


2914 P. N. ANH, A. GIBALI, AND N. D. TRUONG

convex subset of H and Fix(Si) = C for all i ∈ I. Problem V I(Ω, F ) is equivalent
to the variational inequality problem:

Find x∗ ∈ C such that ⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

3. Common Fixed Point Problem. Let F (x) = 0. The following problem is called
the common fixed point problem (CFPP):

Find x∗ ∈ Fix(Si), ∀i ∈ I.

We can easily see that the problem (CFPP) becomes a case of V I(Ω, F ).
Clearly Problem 1 is a generalization of the classical variational inequality prob-

lem in which the feasible set Ω is not given explicitly, and thus, standard fixed
point/projection methods cannot be applied directly. In [21], Yamada introduced
the following cyclic procedure:

(1.1) xk+1 = S[k+1](x
k)− λk+1µF (S[k+1](x

k)), k ≥ 0,

where {λk}k∈N and µ are parameters fulfilling certain conditions and S[k] := Skmodn

for k ∈ N with the mod function. Inspired by (1.1), many iterative methods for
solving VI(Ω, F ) have been developed, see for example [8, 20,23].

As seen above, a differentiable convex minimization problem is a special case
of Problem 1, but in many applications the objective function is the sum of two
functions, not necessarily differentiable and thus direct translation to Problem 1 is
not obvious. Due to this reason we recall the next problem 2 and its relationship
to Problem 1.

Problem 2. Let f1 : Rs → R be a convex and differentiable function with
a L−Lipchitz continuous gradient ∇f1 and f2 : Rs → R a proper lower semi-
continuous and convex function. With this data the convex minimization problem
is formulated as

min{f1(x) + f2(x) : x ∈ Rs}.

Clearly when f2 is differentiable, one can see that Problem 2 is equivalent to Problem
V I(C,F ) with F := ∇f1 +∇f2 and C := Rs.

Combettes and Wajs [7] showed that a solution of Problem 2 is characterized by
the fixed point of the proximity operator:

Sλ(x) = x− proxλf2Rs (Id− λ∇f1)(x),

where Id is the identity mapping and prox is the proximity operator that is defined
in the next section.

Returning to the general Problem 2, the Forward-Backward Splitting Algorithm
(shortly FBSA) of Lions and Mercier [13] is a classical method for solving Problem
2. Choose arbitrary starting point x0 ∈ Rs and λk ∈ (0, 2/L). The algorithm
generates a sequence {xk} according the following rule:

(1.2) xk+1 = Sλk
(xk), ∀k ≥ 0.
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For solving Problem 2, Beck and Teboulle [5] introduced the following Fast Iterative
Shrinkage-Thresholding Algorithm (shortly FISTA):

(1.3)


x0 = y0 ∈ Rs, t0 = 1,

yk = S 1
L
(xk),

tk+1 =
1+
√

1+4t2k
2 , θk = tk−1

tk+1
,

xk+1 = yk + θk(y
k − yk−1), k ≥ 0.

Problem 2 received a lot of attention and many iterative methods are introduced
for solving it, for example, iterative denoising method of Figueiredo and Nowak [10],
fixed point continuation algorithm of Hale et al. [11], improved FISTA of Liang
et al. [14], Fast Viscosity Forward-Backward Algorithm (FVFBA) [12], viscosity
approximation method [19].

Motivated and inspired by the above algorithms, as well as the proximal pro-
jection method [4, 9], the parallel techniques [3] and the inertial proximal ap-
proach [6], for solving Problems 1 and 2, the purpose of this paper is two-fold.
First, we present a new strong convergence algorithm for solving Problem 1 in a
real Hilbert spaces. One of the main theoretical and practical advantage of our
proposed method, compared with other related algorithms, is that there is no need
to compute/approximate any metric projection onto the VI’s feasible set Ω, espe-
cially since such task might be computationally expansive due to the structure of
Ω. Second, by using the properties of the proximal operator we apply our proposed
method to the image restoration problem (4.1) reformulated as Problem 2.

