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smaller objective function values such that there is a decrease in at least one objec-
tive function value. Multiobjective optimization can be applied to engineering [23],
statistics [3], environmental analysis [19], and management science [7], etc. Various
iterative techniques exist for unconstrained multiobjective optimization problem,
such as the Newton method [9, 30], quasi-Newton methods [1, 22, 27], the steepest
descent method [12].

Recently, the vector versions of nonlinear conjugate gradient methods were first
proposed by Lucambio Pérez and Prudente [21]. In general, the search direction in
the multiobjective conjugate gradient methods can be defined by

dk =

ß
v(xk), if k = 0,
v(xk) + βkdk−1, if k ≥ 1,

(1.2)

where βk is a parameter that determines some different conjugate gradient meth-
ods, and v(xk) is the steepest descent direction in multiobjective optimization. In
that paper, βk was regarded as the extended forms of the five classical CGMs for
scalar optimization parameters, namely Hentences-Stiefel (in short, HS) CGM [16],
Fletcher-Reeves (in short, FR) CGM [10], Polak-Ribiėre-Polyak (in short, PRP)
CGM [8], Conjugate descent (in short, CD) [11] and Dai-Yuan [5](in short, DY)
CGM. Moreover, under mild assumptions, The global convergence of the multi-
objective extensions of the Hager-Zhang and the Liu-Storey nonlinear conjugate
gradient methods have been studied in [15] and [14], respectively.

Meanwhile, Lucambio Pérez and Prudente introduced the vector version of mod-
ified DY CGM in which the modified DY parameters βmDY

k is given as follows:

βmDY
k =

−Q(xk, v(xk))
Q(xk, dk−1)− τQ(xk−1, dk−1)

where Q(·, ·) is defined in section 2 and τ > 1. It is worthy noting that if τ = 1,

then the above parameter becomes DY parameter βDY
k = −Q(xk,v(xk))

Q(xk,dk−1)−Q(xk−1,dk−1)
of

the nonlinear DY CGM for solving multiobjective optimization problems. However,
it is worthy noting that both the sufficient descent direction at eash iteration and
the global convergence of the nonlinear modified DY CGM for solving MOPs intro-
duced in [21] can be guaranteed only on the condition that the strong Wolfe line
search techniques are used. It is natural to rease the following two interesting open
questions:

(i) The first one is that can we introduce a novel multioblective nonlinear CGM
which can generate a sufficient descent direction without relying on any line search
techniques?

(ii) The second one is that can we find any multioblective nonlinear CGM whose
global convergence can be guaranteed could be guaranteed if one use the Wolfe line
search step length rule instead of the strong Wolfe line search techniques?

In this paper, we will give positive answers to the above questions. On one
hand, inspired by the idea of Jiang and Jian [18], we would like to introduce a
novel multiobjective DY CGM in which the new modified DY parameter denoted
by βNMDY

k given as follows:

βNMDY
k =

−Q(xk, v(xk))
max{Q(xk, dk−1)−Q(xk−1, dk−1), µ|Q(xk, dk−1)|}

.(1.3)
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And we will show that the above proposed multiobjective DY type CGM can not
only generate a sufficient descent direction at each iteration but also can guarantee
the the global convergence of our proposed multiobjective CGM with parameter
βNMDY
k defined in (1.3) when the Wolfe line search step length rule is used.
The paper is organized as follows. In Section 2, we introduce some concepts,

notation and preliminary results. In Section 3, we give a general scheme of the
nonlinear DY type conjugate gradient method for solving MOPs. A convergence
analysis of the proposed method satisfying the Wolfe conditions is performed in
Section 4. In Section 5, we provide some numerical experiments to show the effec-
tiveness of the proposed algorithm. Finally, in Section 6, we make some conclusions
about our work.

