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In this paper, we are interested in studying the stability of the optimal value
function, the global solution map, and the local solution map of the MWP when
the data undergoes small perturbations. We will show that, under some conditions,
the optimal value function is locally Lipschitz, the global solution map is upper
semicontinuous, and the local solution map is inner semicontinous. Several illustra-
tive examples are provided. To obtain these stability properties, we will apply the
results of [7] and [8] to the full extent.

The theorems and proofs herein are very different from those given in [6, Sec-
tion 4], where stability properties of the minimum sum-of-squares clustering prob-
lem were investigated. Actually, in comparison with the work done in the just cited
paper, the stability analysis of the MWP requires more delicate arguments and
tools.

The paper is organized as follows. Some preliminaries are provided in Section 2.
Section 3 establishes the locally Lipschitz continuity of the optimal value function of
the MWP. Upper semicontinuity of the global solution map is proved in Section 4,
while the inner semicontinuity of the local solution map is addressed in Section 5.
Concluding remarks and two open questions are given in Section 6.

2. Preliminaries

By N we denote the set of positive integers. For any n ∈ N, the Euclidean
space Rn is equipped with the scalar product 〈x, y〉 =

∑n
r=1 xryr and the norm

‖x‖ =
(∑n

r=1 x
2
r

)1/2
, where x = (x1, . . . , xn) and y = (y1, . . . , yn). The open ball

(resp., the closed ball) with center x ∈ Rn and radius ρ > 0 are denoted by B(x, ρ)
(resp., B̄(x, ρ)). The convex hull of a set Ω ⊂ Rn is abbreviated to coΩ. For
our convenience, vectors of finite-dimensional Euclidean spaces are interpreted as
columns of real numbers in matrix calculations, but represented as rows of real
numbers in the text.

2.1. The multi-source Weber problem. A data set A = {a1, . . . , am} is a finite
subset of Rn. Each element of A is a demand point. Let a positive integer k and
positive real constants s1, . . . , sm be given. It is supposed that 1 ≤ k ≤ m. Put
I = {1, . . . ,m} and J = {1, . . . , k}. Every constant si, i ∈ I, is understood as the
weight corresponding to the demand point ai.

The multi-source Weber problem (MWP for brevity) or the clustering problem
with Euclidean norms is one of minimizing the sum of the weighted minima of the
Euclidean distances of the data points to the facilities. To solve the problem, one
has to partition A into k disjoint subsets A1, . . . , Ak, called clusters, and associate
to each cluster Aj a facility (also called a centroid) xj ∈ Rn so that the number

f(x, a) :=
∑
i∈I

(
si min

j∈J
‖ai − xj‖

)
is as small as possible. Therefore, solving MWP is to resolve the unconstrained
nonsmooth nonconvex optimization problem

(2.1) min
{
f(x, a) | x = (x1, . . . , xk) ∈ (Rn)k = Rnk

}
.

Let Rnk be equipped with the Euclidean norm, which is denoted by ‖ · ‖.
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Definition 2.1. A vector x̂ = (x̂1, . . . , x̂k) ∈ Rnk is said to be a local solution
of (2.1) if there is ε > 0 such that f(x̂, a) ≤ f(x, a) for every x = (x1, . . . , xk) ∈ Rnk

satisfying ‖x− x̂‖ < ε.

In what follows, (2.1) is considered as a parametric optimization problem with

a =
(
a1, . . . , am

)
∈ (Rn)m = Rnm

being the parameter. The global solution set (resp., the optimal value, and the local
solution set) of the problem is denoted by S(a) (resp., v(a), and S1(a)). Thus, a
vector x̄ = (x̄1, . . . , x̄k) belongs to S(a) if and only if f(x̄, a) ≤ f(x, a) for every
x = (x1, . . . , xk) ∈ Rnk. In addition, v(a) = f(x̄, a) for every x̄ ∈ S(a). It is clear
that S(a) ⊂ S1(a). Since S(a) is nonempty by [7, Theorem 3.3], v(a) is a finite real
number.

In the case where k = 1, (2.1) is known as the single-source Weber problem, or
the Fermat-Weber location problem. In this case, one has the convex minimization
problem

(2.2) min
{
f(x, a) =

∑
i∈I

si‖ai − x‖ | x ∈ Rn
}
.

By definition, x̄ ∈ Rn is a solution of the single-source Weber problem if and only if∑
i∈I

si‖ai − x̄‖ ≤
∑
i∈I

si‖ai − x‖ ∀x ∈ Rn.

To study the stability of of the multi-source Weber problem, we will need the
following notions of natural clustering and attraction set, which were proposed
in [6] for the minimum sum-of-squares clustering problem and successfully used
in [7] (resp., in [8]) to study of the global solution set (resp., the global solution set)
of (2.1).

Definition 2.2. (See [6, 7]) Given a facilities system x = (x1, . . . , xk) ∈ Rnk, we
say that the component xj of x is attractive with respect to the data set A if the
set

A[xj ] :=
{
ai ∈ A | ‖ai − xj‖ = min

q∈J
‖ai − xq‖

}
,

called the attraction set of xj , is nonempty.