The outline of the paper is as follows. In Section 2 we recall some useful def-
initions, notations and results. The new algorithm and its analysis are presented
in Section 3 and then in Section 4, numerical testings are presented including
application to image recovery problem.

2. Preliminaries

As before, H is a real Hilbert space and C ⊆ H nonempty, closed and convex set.

Definition 2.1. Given a mapping T : H → H.

(1) T is called β-strongly monotone on C with constant β > 0, if

⟨T (x)− T (y), x− y⟩ ≥ β∥y − x∥2, ∀x, y ∈ C.

(2) T is called L-Lipschitz continuous on C with constant L > 0, if

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ C.

It is called nonexpansive if it is 1-Lipschitz.
(3) T is called quasi-nonexpansive on H, if

∥T (x)− x̂∥ ≤ ∥x− x̂∥, ∀(x, x̂) ∈ H× Fix(T ).

(4) T is called firmly nonexpansive, that is, for all x, y ∈ H,

⟨T (x)− T (y), x− y⟩ ≥ ∥T (x)− T (y)∥2.
(5) T is called τ−strictly pseudocontractive on H, where τ ∈ [0, 1), if

∥T (x)− T (y)∥2 ≤ ∥x− y∥2 + τ∥(x− y)− [T (x)− T (y)]∥2, ∀x, y ∈ H.
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(6) T is called β−demicontractive on H where β ∈ [0, 1), if

∥T (x)− x̂∥2 ≤ ∥x− x̂∥2 + β∥x− T (x)∥2, ∀(x, x̂) ∈ H× Fix(T ).

(7) T is called demiclosed at zero, if {xk} weakly converges to x̄ and {(I −
T )(xk)} strongly converges to 0, then x̄ ∈ Fix(T ).

Let f : H → R ∪ {+∞} be a convex function. The function f is called proper if
its effective domain D(f) := {x ∈ H : f(x) < +∞} ̸= ∅. f is lower semicontinuous
at x0 ∈ D(f) if f(x0) ≤ lim infx→x0 f(x). It is called lower semicontinuous if it is
lower semicontinuous at every x0 ∈ D(f). The subdifferential ∂f of a proper convex
function f at x ∈ H is defined by

∂f(x) := {z ∈ H : f(x) + ⟨z, y − x⟩ ≤ f(y), ∀y ∈ H}.

The following lemmas are useful for our algorithm’s analysis.

Lemma 2.2. Let C be a nonempty, closed and convex subset of H, f : C → R
be proper, convex and lower semicontinuous function. The proximity operator of f
with γ ∈ R is defined as

proxfC(x) := argminy∈C

{
f(y) +

1

2γ
∥x− y∥2

}
.

Now for any x, y ∈ C, the following are equivalent.

(a) u = proxfC(x);
(b) x− u ∈ ∂f(u);
(c) ⟨x− u, y − u⟩ ≤ f(y)− f(u), ∀y ∈ C.

Further properties of the proximal operator of f on C are collected in the next
lemma.

Lemma 2.3. Let C be a nonempty, closed and convex subset of H, f : C → R be
proper, convex and lower semicontinuous function. Then, we have

(i) The operator proxfC is firmly nonexpansive and thus clearly nonexpansive;
(ii) For any x ∈ H and y ∈ C the following inequality holds.

∥proxfC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− proxfC(x)∥
2 − 2

[
f
(
proxfC(x)

)
− f(y)

]
.

Lemma 2.4 ([19, Lemma 2.5]). Let {sk} be a sequence of nonnegative real numbers
and {pk} a sequence of real numbers. Let {αk} be a sequence of real numbers in
(0, 1) such that

∑∞
k=1 αk = ∞. Assume that

sk+1 ≤ (1− αk)sk + αkpk, k ∈ N.

If lim supi→∞ pki ≤ 0 then limk→∞ sk = 0.

