0. The derivative of right-hand
side of (4.15) with respect to vi is

−3v5i + 10v4i + 17v3i + 12v2i + 8vi + 4

v3i (1 + vi)2(1 + v2i )
2

.(4.16)

Since v > 0, it is clear that (4.16) is negative. This implies that (4.15) is strictly
decreasing with respect to {vi}i∈I . Since λ is constant, there are no vi ̸= vj satisfying
(4.15). So, all elements {vi}i∈I are identical. Let us denote this same value as v̂ ∈ R.
Then the objective function of (4.13) becomes

−
n∑

i=1

(
vi − 1/v2i

)2
= −|I|

(
v̂ − 1/v̂2

)2
(4.17)
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and the constraints of (4.13) becomes

n∑
i=1

(vi − 1/vi)
2 = |I| (v̂ − 1/v̂)2 = 4δ2.(4.18)

The first-order and second-order derivatives of (4.17) with respect to v̂ are

−2|I|
(
v̂ + 1/v̂2 − 2/v̂5

)
and − 2|I|

(
1− 2/v̂3 − 10/v̂6

)
,(4.19)

respectively. Then (4.17) has maximum at v̂ = 1 and it is strictly concave. The two
positive solutions of (4.18) are

v̂± :=

√
1 + 2δ2/|I|±

√
(1 + 2δ2/|I|)2 − 1.(4.20)

We divide the proof into two cases for v̂+ and v̂−. To apply Lemma 4.6, we regard
|I| as z and 2δ2 as w in Lemma 4.6. Then, v̂2+ corresponds to f+(w, z) in Lemma 4.6.
By Lemma 4.6 (i), v̂+ is increasing with respect to δ. From the definition of v̂+ in
(4.20), v̂+ > 1. Since (4.17) has maximum at v̂ = 1 and it is strictly concave, (4.17)
is decreasing with respect to δ. By Lemma 4.6 (ii), (4.17) decreases as |I| increases.
Thus (4.17) obtains its minimum when both δ and |I| are at their maximum, that
is, δ = 1/24 and |I| = n. Then the objective function of (4.13) becomes

(4.21)

−
n∑

i=1

(
vi − 1/v2i

)2

= − 1

v̂4+


(
1/(288

√
n) +

√
1/144 + 1/(288

√
n)2
) (
v̂2+ + v̂+ + 1

)√
1 + 1/(288n) +

√
1/(144n) + 1/ (288n)2 + 1


2

.

Since limn→∞ v̂+ = 1, the last expression in (4.21) converges to −0.015625 as n→
∞.

For case v̂−, in a similar way to case for v̂+, we can show that (4.17) obtains its
minimum when δ is at its maximum and |I| is at its minimum, that is, δ = 1/24
and |I| = 1. Then the objective function of (4.13) becomes

−
n∑

i=1

(
vi −

1

v2i

)2

= −
(
v̂− −

1

(v̂−)2

)2
> −0.017.

Therefore, the upper bound for the minimum of (4.17) in both cases for v̄+ and v̄−
is as follows:

σ(v̂±) =
1

2

∥∥v̂± − φ′(v̂±)
∥∥ ≤ 1

2

∥∥v̂± − 1/(v̂±)
2
∥∥ ≤ 1

2

√
0.017 < 0.1,

where the first inequality follows from (4.12) and second inequality follows from
(4.21) and (4.22). Thus the proof is complete. □

To estimate the upper bound of the proximity measures in Lemma 5.4, we need
the following lemma.
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Lemma 4.8. Let φ be any function satisfying (3.1) and (3.2) of Definition 3.2.
Then we have ∣∣∣∣(tφ′(t)

) 1
2 −

(
tφ′(t)

)− 1
2

∣∣∣∣ ≤ |t− 1/t| , t > 0.