Given a vector x = (x1, . . . , xk) ∈ Rnk, we construct k disjoint subsets A1, . . . , Ak

of A in the following way. Put A0 = ∅ and let

(2.3) Aj =
{
ai ∈ A \

( j−1⋃
p=0

Ap
)

| ‖ai − xj‖ = min
q∈J

‖ai − xq‖
}

(j = 1, . . . , k).

Then, for all i ∈ I and j ∈ J , the data point ai belongs to the cluster Aj if and only
if the distance ‖ai − xj‖ is the minimal one among the distances ‖ai − xq‖, q ∈ J ,

and ai /∈
⋃j−1

p=1A
p. By (2.3), one has Aj = A[xj ] \

(⋃j−1
p=1A

p
)
for every j ∈ J .

Definition 2.3. (See [6, 7]) The family {A1, . . . , Ak}, which is constructed by the
rule (2.3), is said to be the natural clustering associated with the facilities system
x = (x1, . . . , xk).
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The inclusion S(a) ⊂ S1(a) can be strict even for low-dimensional multi-source
Weber problems having only a few data points; see, e.g., [8, Examples 2.5–2.7].

The next remark is similar to [6, Remark 2.9], which was given for the Minimum
Sum-of-Squares Clustering problem.

Remark 2.4. If x̄ = (x̄1, . . . , x̄k) ∈ Rnk is a global solution (resp., a local solution)

of (2.1), then the vector x̄σ := (x̄σ(1), . . . , x̄σ(k)) is also a global solution (resp.,
a local solution) of (2.1) for any permutation σ of J . This observation follows
easily from the fact that f(x) = f(xσ), where x = (x1, . . . , xk) ∈ Rnk and xσ :=

(xσ(1), . . . , xσ(k)).

Remark 2.4 allows us to simply the formulas of S(a) and S1(a). Namely, for a
concrete multi-source Weber problem, we need just to describe the sets S(a) and
S1(a) up to permutations.

2.2. Continuity properties of functions and multifunctions. Let Ω be a
nonempty subset of Rp, where p ∈ N. Equipped with the relative topology (see,
e.g., [9, p. 51] and [24, Definition 6.1], Ω is a topological space.

One says that a real-valued function g : Ω → R is said to be locally Lipschitz at
ω̄ ∈ Ω if there exist a neighborhood U of ω̄ and a constant ℓ > 0 such that

|g(ω′)− g(ω)| ≤ ℓ‖ω′ − ω‖ ∀ω, ω′ ∈ U.

Clearly, if g is locally Lipschitz at ω̄ ∈ Ω, then g is continuous at every point in a
neighborhood of ω̄.

Given a multifunction F : Ω ⇒ Rq, where q ∈ N, one defines the domain and the
graph of F respectively by domF := {x ∈ Ω | F (x) 6= ∅} and

gphF := {(ω, y) ∈ Ω× Rq | y ∈ F (ω)}.

Definition 2.5. Let F : Ω ⇒ Rq be a multifunction.

(a) F is called upper semicontinuous [2, p. 109] at ω̄ ∈ Ω if for any open set
V ⊂ Rq with F (ω̄) ⊂ V there is a neighborhood U of ω̄ such that F (ω) ⊂ V
for every ω ∈ U .

(b) One says that F is lower semicontinuous [2, p. 109] at ω̄ ∈ domF if for any
open set V ⊂ Rq with F (ω̄) ∩ V 6= ∅ there exists a neighborhood U of ω̄
such that F (ω) ∩ V 6= ∅ for every ω ∈ U .

(c) If F is both upper semicontinuous and lower semicontinuous at ω̄, then it
is said that F is continuous at ω̄.

(d) F is said to be inner semicontinuous1 at (ω̄, ȳ) ∈ gphF if for any open set
V ⊂ Rq with ȳ ∈ V there is a neighborhood U of ω̄ such that F (ω)∩ V 6= ∅
for every ω ∈ U .

Clearly, F is lower semicontinuous at ω̄ ∈ domF if and only if it is inner semi-
continuous at every point (ω̄, ȳ) with ȳ ∈ gphF .

1In the finite-dimensional space setting, this definition is equivalent to the one given in [14,
Definition 1.63(i)] whenever domF = Ω.
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3. Locally Lipschitz continuity of the function v(.)

In this section, we will study the optimal value function v : Rnm → R of (2.1)
which puts every data tube a =

(
a1, . . . , am

)
∈ Rnm in correspondence with a

nonnegative real value v(a). Thus, the multi-source Weber problem is perturbed,
and a plays the role of a perturbation parameter.

Using some theorems from [7] we will be able to prove the following result.

Theorem 3.1. The optimal value function v(.) of the multi-source Weber prob-
lem (2.1) is locally Lipschitz at every point ā =

(
ā1, . . . , ām

)
∈ Rnm satisfying the

condition āi 6= āp for any i, p ∈ I with i 6= p. Moreover, the value√
2(km+ 1)

(∑
i∈I

si

)
,

which does not depend on ā, can be chosen as the Lipschitz constant for the locally
Lipschitz property. In particular, the function v(.) is continuous at every point
ā =

(
ā1, . . . , ām

)
∈ Rnm satisfying the condition āi 6= āp for any i, p ∈ I with i 6= p.