Lemma 2.5 ([15, Remark 4.2]). Let S : H → H be a β-demicontractive mapping
with Fix(S) ̸= ∅ and set Sω = (1 − ω)Id + ωS for ω ∈ (0, 1]. Then Sω is quasi-
nonexpansive if ω ∈ [0, 1− β] and

∥Sω(x)− x̄∥2 ≤ ∥x− x̄∥2 − ω(1− β − ω)∥S(x)− x∥2, ∀x̄ ∈ Fix(S), x ∈ H.
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Lemma 2.6 ([15, Remark 4.4]). Let {ak} be a sequence of nonnegative real num-
bers. Suppose that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let k0 be an integer such that ak0 ≤ ak0+1 and define, for all integer
k ≥ k0,

τ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.
Then, 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0. Furthermore, the sequence {τ(k)}k≥k0 is
nondecreasing and tends to +∞ as k → ∞.

3. Main result

In this section, we introduce a new iteration algorithm for approximating a solu-
tion of Problem 1 and prove its strong convergence. The algorithm uses a parallel
technique and combines the inertial iteration method with an explicit self adaptive
stepsize rule.

The parameters setup for the algorithm is as follows.

(3.1)


a ∈ (0, 1), {λk} ⊂ [ā, â] ⊂

(
0, 2β

L2

)
,

√
1− 2λkβ + λ2

kL
2 < 1− a,

ζk ∈ (0, 1),
∑∞

k=1 ζk = +∞, limk→∞ ζk = 0,

0 ≤ τk ≤ ζ2k , µk > 0,

γk,i ∈ (b̄, b̂) ⊂ (0, 1−max{βi : i ∈ I}), ∀i ∈ I,

The Parallel Inertial Proximal Algorithm (PIPA) is presented next.

Algorithm 3.1. Choose starting points x0, x1 ∈ H.

Step 1. Given the iterates xk−1 and xk, compute

(3.2) wk = xk + αk(x
k − xk−1),

where

(3.3) αk =

{
min

{
τk

∥xk−xk−1∥ , µk

}
, if ∥xk − xk−1∥ ̸= 0,

µk otherwise.

Step 2. Take uki = (1−γk,i)w
k+γk,iSi(w

k). Set tk := uki0, where i0 ∈ argmax{∥uki −
wk∥ : i ∈ I}.

Step 3. Compute xk+1 = (1 − ζk)t
k + ζk

[
tk − λkF (tk)

]
. Let k := k + 1 and go to

Step 1.

Note that, computing wk is used by inertial technique and tk is by parallel tech-
nique. Then, the iteration point xk+1 is based on the Mann iteration method and
the hybrid steepest-descent method. We call a point xk generated by Algorithm
3.1 ϵ−solution of Problem 1 if ∥xk+1 − xk∥ ≤ ϵ.

For the convergence of the algorithm we assume the following.

Condition 3.2. The mapping F : H → H is β−strongly monotone and L−Lipschitz
continuous.

Condition 3.3. For all i ∈ I the mappings Si : H → H are βi−demicontractive
and demiclosed at zero and the set Ω := ∩i∈IFix(Si) is nonempty.
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Theorem 3.4. Assume that Conditions 3.2 and 3.3 hold and consider the param-
eters setup ( 3.1). Then, the sequence {xk} generated by Algorithm 3.1 converges
strongly to a unique solution x∗ of Problem 1.

Proof. Since F is β−strongly monotone and L−Lipschitz continuous, we have

∥[tk − λkF (tk)]− [x∗ − λkF (x∗)]∥2 =∥tk − x∗∥2 − 2λk⟨F (tk)− F (x∗), tk − x∗⟩

+ λ2
k∥F (tk)− F (x∗)∥2

≤(1− 2λkβ + λ2
kL

2)∥tk − x∗∥2.