Proof. Since∣∣∣∣t− 1

t

∣∣∣∣2 − ∣∣∣(tφ′(t)
) 1

2 −
(
tφ′(t)

)− 1
2

∣∣∣2 = t

(
1− 1

t3φ′(t)

)(
t− φ′(t)

)
,

it is enough to show that t
(
1− 1

t3φ′(t)

)
(t− φ′(t)) > 0. For 0 ≤ t ≤ 1, by (3.1) of

Definition 3.2, we have t ≤ 1 ≤ φ′(t) ≤ 1
t ≤

1
t3
. So we have 1 − 1

t3φ′(t) ≤ 0 and t −

φ′(t) ≤ 0. Therefore t
(
1− 1

t3φ′(t)

)
(t− φ′(t)) ≥ 0, for 0 < t ≤ 1. For 1 < t, by (3.2)

of Definition 3.2, we have 1
t3
< φ′(t) ≤ t. So we have 1− 1

t3φ′(t) ≥ 0 and t−φ′(t) ≥ 0.

Therefore t
(
1− 1

t3φ′(t)

)
(t− φ′(t)) ≥ 0, for 1 < t. Thus the proof is complete. □

5. Feasibility step

In this section, we address the feasibility step, ensuring that the new iterations
are strictly positive and that the proximity measure is less than or equal to 1/

√
2,

which is the assumption in Lemma 2.2.
The following lemma can be derived using a similar approach to Lemma II.45

in [12] and Lemma 4.1 in [11].

Lemma 5.1. In the feasibility step, the modified full-Newton step is strictly feasible

if and only if vφ′(v) + dfxd
f
s > 0, where v, dfx, and d

f
x are defined in (2.5) and φ is

defined in Definition 3.2.

In the following, we define ωi(v) as follows: ωi := ωi(v) :=
1
2

√
(dfx)2i + (dfs )2i , and

ω := ω(v) := ∥(ω1, . . . , ωn)∥ .(5.1)

This implies that ∥dfx∥ ≤ 2ω and ∥dfs∥ ≤ 2ω. Moreover,

|(dfxdfs )i| = |(dfx)i||(dfs )i| ≤
1

2

(
(dfx)

2
i + (dfs )

2
i

)
≤ 2ω2

i ≤ 2ω2.(5.2)

The following lemma gives the conditions ensuring that the new iteration, after
feasibility step, is strictly feasible.

Lemma 5.2. Let n ≥ 20 and ξ ∈ (0.3, min{0.39, inft>0 tφ
′(t)}). Then for any

ω ≤ ξ√
2
, the new iteration after feasibility step is strictly feasible for (2.1) and (2.2)

with ν = ν+.

Proof. Suppose that ω ≤ ξ√
2
. Then from (5.2), we have |dfxdfs | ≤ 2ω2 ≤ ξ2. Since

0 < ξ < 1, ξ2 < ξ. Thus |dfxdfs | < ξ. Then by the condition (3.3) of Definition 3.2,

ξ < vφ′(v). This implies that |dfxdfs | < ξ < vφ′(v). By Lemma 5.1, the proof is
complete. □
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For the notational convenience, we define u as follows:

u := vφ′(v).(5.3)

Lemma 5.3. Let n ≥ 20. Suppose that xT s = nµ. Then ∥u
1
2 ∥2 ≤ 2.05n

Proof. By the conditions (3.1) and (3.2) of Definition 3.2,

∥u
1
2 ∥2 ≤ ∥v−1∥+ ∥v∥ ≤ 1.05n+ ∥v∥2 = 2.05n,

where the second inequality follows from the triangle inequality and Lemma 4.5.
Thus the proof is complete. □

Lemma 5.4. Let n ≥ 20. Suppose that xT s = nµ. Then we have

4δ

(
u

1
2

√
1− θ

)2

≤ 4(1− θ)δ(v)2 + θ2n

1− θ
+ 2.1θn.