Proof. By definition, we have

(3.1) v(a) = min

{
f(x, a) =

∑
i∈I

(
si min

j∈J
‖ai − xj‖

)
| x = (x1, . . . , xk) ∈ Rnk

}
for all a =

(
a1, . . . , am

)
∈ Rnm. For each pair (i, j) ∈ I×J , set φi,j(x, a) = ‖ai−xj‖

for every (x, a) ∈ Rnk × Rnm, where x = (x1, . . . , xk) and a =
(
a1, . . . , am

)
.

Claim 1. The function φi,j is Lipschitz on Rnk×Rnm with the Lipschitz constant√
2, i.e.,

∣∣φi,j(x̃, ã)− φi,j(x, a)
∣∣ ≤ √

2 ‖(x̃, ã)− (x, a)‖ for all (x̃, ã) and (x, a) from

Rnk × Rnm.

Indeed, to prove the desired inequality for any (x̃, ã), (x, a) ∈ Rnk × Rnm, it
suffices to use the Cauchy–Schwarz inequality and notice that∣∣φi,j(x̃, ã)− φi,j(x, a)

∣∣ =
∣∣‖ãi − x̃j‖ − ‖ai − xj‖

∣∣
≤ ‖(ãi − x̃j)− (ai − xj)‖
≤ 1.‖ãi − ai‖+ 1.‖x̃j − xj‖

≤ (1 + 1)1/2
(
‖ãi − ai‖2 + ‖x̃j − xj‖2

)1/2
≤

√
2 ‖(x̃, ã)− (x, a)‖.

Claim 2. If φ1, . . . , φs : Rr → R are Lipschitz functions with the Lipschitz
constants ℓ1, . . . , ℓs, then φ(z) := minp∈P φp(z) for z ∈ Rr with P := {1, . . . , s} is a
Lipschitz function on Rr with the Lipschitz constant ℓ := maxp∈P ℓp.

This standard fact can be proved easily if one puts P (z) =
{
p ∈ P | φp(z) = φ(z)

}
and observes that the following holds for any z̃, z ∈ Rr and p̄ ∈ P (z):

φ(z̃)− φ(z) = (minp∈P φp(z̃))− φp̄(z) ≤ φp̄(z̃)− φp̄(z)
≤ ℓp̄‖z̃ − z‖
≤ ℓ‖z̃ − z‖.

Indeed, changing the roles of z̃ and z, one gets φ(z) − φ(z̃) ≤ ℓ‖z − z̃‖. Hence,
|φ(z̃)− φ(z)| ≤ ℓ‖z̃ − z‖.
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Applying Claim 1 with Claim 2 to the function f(x, a) in (3.1) yields the next
result.

Claim 3. The objective function f(x, a) =
∑

i∈I
(
si minj∈J ‖ai − xj‖

)
of the

optimization problem in (3.1) is Lipschitz on Rnk×Rnm with the Lipschitz constant
ℓ0 :=

√
2
(∑

i∈I si
)
.

Let ā =
(
ā1, . . . , ām

)
∈ Rnm be such that āi 6= āp for any i, p ∈ I with i 6= p.

Clearly, there exists a neighborhood U of ā in Rnm with the property that for every
a =

(
a1, . . . , am

)
∈ U we have ai 6= ap for any i, p ∈ I with i 6= p. Hence, for each

a =
(
a1, . . . , am

)
∈ U , by [7, Theorem 3.7] we can infer that if x = (x1, . . . , xk) ∈

S(a) then xj ∈ coA for all j ∈ J , where A := {a1, . . . , am}. In other words,

(3.2) S(a) ⊂ (coA)k ∀a ∈ U.

Moreover, by [7, Theorem 3.3], S(a) is nonempty. Therefore, from (3.1) and (3.2)
we can deduce that

(3.3) v(a) = min
{
f(x, a) | x ∈ (coA)k

}
∀a ∈ U.

Claim 4. For any ã =
(
ã1, . . . , ãm

)
and a =

(
a1, . . . , am

)
from Rnm, one has

(3.4) co Ã ⊂ coA+
(
‖ã1 − a1‖+ · · ·+ ‖ãm − am‖

)
B̄Rn

with Ã := {ã1, . . . , ãm} and B̄Rn denoting the closed unit ball in Rn.

To justify the claim, take any x̃ ∈ co Ã. Let λ1 ≥ 0, . . . , λm ≥ 0 be such that∑m
i=1 λi = 1 and x̃ =

∑m
i=1 λiã

i. Setting x =
∑m

i=1 λia
i, we have x ∈ coA. Since

‖x̃− x‖ =
∥∥∥∑m

i=1 λiã
i −
∑m

i=1 λia
i
∥∥∥ =

∥∥∥∑m
i=1 λi(ã

i − ai)
∥∥∥

≤
∑m

i=1

∥∥λi(ã
i − ai)

∥∥
≤

∑m
i=1

∥∥ãi − ai
∥∥.