2. Preliminaries

Throughtout this paper, we use R, R+, and R++ stand for the sets of real num-
bers, non-negative real numbers, and strictly positive real numbers, respectively.
Let Ξm = {1, 2, . . . ,m} and e = (1, 1, . . . , 1)⊤ ∈ Rm, and let ⟨·, ·⟩ stand for the

inner product in Rn and ∥ · ∥ denote the norm in the sense that ∥x∥ =
√
⟨x, x⟩ for

x ∈ Rn. For two vectors u and v in Rm, we use u ⪯ v to denote that ui ≤ vi for
each i ∈ Ξm. Similarly, we use u ≺ v to denote that ui < vi for all i ∈ Ξm. Given
x = (x1, x2, . . . , xn) ∈ Rn, let F : Rn → Rm be continuously differentiable and the
Jacobian of F at x is denoted by JF (x) which is defined as follows:

JF (x) = [∇F1(x),∇F2(x), . . . ,∇Fm(x)]⊤,

where ∇Fi(x) is the gradient vector of Fi at x. And the image of JF (x) is denoted
as

Im(JF (x)) = {JF (x)d : d ∈ Rn}.

Definition 2.1 ([24]). A vector x∗ ∈ Rn is called Pareto optimum to (MOP), if
there exists no x ∈ Rn such that F (x) ≤ F (x∗) and F (x) ̸= F (x∗).

Definition 2.2 ([12]). A vector x∗ ∈ Rn is called Pareto critical to (MOP), if

Im(JF (x∗)) ∩ (−Rm
++) = ∅,

where Im(JF (x∗)) denotes the image set of the Jacobian of F at x∗.

Definition 2.3 ([12]). A vector d ∈ Rn is called descent direction for F at x, if

JF (x)d ∈ −Rm
++.

Now, we define Q : Rn × Rn → R as follows:

Q(x, d) = max
i∈Ξm

⟨∇Fi(x), d⟩.(2.1)

From [4], we known that Q can express Pareto critical and descent direction, i.e.,

(i) d ∈ Rn is a descent direction for F at x ∈ Rn if Q(x, d) < 0,
(ii) x ∈ Rn is Pareto critical if Q(x, d) ≥ 0 for any d ∈ Rn.

The following proposition illustrates several useful results related to Q.

Proposition 2.4 ([13]). For all x, y ∈ Rn, ϱ > 0 and b1, b2 ∈ Rn, we obain

(i) Q(x, ϱb1) = ϱQ(x, b1);
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(ii) Q(x, b1 + b2) ≤ Q(x, b1) +Q(x, b2);
(iii) |Q(x, b1)−Q(y, b2)| ≤ ∥JF (x)b1 − JF (y)b2∥.

Let us now consider the following scalar optimization problem:

min
d∈Rn

Q(x, d) + 1

2
∥d∥2.(2.2)

Obviously, the objective in (2.2) is continous and strongly convex. Therefore, prob-
lem (2.2) admits a unique optimal solution. Denote the optimal solution of (2.2) by
v(x), i.e.,

v(x) = argmin
d∈Rn

Q(x, d) + 1

2
∥d∥2,(2.3)

and let the optimal value of (2.2) be defined as θ(x), i.e.,

θ(x) = Q(x, v(x)) + 1

2
∥v(x)∥2.(2.4)

Observe that in scalar optimization (i.e., m = 1), we have Q(x, d) = ⟨∇F1(x), d⟩,
v(x) = −∇F1(x) and θ(x) = −∥∇F1(x)∥2/2.

To obtain v(x), one can consider the following Lagrangian dual problem of
(2.2)(see [12]):

λ(x) ∈ argmin
λ∈Rm

∥∥∥∥∥
m∑
i=1

λi∇Fi(x)

∥∥∥∥∥
2

(2.5)

s.t. λ ∈ Λm,

where Λm = {λ ∈ Rm :
∑m

i=1 λi = 1, λi ≥ 0, ∀i ∈ Ξm} stands for the simplex set.
Then, v(x) can also be represented as

v(x) = −
m∑
i=1

(λ(x))i∇Fi(x).(2.6)

Let us now give a characterization of Pareto critical points of problem (1.1),
which will be used in our subsequent analysis.