Consequently

(3.4) ∥[tk − λkF (tk)]− [x∗ − λkF (x∗)]∥ ≤ δk∥tk − x∗∥,

where δk :=
√

1− 2λkβ + λ2
kL

2. Since (3.2) and (3.3), for every x ∈ H we have

∥wk − x∥ =∥xk − αk(x
k − xk−1)− x∥

≤∥xk − x∥+ αk∥xk − xk−1∥

≤∥xk − x∥+ τk.(3.5)

For each x̄ ∈ Ω, it follows from Step 2 and Lemma 2.5 that

∥tk − x̄∥2 =∥uki0 − x̄∥2

=
∥∥∥(1− γk,i0)w

k + γk,i0Si0(w
k)− x̄

∥∥∥2
≤∥wk − x̄∥2 − γk,i0(1− γk,i0 − βi0)∥Si0(w

k)− wk∥2.(3.6)

Combining Step 3, (3.4), (3.5) and (3.6), we obtain

∥xk+1 − x∗∥ =
∥∥∥(1− ζk)t

k + ζk

[
tk − λkF (tk)

]
− x∗

∥∥∥
≤(1− ζk)∥tk − x∗∥+ ζk

∥∥∥[tk − λkF (tk)]− x∗]
∥∥∥

≤(1− ζk)∥tk − x∗∥+ ζk

∥∥∥[tk − λkF (tk)]− [x∗ − λkF (x∗)]
∥∥∥

+ ζkλk∥F (x∗)∥

≤[1− ζk(1− δk)]∥tk − x∗∥+ ζkλk∥F (x∗)∥

≤[1− ζk(1− δk)]
√

∥wk − x∗∥2 − γk,i0(1− γk,i0 − βi0)∥Si0(w
k)− wk∥2

+ ζkλk∥F (x∗)∥

≤[1− ζk(1− δk)]∥wk − x∗∥+ ζkλk∥F (x∗)∥

≤[1− ζk(1− δk)](∥xk − x∗∥+ τk) + ζkλk∥F (x∗)∥

=[1− ζk(1− δk)]∥xk − x∗∥+ τk[1− ζk(1− δk)] + ζkλk∥F (x∗)∥.
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Then, using the conditions a ∈ (0, 1), δk :=
√
1− 2λkβ + λ2

kL
2 < 1− a of (3.1) we

get

∥xk+1 − x∗∥ ≤[1− ζk(1− δk)]∥xk − x∗∥+ τk[1− ζk(1− δk)] + ζkλk∥F (x∗)∥

≤(1− aζk)∥xk − x∗∥+ τk(1− aζk) + ζkλk∥F (x∗)∥

≤(1− aζk)∥xk − x∗∥+ ζk [1− aζk + λk∥F (x∗)∥]

≤(1− aζk)∥xk − x∗∥+ aζk
1− aζk + λk∥F (x∗)

a

≤(1− aζk)∥xk − x∗∥+ aζkM

≤max{∥xk − x∗∥,M}
≤ · · ·
≤max{∥x0 − x∗∥,M},

where M = sup
{

1−aζk+λk∥F (x∗)
a : k = 1, 2, ...

}
< +∞ is deduced from the pa-

rameters setup (3.1). Thus, the sequence {xk} is bounded. Since the condition
limk→∞ τk = 0, (3.5) and (3.6), we deduce that both sequences {wk} and {tk} are
also bounded. Applying the inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H,

for x := [tk − λkF (tk)]− [x∗ − λkF (x∗)] and y := −λkF (x∗), we obtain

∥xk+1 − x∗∥2 =
∥∥∥(1− ζk)(t

k − x∗) + ζk

[
tk − λkF (tk)− x∗

]∥∥∥2
≤(1− ζk)∥tk − x∗∥2 + ζk

∥∥∥tk − λkF (tk)− x∗
∥∥∥2

=(1− ζk)∥tk

− x∗∥2 + ζk

∥∥∥[tk − λkF (tk)− (x∗ − λkF (x∗))]− λkF (x∗)
∥∥∥2

≤(1− ζk)∥tk − x∗∥2 + ζk

∥∥∥[tk − λkF (tk)]− [x∗ − λkF (x∗)]
∥∥∥2

− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(1− δ2k)]∥tk − x∗∥2 − 2ζkλk⟨F (x∗), xk+1 − x∗⟩(3.7)
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Combining (3.5), (3.6) and (3.7), we obtain

∥xk+1 − x∗∥2 ≤[1− ζk(1− δ2k)]∥tk − x∗∥2 − 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(1− δ2k)]
[
∥wk − x̄∥2 − γk,i0(1− γk,i0 − βi0)∥Si0(w

k)− wk∥2
]

− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(2λkβ − λ2
kL

2)]
[ (

∥xk − x∗∥+ αk∥xk − xk−1∥
)2

− γk,i0(1− γk,i0 − βi0)∥Si0(w
k)− wk∥2

]
− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(2λkβ − λ2
kL

2)]
[ (

∥xk − x∗∥+ τk

)2

− γk,i0(1− γk,i0 − βi0)∥Si0w
k − wk∥2

]
− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(2λkβ − λ2
kL

2)]
[ (

∥xk − x∗∥+ ζ2k

)2

− γk,i0(1− γk,i0 − βi0)∥Si0(w
k)− wk∥2

]
− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

=[1− ζk(2λkβ − λ2
kL

2)]
[ (

∥xk − x∗∥2 + 2ζ2k∥xk − x∗∥+ ζ4k

)
− γk,i0(1− γk,i0 − βi0)∥Si0(w

k)− wk∥2
]
− 2ζkλk⟨F (x∗), xk+1 − x∗⟩

≤[1− ζk(2λkβ − λ2
kL

2)]∥xk − x∗∥2 + ζk(2λkβ − λ2
kL

2)Γk

− γk,i0(1− γk,i0 − βi0)[1− ζk(2λkβ − λ2
kL

2)]∥Si0(w
k)− wk∥2,(3.8)

where

Γk :=
ζk[1− ζk(2λkβ − λ2

kL
2)]

(
2∥xk − x∗∥+ ζ2k

)
λk(2β − λkL2)

− 2⟨F (x∗), xk+1 − x∗⟩
2β − λkL2

.

Since {xk} is bounded and (3.1), we have Γ := sup{Γk : k = 1, 2, ...} < +∞.
Consequently

∥xk+1 − x∗∥2 ≤[1− ζk(2λkβ − λ2
kL

2)]∥xk − x∗∥2 + ζk(2λkβ − λ2
kL

2)Γ

− γk,i0(1− γk,i0 − βi0)[1− ζk(2λkβ − λ2
kL

2)]∥Si0(w
k)− wk∥2.(3.9)

Set ak := ∥xk − x∗∥2. Let us consider two following cases.
Case 1. There exists k0 such that ak+1 ≤ ak for all k ≥ k0. Then, limk→∞ ak =

A < +∞. Passing the limit (3.9) as k → ∞, using limk→∞ ζk = 0 and the conditions

(3.1), we obtain limk→∞ ∥Si0(w
k) − wk∥ = 0. From the condition γk,i ∈ (b̄, b̂) ⊂

(0, 1−min{βi : i ∈ I}) for all k ∈ N, i ∈ I, it follows that

0 ≤ b̄∥wk − Si(w
k)∥ ≤ γk,i∥wk − Si(w

k)∥ ≤ b̂∥wk − Si0(w
k)∥ → 0.

This implies limk→∞ ∥wk − Si(w
k)∥ = 0 for all i ∈ I. Let {xkj} be a subsequence

of {xk} such that

lim inf
k→∞

⟨F (x∗), xk+1 − x∗⟩ = lim
j→∞

⟨F (x∗), xkj+1 − x∗⟩.
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By the boundedness of {xkj+1}, there exists subsequence {xkjh} such that xkjh+1 ⇀
x̄ as h → ∞. Since Si is demiclosed at zero for each i ∈ I, we deduce x̄ ∈
∩i∈IFix(Si). This leads to

lim inf
k→∞

⟨F (x∗), xk+1 − x∗⟩ = lim
h→∞

⟨F (x∗), xkjh+1 − x∗⟩ = ⟨F (x∗), x̄− x∗⟩ ≥ 0.

The last inequality is deduced from that x∗ is a solution of Problem 1. due to the
setup (3.1), (3.8) yields

lim sup
k→∞

Γk ≤ 0.