So, x̃ belongs to the right-hand side of (3.4). This establishes (3.4).
The above preparations allow us to show that the optimal value function v(.) is

Lipschitz on the chosen neighborhood U of ā, hence completing the proof of the
theorem. Let ã, a ∈ U be given arbitrarily. Select a point x̃ = (x̃1, . . . , x̃k) from

S(ã). For each j ∈ J , since x̃j ∈ co Ã (see [7, Theorem 3.7]), by (3.4) we can find
some xj ∈ coA and vj ∈ B̄Rn such that

(3.5) x̃j = xj +
(
‖ã1 − a1‖+ · · ·+ ‖ãm − am‖

)
vj .

By the Cauchy–Schwarz inequality, one has

‖ã1 − a1‖+ · · ·+ ‖ãm − am‖ ≤
√
m
(
‖ã1 − a1‖2 + · · ·+ ‖ãm − am‖2

)1/2
=

√
m ‖ã− a‖.

Therefore, (3.5) yields

(3.6)
∥∥x̃j − xj

∥∥ ≤
√
m ‖ã− a‖ (∀j ∈ J).

Setting x = (x1, . . . , xk), from (3.6) we get

(3.7) ‖x̃− x‖2 = ‖x̃1 − x1‖2 + . . .+ ‖x̃k − xk‖2 ≤ km‖ã− a‖2.
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Since x = (x1, . . . , xk) ∈ (coA)k, we see that x is a feasible point of the constrained
optimization problem

min
{
f(u, a) | u ∈ (coA)k

}
.

Hence, from (3.3) it follows that v(a) ≤ f(x, a). So, using Claim 3 and (3.7) we
have

v(ã)− v(a) = f(x̃, ã)− v(a) ≥ f(x̃, ã)− f(x, a)
≥ −ℓ0‖(x̃, ã)− (x, a)‖
= −ℓ0

(
‖x̃− x‖2 + ‖ã− a‖2

)1/2
≥ −ℓ0

(
km ‖ã− a‖2 + ‖ã− a‖2

)1/2
= −ℓ0

√
km+ 1 ‖ã− a‖,

where ℓ0 =
√
2
(∑

i∈I si
)
. It follows that v(a) − v(ã) ≤ ℓ0

√
km+ 1 ‖ã − a‖. By

symmetry, one has v(ã)− v(a) ≤ ℓ0
√
km+ 1 ‖a− ã‖. Therefore,

|v(ã)− v(a)| ≤ ℓ0
√
km+ 1 ‖ã− a‖ ∀ ã, a ∈ U.

Since one has ℓ0
√
km+ 1 =

√
2(km+ 1)

(∑
i∈I si

)
, this completes the proof of the

theorem. □

Slightly modifying the proof of Theorem 3.1, we can obtain the next result on the
global Lipschitz continuity of the optimal value function of the single-source Weber
problem when the data points are subject to perturbations.

Theorem 3.2. The optimal value function v(.) of the single-source Weber prob-

lem (2.2) is Lipschitz on Rnm with the Lipschitz constant
√
2(m+ 1)

(∑
i∈I si

)
,

i.e.,

|v(ã)− v(a)| ≤
√

2(m+ 1)
(∑

i∈I
si

)
‖ã− a‖

for all ã, a ∈ Rnm. In particular, the function v(.) is continuous on Rnm.

Proof. Note that the single-source Weber problem (2.2) is the same as the convex
optimization problem (3.2) in [7]. Hence, the arguments given in the proof of
Theorem 3.7 in that paper assure that, if x ∈ S(a) with a =

(
a1, . . . , am

)
∈ Rnm

and S(a) standing for the solution set of (2.2), then x ∈ coA with A := {a1, . . . , am}.
So,

(3.8) S(a) ⊂ coA ∀a ∈ Rnm.

For problem (2.2), we have

(3.9) v(a) = min
{
f(x, a) =

∑
i∈I

si‖ai − x‖ | x ∈ Rn
}
.

Clearly, combining (3.9) with (3.8) yields

(3.10) v(a) = min {f(x, a) | x ∈ coA} ∀a ∈ Rnm.

Using (3.10) instead of (3.3) and repeating the arguments of the preceding proof,
we obtain the desired result. □
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4. Upper Semicontinuity of the Map S(.)

The subject of our study in this section is the global solution map S : Rnm ⇒ Rnk

of (2.1), which assigns every data point a =
(
a1, . . . , am

)
∈ Rnm to the global

solution set S(a).

Theorem 4.1. The global solution map S of (2.1) is upper semicontinuous at every
point ā =

(
ā1, . . . , ām

)
∈ Rnm satisfying the condition āi 6= āp for any i, p ∈ I with

i 6= p.