Proposition 2.5 ( [12, Lemma 1]). Let v(·) and θ(x) be as in (2.3) and (2.4),
respectively. Then the following statements hold:

(i) If x is a Pareto critical point of problem (1.1), then v(x) = 0 and θ(x) = 0;
(ii) If x is not a Pareto critical point of problem (1.1), then v(x) ̸= 0, θ(x) < 0

and Q(x, v(x)) < −∥v(x)∥2/2 < 0;
(iii) v(·) is continuous.

3. A new modification DY type conjugate gradient method for MOPs

According to the works on nonlinear conjugate gradient method (in short, CGM)
for vector optimization problems in [21], we recall both the Wolfe-type line search
procedure and the strong Wolfe-type line search procedure for MOPs as follows:
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If dk ∈ Rn is the direction of descent of F at xk, given 0 < ρ < σ < 1, we say
that αk > 0 satisfies the Wolfe conditions if

F (xk + αkdk) ⪯ F (xk) + ραkQ(xk, dk)e,(3.1)

Q(xk+1, dk) ≥ σQ(xk, dk),(3.2)

and we say that αk > 0 satisfies the strong Wolfe conditions if

F (xk + αkdk) ⪯ F (xk) + ραkQ(xk, dk)e,(3.3)

|Q(xk+1, dk)| ≤ σ|Q(xk, dk)|.(3.4)

Now, we propose our novel sufficient descent modified Dai-Yuan type (in short,
NMDY CGM) conjugate gradient method for solving multiobjective optimization
problems as follows:

Algorithm 1 (NMDY)

Step 0. Given constants ρ ∈ (0, 1), σ ∈ (ρ, 1), µ > 1, choose initial points x0 ∈ Rn,
let k ← 0;
Step 1. Computing ∇Fi(xk) for each i ∈ Ξm;
Step 2. Computing λ(xk) and v(xk) by using (2.5) and (2.6),respectively;
Step 3 If v(xk) = 0 then STOP. Otherwise, go to step 4;
Step 4. Computing βNMDY

k by the following formula:

βNMDY
k =

−Q(xk, v(xk))
max{Q(xk, dk−1)−Q(xk−1, dk−1), µ|Q(xk, dk−1)|}

;(3.5)

Step 5. Computing dk by using the following formula:

dk =

ß
v(xk), if k = 0;
v(xk) + βNMDY

k dk−1, if k ≥ 1;
(3.6)

Step 6. Computing the step length αk according to the Wolfe-type line search (3.1)
and (3.2);
Step 7. Set xk+1 = xk + αkdk and let k := k + 1, and go to Step 1.

Remark 3.1. (i) It is obvious from the algorithmic framework that, when a
Pareto critical point of the MOP is obtained, the NMDY CGM can suc-
cessfully terminate. Thus, we assume that v(xk) ̸= 0 for any k ≥ 0 in the
subsequent analysis. This means that the NMDY CGM generates infinite
sequences {xk} and {dk}.

(ii) It is easy to verify that 0 < βNMDY
k ≤ −Q(xk,v(xk))

µ|Q(xk,dk−1)| .

(iii) Algorithm 1 extends the modified DY nonlinear conjugate gradient method
for solving scalar optimization introduced by Jiang and Jian [18] to the case
of multiobjective optimization problems.

(iv) When Q(xk, dk−1)−Q(xk−1, dk−1) > µ|Q(xk, dk−1)|, the βNMDY
k defined in

(3.5) becomes the DY-type parameter βDY
k = −Q(xk,v(xk))

Q(xk,dk−1)−Q(xk−1,dk−1)
. So, we

call βNMDY
k a new modified DY parameter and call Algrithm 1 as sufficient

descent Dai-Yuan type conjugate gradient method for MOPs.
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We recall the following well-known sufficient descent condition at xk which is
used in the convergence analysis of scalar optimization:

⟨∇F1(xk), dk⟩ ≤ −c ∥∇F1(xk)∥2 ,

where c > 0 is a constant.
Similarly, when analyzing convergence of the CGMs for solving vector optimiza-

tion or multiobjective optimization problems, Lucambio Pérez and Prudente [21]
introduced the following more stringent condition:

Q(xk, dk) ≤ cQ(xk, v(xk)),(3.7)

which means that the direction dk satisfies the sufficient descent condition at xk.
The following lemma shows that the search direction in Algorithm 1 defined by

(3.5) and (3.6) is always sufficient descent.