By Lemma 2.4, we can conclude that xk → x∗ as k → ∞.
Case 2. There does not exist k1 such that ak+1 ≤ ak for all k ≥ k1. So, there

exists an integer k0 such that ak0 ≤ ak0+1. By Lemma 2.6, Maingé introduced a
subsequence {aτ(k)} of {ak} which is defined as

τ(k) = max {i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1} , ∀k ≥ k0.

Then, he showed that

(3.10) τ(k) ↗ +∞, 0 ≤ ak ≤ aτ(k)+1, aτ(k) ≤ aτ(k)+1, ∀k ≥ k0.

Since {aτ(k)} is decreasing and bounded, there exists the limit limk→∞ aτ(k) = M <

+∞. By the boundedness of {xτ(k)}, so there exists a subsequence which weakly

converges to x̄. Without loss of generality, we may assume that xτ(k) ⇀ x̄. From
(3.9) and (3.10), it follows that

aτ(k) ≤ aτ(k)+1 = ∥xτ(k)+1 − x∗∥2

≤ [1− ζτ(k)(2λτ(k)β − λ2
τ(k)L

2)]aτ(k) + ζτ(k)(2λτ(k)β − λ2
τ(k)L

2)Γ

− γτ(k),i0(1− γτ(k),i0 − βi0)[1− ζτ(k)(2λτ(k)β − λ2
τ(k)L

2)]∥Si0(w
τ(k))− wτ(k)∥2.

Taking the limit as k → ∞ and using limk→∞ aτ(k) = M , we deduce

lim
k→∞

∥Si0(w
τ(k))− wτ(k)∥ = 0,

and hence

lim
k→∞

∥Si(w
τ(k))− wτ(k)∥ = 0, ∀i ∈ I.

Since Si is demiclosed, we get x̄ ∈ Ω. By a similar way as the above case, we also
have

(3.11) lim sup
k→∞

Γτ(k) ≤ 0.

From (3.8), it yields

aτ(k) ≤aτ(k)+1

=∥xτ(k)+1 − x∗∥2

≤[1− ζτ(k)(2λτ(k)β − λ2
τ(k)L

2)]aτ(k) + ζτ(k)(2λτ(k)β − λ2
τ(k)L

2)Γτ(k).

Consequently

0 ≤ aτ(k) ≤ Γτ(k), ∀k ≥ k0.
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Combining this and (3.11), we deduce

lim sup
k→∞

aτ(k) = 0,

and so limk→∞ aτ(k)+1 = 0. By (3.10), 0 ≤ ak ≤ aτ(k)+1 → 0 as k → ∞. Which
completes the proof. □

4. Numerical experiments

We start with a numerical example in which we compare our proposed Algorithm
3.1 with the parallel projection algorithm (PPA) introduced by Anh and Hong [1,
Scheme (3.1)] and the hybrid steepest descent algorithm (HSDA) suggested by
Yamada [21, Scheme (23)] where T := SnSn−1 · · ·S2S1.

Example 4.1. We use a linear mapping F : Rm → Rm defined in the form
F (x) = Qx+ q in [4] with q ∈ Rm and Q = BBT +D+E with B is a m×m matrix
with their entries being generated in (0, 2), D is a m ×m skew-symmetric matrix
with their entries being generated in [−11, 11], E is a m×m diagonal matrix, whose
diagonal entries are positive in (0, 2). So, Q is positive semidefinite. It is clear that F
is L−Lipschitz continuous and β−strongly monotone with L := max{t : t ∈ eig(Q)}
and β := min{t : t ∈ eig(Q)}, where the set eig(G) represents all eigenvalues of Q.
Next, we consider the feasible set C and mappings S1, S2, S3 given as follows:

C =
{
x ∈ Rm : 0 ≤ x, e⊤x ≤ g

}
, e ∈ Rm, g ∈ R,

S1(x) = x ∀x ∈ C,

S2(x) = PrA(x), A = C ∩
{
x = (x1, x2, ..., xm)⊤ ∈ Rm : xi ≤ 3 ∀i = 1, 2, ...,m

}
,

S3(x) = (sin2 x1, 1 + x2, x3, ..., xm)⊤,

where PrA is the metric projection onto A. Then, for each i ∈ I, the mapping
Si : C → C is nonexpansive.