Proof. Let ā =
(
ā1, . . . , ām

)
∈ Rnm be such that āi 6= āp for any i, p ∈ I with

i 6= p. Choose ρ > 0 to be sufficiently small such that for every a =
(
a1, . . . , am

)
∈∏

i∈I B̄(āi, ρ), one has ai 6= ap for any i, p ∈ I with i 6= p.
Suppose on the contrary that S is not upper semicontinuous at ā. Then one can

find an open set V in Rnk such that

(4.1)

{
S(ā) ⊂ V and for any neighborhood U of ā in Rnm

there exists a point a ∈ U satisfying S(a) \ V 6= ∅.

Set Q =
[
co
(⋃

i∈I B̄(āi, ρ)
)]k

, then observe by [20, Corollary 1.9] (see also [15,
Corollary 5.7]) and the Tychonoff Theorem (see, e.g., [9, Theorem 13, Chap. 5]
and [24, Theorem 17.8]) that Q is a compact set in Rnk.

Claim 5. For every a ∈
∏

i∈I B̄(āi, ρ), it holds that

(4.2) S(a) ⊂ Q.

Indeed, for any a ∈
∏

i∈I B̄(āi, ρ), since ai 6= ap for any i, p ∈ I such that

i 6= p, by [7, Theorem 3.7] we get S(a) ⊂ (coA)k with A := {a1, . . . , am}. So, to
obtain (4.2), it suffices to prove that

(4.3) (coA)k ⊂ Q.

Let x = (x1, . . . , xk) ∈ (coA)k be given arbitrarily. For each j ∈ J , we choose

λj
1 ≥ 0, . . . , λj

m ≥ 0 such that
∑

i∈I λ
j
i = 1 and xj =

∑
i∈I λ

j
ia

i. As ai ∈ B̄(āi, ρ) for

all i ∈ I, we have xj ∈ co
(⋃

i∈I B̄(āi, ρ)
)
for every j ∈ J . Therefore,

x = (x1, . . . , xm) ∈

[
co

(⋃
i∈I

B̄(āi, ρ)

)]k
= Q.

This justifies (4.3).
Choose ℓ̄ ∈ N to be sufficiently large such that ℓ̄−1 < ρ. For every ℓ ∈ N with ℓ ≥

ℓ̄, let us set U =
∏

i∈I B
(
āi, 1ℓ

)
and apply (4.1) to find a point a[ℓ] ∈

∏
i∈I B

(
āi, 1ℓ

)
and a point

(4.4) x[ℓ] ∈ S(a[ℓ]) \ V.

Since

a[ℓ] ∈
∏
i∈I

B
(
āi, ℓ−1

)
⊂
∏
i∈I

B̄(āi, ρ)
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for all ℓ ≥ ℓ̄, by (4.2) we have x[ℓ] ∈ Q for all ℓ ≥ ℓ̄. By the compactness of Q,

there exists a subsequence
{
x[ℓ′]

}
of
{
x[ℓ]
}
ℓ≥ℓ̄

such that
{
x[ℓ′]

}
converges to a point

x̄ ∈ Q.

Claim 6. One has

(4.5) x̄ ∈ S(ā).

To obtain (4.5), we deduce from (4.4) that f
(
x[ℓ′], a[ℓ′]

)
= v

(
a[ℓ′]
)
. Passing this

equality to the limit as ℓ′ → ∞ and using Theorem 3.1 give f(x̄, ā) = v(ā). Thus
x̄ ∈ S(ā).

Since
{
x[ℓ′]

}
⊂ Rnk \ V , by the openness of V , we must have x̄ ∈ Rnk \ V . This

contradicts (4.5) and the inclusion in the first line of (4.1).
The proof is complete. □

In connection with Theorem 4.1, the following natural question arises: Whether
the global solution map S of (2.1) can possess some lower semicontinuity or inner
semicontinuity properties, or not? The next example shows that, even if āi 6= āp

for any i, p ∈ I with i 6= p, there may exist some x̄ ∈ S(ā) such that S is not
inner semicontinuous at (ā, x̄) with ā :=

(
ā1, . . . , ām

)
∈ Rnm. Hence, according to

Definition 2.5 and the subsequent observation, the solution map in question is not
lower semicontinuous at ā.

Example 4.2. Let n = 2,m = 3, k = 2, s1 = s2 = s3 = 1, and ā1 = (0, 0), ā2 =
(1, 0), ā3 = (0, 1), and ā =

(
ā1, ā2, ā3

)
. By [7, Example 3.9] we know that

S(ā) =
([

ā1, ā2
]
× {ā3}

)
∪
(
{ā2} ×

[
ā1, ā3

])
(up to permutations of the coordinates of every x̄ = (x̄1, x̄2) ∈ S(ā); see Re-
mark 2.4)) and v(ā) = 1. Choose x̄ = (x̄1, ā3) ∈ S(ā) with x̄1 := (12 , 0). Let a

1 = ā1,

a2 = ā2, a3 = a3(ε), and a(ε) = (a1, a2, a3(ε), where a3(ε) := (1 − ε)ā3 + εā3 with
ε ∈ (0, 12). Then, using Proposition 3.5(a) and Theorem 3.8 in [7], we can show that

S(a(ε)) = {ā2} ×
[
ā1, ā3(ε)

]
∀ε ∈

(
0,

1

2

)
(up to permutations). Hence, for the neighborhood V := B(x̄1, 14) × B(ā3, 14) of

x̄ ∈ R4, one has S(a(ε)) ∩ V = ∅ for all ε ∈
(
0, 12
)
. Since limε→0+ a(ε) = ā, there

does not exist any neighborhood U of ā such that S(a) ∩ V 6= ∅ for every a ∈ U .
By Definition 2.5(d), S is not inner semicontinuous at (ā, x̄). This implies that S is
not lower semicontinuous at ā.