Lemma 3.2. Let {xk, dk} be the sequence generated by Algorithm 1 and µ > 1.
Then for any k ≥ 0, dk satisfies the sufficient descent condition (3.7) with c = 1− 1

µ ,
i.e.

Q(xk, dk) ≤
Å
1− 1

µ

ã
Q(xk, v(xk)).

Proof. Case 1: if k = 0. By Proposition 2.5(ii), we obtain that Q(x0, v(x0)) < 0. It
follows from (3.6) and µ > 1 that

Q(x0, d0) = Q(x0, v(x0)) ≤
Å
1− 1

µ

ã
Q(x0, v(x0)).

Case 2: k ≥ 1. From Remark 3.1(ii), we know that βNMDY
k > 0. It can be inferred

from (3.6) and Proposition 2.4 that,

Q(xk, dk) ≤ Q(xk, v(xk)) + βNMDY
k Q(xk, dk−1).(3.8)

On one hand, if Q(xk, dk−1) ≤ 0, it can be derived from Remark 3.1(i) and Propo-
sition 2.5(ii) that Q(xk, v(xk)) < 0. Thus, by (3.8), µ > 1 and βNMDY

k > 0, we
have

Q(xk, dk) ≤ Q(xk, v(xk)) ≤
Å
1− 1

µ

ã
Q(xk, v(xk)).

On the other hand, if Q(xk, dk−1) > 0, by Remark 3.1(ii) and (3.8), we have

Q(xk, dk) ≤ Q(xk, v(xk)) + βNMDY
k Q(xk, dk−1)

≤ Q(xk, v(xk)) +
−Q(xk, v(xk))
µQ(xk, dk−1)

Q(xk, dk−1)

= Q(xk, v(xk))−
Q(xk, v(xk))

µ

=

Å
1− 1

µ

ã
Q(xk, v(xk)).

Hence, the assert follows from two inequalities and the proof is complete. □
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Lemma 3.3. Let {xk, dk} be the sequence generated by Algorithm 1. Then for any
k ≥ 1, we have

0 < βNMDY
k ≤ Q(xk, dk)

Q(xk−1, dk−1)
.

Proof. Case 1: Q(xk, dk−1) = 0. It follows from (3.5) that

0 < βNMDY
k =

−Q(xk, v(xk))
−Q(xk−1, dk−1)

=
Q(xk, v(xk))
Q(xk−1, dk−1)

.(3.9)

It follows from (3.8) that

Q(xk, dk) ≤ Q(xk, v(xk)) < 0.

By Lemma 3.2, we obtain Q(x0, d0) < 0. Thus, from (3.9) and the above inequality
that

Q(xk, dk)
Q(xk−1, dk−1)

≥ Q(xk, v(xk))
Q(xk−1, dk−1)

= βNMDY
k > 0

Case 2: Q(xk, dk−1) ̸= 0 and Q(xk, dk−1)−Q(xk−1, dk−1) > µ|Q(xk, dk−1)|. From
(3.5), one has

βNMDY
k =

−Q(xk, v(xk))
Q(xk, dk−1)−Q(xk−1, dk−1)

.

Substituting the above equation into (3.8), we obtain

Q(xk, dk) ≤ Q(xk, v(xk)) + βNMDY
k Q(xk, dk−1)

= Q(xk, v(xk)) +
−Q(xk, v(xk))Q(xk, dk−1)

Q(xk, dk−1)−Q(xk−1, dk−1)

=
−Q(xk, v(xk))Q(xk−1, dk−1)

Q(xk, dk−1)−Q(xk−1, dk−1)

= βNMDY
k Q(xk−1, dk−1).

It follows from the above inequality and Q(xk−1, dk−1) < 0 that βNMDY
k ≤

Q(xk,dk)
Q(xk−1,dk−1)

.