Proof. By the definition of δ(v),

4δ

(
u

1
2

√
1− θ

)2

= (1− θ)
∥∥∥u− 1

2 − u
1
2

∥∥∥2 + θ2

1− θ

∥∥∥u 1
2

∥∥∥2 − 2θ
〈
u−

1
2 − u

1
2 , u

1
2

〉
≤ 4(1− θ)δ(v)2 + θ2n

1− θ
+ 2.1θn,

where the inequality follows from Lemma 4.8 and Lemma 5.3. Thus the proof is
complete. □

In the sequel, we denote

δ(vf ) := δ(xf , sf ;µ+),(5.4)

where xf and sf are the new iteration after a feasibility step and µ+ := (1− θ)µ.
The following lemma can be derived by a similar way to Lemma 2.3 in [7] and

Lemma 4.4 in [11]. Note that to prove following lemma, we need Lemma 5.4 above.

Lemma 5.5. Let n ≥ 20. Assume that ω ≤ ξ√
2
, where ω is defined in (5.1). Then

for θ ∈ (0, 1), we have

4δ(vf )2 ≤ 4(1− θ)δ(v)2 + θ2n

1− θ
+ 2.1θn+

2ω2

1− θ
+

(1− θ)2ω2

ξ(ξ − 2ω2)
,

where δ(v) is defined in (2.9), and δ(vf ) is defined in (5.4).

Lemma 5.6. Let n ≥ 20. Assume that ξ ∈
(
0.3, min{0.39, inft>0 tφ

′(t)}
)
. Then

for θ ≤ 1/16n, δ(v) ≤ 1/24 and ω ≤ ξ√
2
, we obtain

δ(vf ) ≤ 1√
2
,

where δ(v) is defined in (2.9), and δ(vf ) is defined in (5.4).
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Proof. By Lemma 5.5,

(5.5)

4δ(vf )2 ≤ 4(1− θ)δ(v)2 + 2θ2n

1− θ
+ 2.1θn+

2ω2

1− θ
+

2(1− θ)ω2

ξ(ξ − 2ω2)

≤ 1− θ
16

+
2θ2n

1− θ
+ 2.1θn+

ξ2

1− θ
+

1− θ
1− ξ

=
1

16(1− θ)

(
a(n, ξ)θ2 + 2b(n, ξ)θ + c(ξ)

)
+ 2

where the second inequality holds by choosing δ(v) and ω as maximum values, and
a(n, ξ), b(n, ξ), and c(ξ) are defined in (4.1). By Lemma 4.2, for ξ ∈ (0.3, 0.39) and
for n ≥ 20, the equation

a(n, ξ)θ2 + 2b(n, ξ)θ + c(ξ) = 0(5.6)

has two solutions. By Lemma 4.3, for any ξ ∈ (0.3, 0.39), a(n, ξ) (1/16n)2 +
2b(n, ξ) (1/16n) + c(ξ) < 0 for n ≥ 20. By Lemma 4.4, for any ξ ∈ (0.3, 0.39),
the value −a(n, ξ)/b(n, ξ), which is an axis of symmetry, is greater than 1/16n, for
n ≥ 20. These imply that the smaller root of the equation (5.6) is greater than
1/16n. Since a(n, ξ) ≤ 0, as given in Lemma 4.1, it follows that the equation is neg-
ative for θ ≤ 1/16n. Thus from (5.5), 4δ(V )2 ≤ 2. Thus the proof is complete. □

6. The complexity analysis

Let us define L :=
{
ξ ∈ Rn : Āξ = 0

}
. Then by the first equation of (2.7),{

ξ ∈ Rn : Āξ = θνr0b
}
is equal to dfx+L. We know that affine space

{
ĀT ζ : ζ ∈ Rm

}
is the orthogonal complement of L, denoted by L⊥. By the second equation of (2.7),

we conclude that
{
θνvs−1r0c + ĀT ζ : ζ ∈ Rn

}
= dfs + L⊥. Since L ∩ L⊥ = {0}, the

spaces dfx + L and dfs + L meet in a unique vector q.
To compute the number of outer iterations, we need the following lemma.