The above method for proving Theorem 4.1 does not work if the assumption
āi 6= āp for any i, p ∈ I with i 6= p is violated. The reason is that the global solution
S(ā) can be unbounded then. To justify this remark, let us consider the following
example.

Example 4.3. Choose n = 2, m = 3, k = 3, and s1 = s2 = s3 = 1. Let ā1 = ā2

and ā3 6= ā1 be the given demand points. Put ā =
(
ā1, ā2, ā3

)
. Note that

S(ā) =
{
x̄ =

(
x̄1, x̄2, x̄3

)
| x̄1 = ā1, x̄2 = ā3, x̄3 ∈ R2

}
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(up to permutations of the coordinates of x̄) and v(ā) = 0. Clearly, S(ā) is un-
bounded.

For the single-source Weber problem, we now obtain an analogue of Theorem 4.1
without the requirement āi 6= āp for any i, p ∈ I with i 6= p.

Theorem 4.4. The global solution map S of (2.2) is upper semicontinuous at every
point ā =

(
ā1, . . . , ām

)
∈ Rnm.

Proof. To obtain a contradiction, suppose that S is not upper semicontinuous at ā.
Then one can find an open set V in Rn such that (4.1) holds.

Set Q1 = co
(⋃

i∈I B̄(āi, 1)
)
and observe by [20, Corollary 1.9] (see also [15,

Corollary 5.7]) that Q1 is a compact set in Rn.

Claim 7. For every a ∈
∏

i∈I B̄(āi, 1), it holds that

(4.6) S(a) ⊂ Q1.

Indeed, the inclusion (3.8), where A := {a1, . . . , am}, is valid for any

a =
(
a1, . . . , am

)
∈
∏
i∈I

B̄(āi, 1)

(see the proof of Theorem 3.2). Since coA ⊂ co
(⋃

i∈I B̄(āi, 1)
)
, the inclusion (4.6)

follows from (3.8).
For every ℓ ∈ N, setting U =

∏
i∈I B

(
āi, 1ℓ

)
and applying (4.1), we can get a

point a[ℓ] ∈
∏

i∈I B
(
āi, 1ℓ

)
and a point x[ℓ] ∈ S(a[ℓ]) \ V . As

a[ℓ] ∈
∏
i∈I

B
(
āi, ℓ−1

)
⊂
∏
i∈I

B̄(āi, 1),

by (4.6) we have x[ℓ] ∈ Q1 for all ℓ. By the compactness of Q1, there is a subsequence{
x[ℓ′]

}
of
{
x[ℓ]
}
that converges to a point x̄ ∈ Q1.

Since x[ℓ′] ∈ S(a[ℓ′]), one has f
(
x[k′], a[k′]

)
= v

(
a[k′]

)
. Letting ℓ′ → ∞ and using

Theorem 3.2, from the last equality we obtain f(x̄, ā) = v(ā). Hence x̄ ∈ S(ā).
Since

{
x[ℓ′]

}
⊂ Rn \ V , by the openness of V , we must have x̄ ∈ Rn \ V . This

contradicts the property x̄ ∈ S(ā) and the inclusion in the first line of (4.1).
The proof is complete. □

Let us show by an example that the global solution map S of (2.2) may not be in-
ner semicontinuous at a point in its graph. Hence, it cannot be lower semicontinuous
at a point in its effective domain.

Example 4.5. Consider the single-source Weber problem (2.2) with n = 2, m = 4,
s1 = s2 = s3 = s4 = 1, and demand points ā1, . . . , ā4 having zero ordinates such
that āi = (1 − τi)ā

3 + τiā
4, τi ∈ (0, 1) for i = 1, 2, and τ1 < τ2. Note that the

chosen demand points are pairwise distinct. Set ā =
(
ā1, . . . , ā4

)
and note that

S(ā) = [ā1, ā2]. For every ε ∈ (0, 12), put

a1(ε) = ā1 + (0, ε), a2(ε) = ā2 − (0, ε), a3(ε) = ā3, a4(ε) = ā4,

and a(ε) =
(
a1(ε), a2(ε), a3(ε), a4(ε)