Case 3: Q(xk, dk−1) ̸= 0 and Q(xk, dk−1)−Q(xk−1, dk−1) ≤ µ|Q(xk, dk−1)|.
On one hand, if Q(xk, dk−1) > 0, then the inequality Q(xk, dk−1)−Q(xk−1, dk−1) ≤
µ|Q(xk, dk−1)| can be rewritten as

(1− µ)Q(xk, dk−1) ≤ Q(xk−1, dk−1).(3.10)
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From (3.5), we get βNMDY
k = −Q(xk,v(xk))

µQ(xk,dk−1)
. According to (3.10) and (3.8), we have

Q(xk, dk) ≤ Q(xk, v(xk)) + βNMDY
k Q(xk, dk−1)

= Q(xk, v(xk)) +
−Q(xk, v(xk))Q(xk, dk−1)

µQ(xk, dk−1)

=
−(1− µ)Q(xk, v(xk))Q(xk, dk−1)

µQ(xk, dk−1)

≤ −Q(xk, v(xk))Q(xk−1, dk−1)

µQ(xk, dk−1)

= βNMDY
k Q(xk−1, dk−1),

which implies that βNMDY
k ≤ Q(xk,dk)

Q(xk−1,dk−1)
.

On the other hand, if Q(xk, dk−1) < 0, then Q(xk, dk−1) − Q(xk−1, dk−1) ≤
µ|Q(xk, dk−1)| can be rewritten as (1+µ)Q(xk, dk−1) ≤ Q(xk−1, dk−1). From (3.5),

we obtain βNMDY
k = −Q(xk,v(xk))

−µQ(xk,dk−1)
. Furthermore, one has

Q(xk, dk) ≤ Q(xk, v(xk)) + βNMDY
k Q(xk, dk−1)

= Q(xk, v(xk)) +
−Q(xk, v(xk))Q(xk, dk−1)

−µQ(xk, dk−1)

=
(1 + µ)Q(xk, v(xk))Q(xk, dk−1)

µQ(xk, dk−1)

≤ Q(xk, v(xk))Q(xk−1, dk−1)

µQ(xk, dk−1)

= βNMDY
k Q(xk−1, dk−1),

which implies that βNMDY
k ≤ Q(xk,dk)

Q(xk−1,dk−1)
. Therefore the proof is complete. □

4. Convergence analysis

In this section, we show the global convergence property of the proposed NMDY
CGM for MOPs. For this purpose, we need the following conditions:

Condition A1. The mapping F : Rn → Rm is bounded from below on the level
set L(x0) = {x ∈ Rn : F (x) ⪯ F (x0)}, where x0 ∈ Rn is an available point and the
set L(x0) is bounded.

Condition A2. The Jacobian JF is Lipschitz continuous in an open convex set B
that contains L(x0), i.e., there exists a constant L > 0 such that ∥JF (x)− JF (y)∥ ≤
L ∥x− y∥ for all x, y ∈ B.

Lemma 4.1. Assume that Condition A2 holds true and the sequence {xk, dk} is
generated by Algorithm 1. Then there is a positive constant ω satisfying

F (xk)− F (xk+1) ⪰ ω
Q2(xk, dk)

||dk||2
, for any k,(4.1)
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where ω = ρ(1−σ)
L .

Proof. From Lemma 3.2, we obtain that Q(xk, dk) ≤ cQ(xk, v(xk)) < 0. It follows
from (3.2) that

(σ − 1)Q(xk, dk) ≤ Q(xk+1, dk)−Q(xk, dk).(4.2)

From Proposition 2.4(iii), (A2) and Cauchy-Schwartz inequality, we get

Q(xk+1, dk)−Q(xk, dk) ≤ ∥JF (xk+1)dk − JF (xk)dk∥
≤ ∥JF (xk+1)− JF (xk)∥∥dk∥
≤ Lαk∥dk∥2,

which combined with (4.2) and the fact that ∥dk∥ ̸= 0 gives

αk ≥
σ − 1

L

Q(xk, dk)
∥dk∥2

> 0.(4.3)

By (3.1) and (4.3), it follows that for each i ∈ Ξm,

Fi(xk)− Fi(xk+1) ≥ −ραkQ(xk, dk) ≥ ω
Q2(xk, dk)

∥dk∥2
,(4.4)

where ω = ρ(1−σ)
L , which concludes the proof. □

Remark 4.2. Based on Condition A1 and Lemma 4.1, {xk} is contained in the
bounded set L(x0). By Proposition 2.5(iii), we have {v(xk)} and {dk} is bounded.
That is, there exist constants ξ1, ξ2 > 0 such that ∥v(xk)∥ ≤ ξ1 and ∥dk∥ ≤ ξ2.