Lemma 6.1 (Lemma II.17 in [12]). If the barrier parameter µ has the initial value
µ0 and is repeatedly multiplied by 1 − θ, with 0 < θ < 1, then after ate most

⌈1θ log
nµ0

ϵ ⌉ iterations we have nµ ≤ ϵ.

We have the following lemma which is derived in a similar way to proving Lemma
4.6 in [11].

Lemma 6.2. Let q be the unique vector in the intersection of the affine spaces

dfx + L and dfs + L. Then

2ω ≤
√
∥q∥2 +

(
∥q∥+ 2σ(v)

)2
,

where v is defined in (2.5), ω is defined in (5.1), and σ(v) is defined in (4.9).

The following lemma is for analyzing the feasibility step in the following Theorem
6.4.

Lemma 6.3 (Lemma 4.7 in [11]). One has

√
µ∥q∥ ≤ θνζ

√
eT
(x
s
+
s

x

)
.
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In the following, we give complexity result of the Algorithm 1 for IIPMs for LO.
This is the best known complexity result for such the method.

Theorem 6.4. Let n ≥ 20, θ = 1/16n, and τ = 1/24. Assume that there is an
optimal solution (x∗, y∗, s∗) such that ∥x∗+ s∗∥∞ < ζ for some ζ > 0. Let us define
the initial iteration by (x0, y0, s0) := ζ(e, 0, e), µ0e := x0s0, and ν0 := 1. Then after
at most ⌈

80n log
max

{
nζ2,

∥∥r0b∥∥ , ∥∥r0c∥∥}
ϵ

⌉
iterations, the Algorithm 1 finds an ϵ-approximate solution for LO, where r0b :=

b−Ax0, and r0c := c−AT y0 − s0.

Proof. Let us assume that θ = 1/16n and ξ ∈ (0.3, min{0.39, inft>0 tφ
′(t)}). Since

δ(v) ≤ τ = 1/24, by Corollary A.10 in [11],
√
x/s ≤

√
2 x(µ, ν)/

√
µ and

√
s/x ≤√

2 s(µ, ν)/
√
µ, where x(µ, ν) and s(µ, ν) denote that they are µ-centers of the

perturbed problems (2.1) and (2.2) with respect to ν. For reasons similar to those
in section 4.5 of [11], we can deduce the following based on Lemma 6.3,

∥q∥ ≤ θνζ
√
µ

√
eT
(x
s
+
s

x

)
≤
√
2θ

ζ

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2.(6.1)

By the same argument in the section 4.6 of [11], we have√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2 ≤ 2ζn.(6.2)

Then by (6.1) and (6.2), we have ∥q∥ ≤ 2
√
2θn. Then by the Lemma 6.2 and Lemma

4.7,

4ω2 ≤ 8θ2n2 +
(
2
√
2θn+ 0.2

)2
< 0.1733 < 2ξ2,

where θ = 1/16n. From (2.10) and τ = 1/24, at each centering step, we need 4
iterations in the centering step. Then, by Lemma 6.1, the total number of iterations

is at most
⌈
80n log

max{nζ2,∥r0b∥,∥r0c∥}
ϵ

⌉
. Thus the proof is complete. □

7. Conclusion

In this paper, we propose new full-Newton step IIPMs for LO. A search direction
is determined by computing the newly defined class of kernel functions and we
employ a full-Newton step method. The class of kernel functions defined in this
paper has the advantage of weaker conditions compared to existing kernel functions.
We propose a unified approach for complexity analysis with the best known worst-
case iteration bounds. Therefore, we have developed new small-update full-Newton
step IIPMs for LO using the newly defined class of kernel functions and shown that
this method has the most efficient computational complexity known to date. As
part of our future work, our primary expectation is to improve the constants in
computational complexity. Additionally, we want to extend this method to more
general optimization problems.
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