)
. Since there exist at least three points in the

set {a1(ε), a2(ε), a3(ε), a4(ε)} which are not colinear (i.e., there is no straight line
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containing all the three chosen points), by the proof of [12, Lemma 1.1] (see also [15,
Proposition 8.2]) we know that the objective function of (2.2) with a(ε) taking the
role of a is strictly convex. Thus, by [7, Theorem 3.3] (see also [15, Proposition 8.1]),
this single-source Weber problem has a unique solution, which is denoted ū(ε). By
the well-known necessary and optimality condition in convex programming, ū(ε) is
the unique solution of the inclusion 0 ∈ ∂xf(·, a(ε))(ū(ε)) with ∂xf(·, a(ε))(ū(ε))
denoting the subdiferential of the convex function f(·, a(ε)) at ū(ε). As noted in
the proof of [7, Theorem 3.7], if ū(ε) /∈ {a1(ε), a2(ε), a3(ε), a4(ε)}, then the inclusion
0 ∈ ∂xf(·, a(ε))(ū(ε)) can be rewritten equivalently as

(4.7)
4∑

i=1

‖ū(ε)− ai(ε)‖−1‖ū(ε)− ai(ε)‖ = 0.

Put ū = 1
2(ā

1 + ā2) and observe that ū /∈ {a1(ε), a2(ε), a3(ε), a4(ε)}. It is easy to
check that

‖ū− a1(ε)‖−1‖ū− a1(ε)‖+ ‖ū− a2(ε)‖−1‖ū− a2(ε)‖ = 0

and
‖ū− a3(ε)‖−1‖ū− a3(ε)‖+ ‖ū− a4(ε)‖−1‖ū− a4(ε)‖ = 0.

Hence, ū(ε) := ū is the unique solution of (4.7). Therefore, S(a(ε)) = {ū} for every
ε ∈ (0, 12). Choose x̄ = ā1 and put V = B(x̄, ρ), where ρ ∈

(
0, 12‖a

2 − ā1‖
)
can be

taken arbitrarily. Observe that x̄ ∈ S(ā) and S(a(ε))∩V = ∅ for all ε ∈ (0, 12). Since
limε→0+ a(ε) = ā, one cannot find any neighborhood U of ā such that S(a)∩ V 6= ∅
for every a ∈ U . By Definition 2.5(d), S is not inner semicontinuous at (ā, x̄). As a
consequence, S is not lower semicontinuous at ā.

5. Inner semicontinuity of the map S1(.)

In this section, we are interested to know what properties the map S1 : Rnm ⇒
Rnk, which puts every data point a =

(
a1, . . . , am

)
∈ Rnm of (2.1) in correspondence

with the local solution set S1(a), may have.

Theorem 5.1. Suppose that (ā, x̄) ∈ gphS1, where ā =
(
ā1, . . . , ām

)
∈ Rnm is such

that āi 6= āp for any i, p ∈ I with i 6= p. Let x̄ = (x̄1, . . . , x̄k), Ā = {ā1, . . . , ām},
J1 = {j′ ∈ J | Ā[x̄j

′
] 6= ∅} with Ā[x̄j

′
] being the attraction set of x̄j

′
with respect to

the data set Ā, and the following conditions be satisfied:

(i) x̄j1 6= x̄j2 whenever j1, j2 ∈ J and j1 6= j2;
(ii) x̄j /∈ Ā for all j ∈ J ;
(iii) For each j1 ∈ J1, the data points from Ā[x̄j1 ] are not colinear, i.e., they do

not belong to the same line.

Then, the local solution map S1 of (2.1) is inner semicontinuous at (ā, x̄).

Proof. By our assumptions, āi 6= āp for any i, p ∈ I with i 6= p. Then, there exists
ρ > 0 such that for each a =

(
a1, . . . , am

)
∈
∏

i∈I B̄(āi, ρ) one has ai 6= ap for any
i, p ∈ I with i 6= p.

To prove that S1 is inner semicontinuous at (ā, x̄), given any ε > 0, we need to
show the existence of a neighborhood U of ā in Rnm having the following property:

(5.1) S1(a) ∩ V 6= ∅ (∀a ∈ U)
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with V :=
∏

j∈J B(x̄j , ε).

First, observe by the assumption (i) that x̄ is a nontrivial local solution of (2.1),
where ā plays the role of a, in the meaning of [8, Definition 3.3]. Since x̄j /∈ Ā for
all j ∈ J thanks to the assumption (ii), by [8, Theorem 3.5] we obtain the following
three properties:

(a) For every i ∈ I, the index set

Ji(x̄) :=
{
j ∈ J | āi ∈ Ā[x̄j ]

}
is a singleton.

(b) For every j ∈ J , if Ā[x̄j ] is nonempty, then x̄j is a solution of the single-
source Weber problem defined by the data set Ā[x̄j ].

(c) For every j ∈ J , if Ā[x̄j ] empty, then one has

(5.2) x̄j /∈ Ā[x̄],

where Ā[x̄] is the union of closed balls B̄(āp, ‖āp− x̄q‖) with p ∈ I and q ∈ J
satisfying p ∈ I(q), where I(q) :=

{
i ∈ I | āi ∈ Ā[x̄q]

}
.

By (a), for every i ∈ I there is a unique index j(i) ∈ J such that Ji(x̄) = {j(i)}.
Moreover, by (a) we have

(5.3) ‖āi − x̄j(i)‖ < ‖āi − x̄j
′‖ (∀j′ ∈ J \ {j(i)}).