According to (4.1) and Condition A1, we know that {F (xk)} is monotone non-
increasing and bounded below for k ≥ 0, hence it is convergent. Then, we can easily
obtain the following result:

Lemma 4.3. Let Condition A1 and Condition A2 hold true, and the sequence
{xk, dk} is generated by Algorithm 1. Then

∞∑
k=0

Q2(xk, dk)

∥dk∥2
< +∞.(4.5)

We now establish the global convergence of Algorithm 1.

Theorem 4.4. Suppose that Condition A2 holds true and the sequence {xk, dk} is
generated by the Algorithm 1. Then

lim
k→∞

inf ∥v(xk)∥ = 0.

Proof. Suppose by contradiction that there is ς > 0 and a positive index N such
that

∥v(xk)∥ ≥ ς

for any k ≥ N.
It follows from (3.6) and Lemma 3.3 that for each k ∈ N

∥dk∥ ≤ ∥v(xk)∥+ ∥βNMDY
k dk−1∥

≤ ∥v(xk)∥+
Q(xk, dk)∥dk−1∥
Q(xk−1, dk−1)

.
(4.6)
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By Proposition 2.5(ii), we get θ(xk) = Q(xk, v(xk)) + 1
2∥v(xk)∥

2 < 0. Thus, From
Lemma 3.2, we obtain that for all k ≥ N,

0 < ς2 ≤ ∥v(xk)∥2 < −2Q(xk, v(xk)) ≤ −2
Q(xk, dk)

c
.(4.7)

By (4.6) and (4.7), one has

∥dk∥
Q(xk, dk)

≥ ∥v(xk)∥
Q(xk, dk)

+
∥dk−1∥

Q(xk−1, dk−1)

≥ ∥v(xk)∥
cQ(xk, v(xk))

+
∥dk−1∥

Q(xk−1, dk−1)

> − 2

c∥v(xk)∥
+

∥dk−1∥
Q(xk−1, dk−1)

.

Then by the above inequality, we have

∥dk∥
Q(xk, dk)

− ∥dk−1∥
Q(xk−1, dk−1)

> − 2

c∥v(xk)∥
≥ − 2

cς
,(4.8)

which implies that for all k ≥ N,

∥dk∥
Q(xk, dk)

− ∥dN−1∥
Q(xN−1, dN−1)

> −2(k −N+ 1)

cς
.(4.9)

From Lemma 3.2, Proposition 2.5(ii) and Remark 4.2, we have

∥dN−1∥
Q(xN−1, dN−1)

≥ ∥dN−1∥
cQ(xN−1, v(xN−1))

> − ∥dN−1∥
c∥v(xN−1)∥2

≥ − ξ1
cξ22

,(4.10)

It follows from (4.9) and (4.10) that for all k ≥ N,

∥dk∥
Q(xk, dk)

>
∥dN−1∥

Q(xN−1, dN−1)
− 2(k −N+ 1)

cς

> − ξ1
cξ22
− 2(k −N+ 1)

cς

= −ξ1ς + 2(k −N+ 1)ξ22
cςξ22

.

For convenience, we let ϑ = − ξ1ς+2(k−N+1)ξ22
cςξ22

. Therefore,

∥dk∥2

Q2(xk, dk)
< ϑ2,

which implies that
Q2(xk, dk)

∥dk∥2
≥ 1

ϑ2
.

By summing up the above inequality from k = N to infinity, we obtain
∞∑

k=N

Q2(xk, dk)

∥dk∥2
=∞,

which contradicts to (4.5) in Lemma 4.3. This completes the proof. □
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5. Numerical experiments

In this section, we present some numerical results and demonstrate the numerical
performance of Algorithm 1 for different problems and just compare Algorithm
1 (NMDY) with the multi-objective versions of the Polak-Ribire-Polyak (PRP),
Dai-Yuan (DY) and the modified DY(mDY) nonlinear conjugate gradient methods
proposed in [21]. The code for the Algorithm 1 was written in double-precision
Fortran 90 and was run using cmd on a PC equipped with a 3.40 GHz CPU and 8
GB RAM. For computing the steepest descent direction v(x), we use Algencan [2],
which is an augmented Lagrangian code for general nonlinear programming.

In our implementation, we choose the step length αk to satisfy the Wolfe con-
ditions for Algorithm 1 and we take step-size αk that satisfies the strong Wolfe
condition for the other three methods with ρ = 10−4 and σ = 10−1. We employ
µ = 11.75 for our algorithm, which seemed to work reasonably well for a broad class
of problems.

Since Proposition 2.5 implies that v(x) = 0 if and only if θ(x) = 0, we stop the
algorithm at xk whenever

θ(xk) ≥ −5× eps1/2,

where θ(xk) = Q(xk, v(xk)) + ∥v(xk)∥2/2, and eps = 2−52 ≈ 2.22 × 10−16 denotes
the machine precision. The maximum number of allowed iterations is set to 10000.
The latter stopping criterion corresponds to the fault.

The test problems considered have been collected from the literature as de-
scribed in Table 1. The first two columns identify the name of the problem and
the corresponding source. The starting points belonging to the box constraint
{x ∈ Rn|xL ≤ x ≤ xU} are reported in the third and fourth columns of the ta-
ble, respectively, where the lower bound xL ∈ Rn and upper bound xU ∈ Rn. The
“n” and “m” in the fifth and sixth columns denote the number of variables and the
number of objective functions of the test problem, respectively. “Convex” informs
whether the problem is convex or not.

We use the performance profile proposed by Dolan and Moré in [6] to compare the
performance of the algorithms. Let size A denote the number of elements of the set
A, S be the set of solvers, P be the set of problems, and tp,s be the performance of

the solver s ∈ S on the problem p ∈ P . The performance ratio is rp,s :=
tp,s

min{tp,s:s∈S}
and the cumulative distribution function ρs : [1,∞)→ [0, 1] is

ρs :=
1

np
size{p ∈ P : rp,s ≤ τ}.

Therefore, the performance profile is presented by depicting the graph of the cu-
mulative distribution function ρs. Note that ρs(1) is the probability that the solver
beats the remaining solvers.

We take into account 200 beginning points from a uniform random distribution
that belonged to the matching boxes for each method. Every instance is regarded
as a separate problem, and each solver that is taken into consideration to solve it.
The CPU time (T cpu), number of iterations (Itr), number of function evaluations
(NF), and number of gradient evaluations (NG) are the performance metrics we use
to compare the methods.
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Table 1. List of test problems

Problem Soure xL xU n m Convex

JOS1 [17] -[10000,· · · ,10000] [10000,· · · ,10000] 1000 2 Y
SLC2 [28] -[100,· · · ,100] [100,· · · ,100] 100 2 N
SLCDT1 [29] -[5,5] [5,5] 2 2 N
AP2 [1] -[100,100,100] [100,100,100] 3 3 Y
AP3 [1] -[100,100] [100,100] 2 2 N
Lov1 [20] -[100,100] [100,100] 2 2 Y
Lov3 [20] -[100,100] [100,100] 2 2 N
Lov4 [20] -[100,100] [100,100] 2 2 N
FDS [9] -[2,· · · ,2] [2,· · · ,2] 50 3 Y
MMR5 [25] -[5,· · · ,5] [5,· · · ,5] 100 2 N
MGH16 [26] -[100,· · · ,100] [100,· · · ,100] 4 100 N
MOP2 [17] -[1,1] [1,1] 2 2 N
MOP7 [17] -[400,400] [400,400] 2 3 Y
DGO1 [17] -10 13 1 2 Y
Far1 [17] -[1,1] [1,1] 2 2 N
MLF2 [17] [0,0] [20,20] 2 2 Y