Since all the inequalities in (5.3) are strict, there exists a constant δ1 ∈ (0, ε) such
that for any a ∈

∏
i∈I B(āi, δ1) and for any x ∈

∏
j∈J B(x̄j , δ1) the next property

holds:

(5.4) ‖ai − xj(i)‖ < ‖ai − xj
′‖ (∀j′ ∈ J \ {j(i)}).

Furthermore, the property (b) implies that for every j1 ∈ J1, the facility x̄j1 is a
solution of the single-source Weber problem defined by the data set Ā[x̄j1 ]. As the
latter set is not colinear, this single-source Weber problem has a unique solution
(see, e.g., [16, Proposition 8.2]).

Recall that the sets I(q) for q ∈ J have been defined in (c). Since

J1 = {j′ ∈ J | Ā[x̄j
′
] 6= ∅},

by the above property (a) we can infer that the nonempty sets I(j1), j1 ∈ J1, are
pairwise disjoint and I is the union of these sets. By the assumption (iii), for each
j1 ∈ J1, the data points {āi | i ∈ I(j1)} are not colinear. So, one can find a constant
δ2 ∈ (0, δ1) such that, for every a ∈

∏
i∈I B(āi, δ2), the data points {ai | i ∈ I(j1)}

are not colinear for all j1 ∈ J1. Hence, for every a ∈
∏

i∈I B(āi, δ2), the single-

source Weber problem with the data set {ai | i ∈ I(j1)} has a unique solution,
which is denoted by xj1(a). By Theorem 4.4 we know that, for each j1 ∈ J1, the
single-valued mapping

xj1(·) :
∏
i∈I

B(āi, δ2) → Rn, a 7→ xj1(a),

is continuous.
Put J2 = J \ J1 and observe by the property (c) that (5.2) holds for all j ∈ J2.

Since Ā[x̄] is a nonempty compact set, there exists ρ > 0 such that B(x̄j , ρ)∩Ā[x̄] =
∅ for all j ∈ J2.



THE MULTI-SOURCE WEBER PROBLEM 2945

Let xj(a)= x̄j for all a ∈
∏

i∈I B(āi, δ2) and j ∈ J2. Put x(a)=(x1(a), . . . , xk(a)),

where the functions xj(.) with j ∈ J1 have been defined above. By the continuity
of the function

x(·) :
∏
i∈I

B(āi, δ2) → Rnk, a 7→ x(a),

we can find δ3 ∈ (0, δ2) such that x(a) ∈
∏

j∈J B(x̄j , δ1) for every a ∈
∏

i∈I B(āi, δ3).

Therefore, from (5.4) we can deduce for each a ∈
∏

i∈I B(āi, δ3) that

(5.5) ‖ai − xj(i)(a)‖ < ‖ai − xj
′
(a)‖ (∀j′ ∈ J \ {j(i)}).

Thus, for each a ∈
∏

i∈I B(āi, δ3), the property (5.5) implies that the attraction

set A[xj(a)] of xj(a) with respect to the data set A := {a1, . . . , am} is nonempty
for every j ∈ J1, while A[xj(a)] is empty for every j ∈ J2. Moreover, the facilities
system {x1(a), . . . , xk(a)} has the following properties:

(a’) For every i ∈ I, the index set Ji(x(a)) :=
{
j ∈ J | ai ∈ A[xj(a)]

}
is a

singleton.
(b’) For every j ∈ J1, xj(a) is a solution of the single-source Weber problem

defined by the data set A[xj(a)].
(c’) For every j ∈ J2, one has xj(a) /∈ A[x(a)], where A[x(a)] is the union of

closed balls B̄(ap, ‖ap−xq‖) with p ∈ I and q ∈ J satisfying p ∈ I(q), where

I(q) :=
{
i ∈ I | ai ∈ A[xq(a)]

}
.

Therefore, applying the sufficient conditions for nontrivial local solutions of the
multi-source Weber problem given in [8, Theorem 3.7] shows that x(a) ∈ S1(a)
for each a ∈

∏
i∈I B(āi, δ3). Since δ1 ∈ (0, ε) and x(a) ∈

∏
j∈J B(x̄j , δ1) for every

a ∈
∏

i∈I B(āi, δ3), choosing U =
∏

i∈I B(āi, δ3), we get (5.1).
The proof is complete. □

6. Conclusions

Stability analysis of the multi-source Weber problem has been considered in detail
for the first time in this paper. Allowing the data set to change, we have obtained
sufficient conditions for the locally Lipschitz continuity of the optimal value func-
tion, the upper semicontinuity of the global solution map, as well as the inner
semicontinuity of the local solution map.

For further investigations, the following questions seem to be interesting.

(Q1) Whether the assumption āi 6= āp for any i, p ∈ I with i 6= p in Theo-
rems 3.1, 4.1 and 5.1 is redundant, i.e., there exist other proofs of the results
not relying on the condition?

(Q2) Is the assumption (ii) in Theorem 5.1 essential for the validity of the theo-
rem?
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