Table 2. Performance of the NMDY, and DY parame-
ter on the chosen set of test problems

Problem
NMDY DY

iteration evalf evalg time iteration evalf evalg time

JOS1 2 2 4 0.02 2 2 4 0.05
SLC2 24 178 150 0.33 33 295 252 0.38

SLCDT1 4 18 17 0.02 3 13 13 0.02
AP2 2 2 4 0.02 2 2 4 0.02
AP3 28 216 181 0.02 116 641 634 0.05
Lov1 3 4 6 0.02 4 6 8 0.02
Lov3 4 9 11 0.02 4 9 11 0.02
Lov4 2 3 5 0.05 2 3 5 0.02
FDS 127 968 575 9.95 496 3647 3478 34.2

MMR5 37 303 292 0.3 141 744 712 0.61
MGH16 7 1309 1405 0.02 24 6439 5293 0.03
MOP2 9 62 51 0.02 7 54 48 0.02
MOP7 7 18 21 0.02 9 24 27 0.02
DGO1 2 7 9 0.02 2 7 9 0.02
FAR1 173 884 794 0.05 717 3201 3199 0.03
MLF2 28 197 157 0.02 30 221 212 0.02
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Table 3. Performance of the PRP and mDY parameter on
the chosen set of test problems

Problem
PRP mDY

iteration evalf evalg time iteration evalf evalg time

JOS1 2 2 4 0.03 2 2 4 0.05
SLC2 56 312 292 0.42 166 1180 856 0.38

SLCDT1 4 17 18 0.02 3 13 13 0.02
AP2 2 4 2 0.02 2 2 4 0.05
AP3 36 197 185 0.03 907 6359 4560 0.05
Lov1 3 4 6 0.02 4 6 8 0.02
Lov3 4 9 11 0.02 4 9 11 0.02
Lov4 2 3 5 0.05 2 3 5 0.02
FDS 78 532 491 5.22 4854 43711 34038 258.61

MMR5 27 218 214 0.23 1189 5106 5044 2.91
MGH16 13 2534 2635 0.02 9 2242 2033 0.02
MOP2 11 56 61 0.02 7 49 44 0.02
MOP7 6 15 18 0.02 7 18 21 0.02
DGO1 2 7 9 0.02 2 7 9 0.02
FAR1 135 724 646 0.05 7047 49323 35265 0.42
MLF2 42 234 206 0.03 157 1109 834 0.06

Figure 1. Performance
profile for the Itr

Figure 2. Performance
profile for the T cpu

As can be seen from Tables 2 and 3 and Figures 1 to 4, our proposed Algorithm
1 is slightly better than the PRP conjugate gradient method in the four indicators
examined, and is significantly higher than the mDY and DY conjugate gradient
methods. Meanwhile, the mDY conjugate gradient method is the least effective
among the four indicators evaluated. That’s because Lucambio Pérez and Prudente
only made simple modification to the DY parameters to achieve global convergence
under strong Wolfe conditions and did not consider the improvement of algorithm
performance. It can be seen that our modification of the DY parameter has greatly
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Figure 3. Performance
profile for the NF

Figure 4. Performance
profile for the NG

improved the performance of the algorithm, which verifies the effectiveness of our
algorithm.

6. Conclusions

In this work, we present a new nonlinear modified Dai-Yuan type conjugate gra-
dient method for solving unconstrained MOPs by modifying the parameter βDY

k

replaced by βNMDY
k . The proposed multiobjective conjugate gradient method not

only extends the conjugate gradient method introduced by Jiang and Jian from the
scalar optimization case to that of multiobjective optimization, but also improve
the Dai-Yuan type conjugate gradient method for solving MOPs. The advantage
of the proposed multiobjective conjugate gradient method lies in that it can gen-
erate a sufficient descent direction without relying on any line search conditions.
Under mild assumptions, we establish the global convergence of our nonlinear con-
jugate gradient method for MOPs with the standard Wolfe line search instead of the
strong Wolfe line search. Numerical results demonstrate the validity of the proposed
method.
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