Test 1. Consider in R3. The matrices B,D,E and the vectors q, e and real
number g are chosen:

B =

1.5 1 0
1 1.3 1.25
0 1 0.5

 , D =

 0 1 0.5
−1 1 −0.5
−0.5 0.5 −0.8

 , E =

5 0 0
0 3 0
0 0 12

 ,

q =

 2
3
−4

 , e =

 3
−5
10

 , g = 7.

It is easy to evaluate that

eig(Q) = {5.5817, 9.5633, 13.8076},

and hence

L := max{t : t ∈ eig(Q)} = 13.8076 and β := min{t : t ∈ eig(Q)} = 5.5817.
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The parameters satisfying (3.1) are set as follows:a = 0.001 ∈ (0, 1), λk = 0.001 + 10−3

3k+1 ∈
(
0, 2β

L2

)
= (0, 0.0586),

ζk = 1
15k+1 ∈ (0, 1), µk = k

10k+1 > 0, τk = 1
(20k+7)2

, γk,i =
1

40k .

We take x0 = (1, 2, 0)⊤, x1 = (1, 1, 1)⊤ and the tolerance ϵ = 10−3. The numerical
results are showed in Figure 1 and Table 1.

Figure 1. Performance of PIPA with Test 1 setting. The approxi-
mate solution is x28 = (0.9371, 2.0069, 0.0031).

Problems λk ζk τk µk γk,i No. Iter. CPU times

1 0.0015 1
10k+1

1
(30k+7)2

k
20k+1

1
50k 20 0.7344

2 0.001 + 10−3

3k+1
1

15k+1
1

(20k+7)2
k

10k+1
1

40k 27 0.8438

3 0.04 + 10−3

3k+1
1

15k+1
1

(20k+7)2
k

10k+1
1

40k 57 1.5469

4 0.04 + 10−3

3k+1
1

55k+1
1

(20k+7)2
k

10k+1
1

40k 24 0.6719

5 0.04 + 10−2

13k+6
1

55k+1
1

(20k+7)2
k

10k+1
1

110k 18 0.5001

6 0.03 + 10−3

3k+100
1

5k+1
1

(6k+7)2
k

30k+1
1

11k+32 101 3,0002

7 0.0013 + 10−5

3k+9
1

15k+11
1

(20k+37)2
k

3k+37
1

49k+32 21 0.5469

Table 1. Test 1 with different parameters.

Test 2. Consider in R5. Compare the (PIPA) with the (PPA) and the
(HSDA). The stopping criterion of the algorithms is ∥xk+1 − xk∥ ≤ ϵ. Let
e = (1, 2,−3, 4,−5)⊤, g = 6, all entries B,D,E and vector q be randomly gener-
ated by using the commands in Matlab B = 2 ∗ rand(5, 5);D = skewdec(5, 1);E =
3 ∗ diag(1 : 5) giving E = (eij)5×5 where eij = 0 for all i ̸= j and eii = 3i for all

i ∈ {1, ..., 5}; q = rand(5, 1). The termination criterion is ∥xk+1 − xk∥ ≤ ϵ. Data of
the algorithms are given as follows:

(a) (PPA): αk,i := 0.001 + 1
k+100 for all i ∈ I, ϵk = 0, τk = 0, γk = 1

7k+10 , for all

k ∈ N, the starting point x0 = (0, 0, 0, 1, 1)⊤. The tolerance: ϵ = 10−3.
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(b) (HSDA): µ = 1.65 β
L2 ∈ (0, 2β

L2 ) where β = min{m : m ∈ eig(Q)} and

L = max{k : k ∈ eig(Q)}. Parameters λk := 1√
3k+5

(k=1,2,...) satisfy the

conditions

lim
k→∞

λk = 0,

∞∑
k=1

λk = +∞, lim
k→∞

λk − λk+1

λk+1
= 0.

The starting point: x0 = (0, 0, 0, 1, 1)⊤. The tolerance: ϵ = 10−2.

(c) (PIPA): λk = β
L2 − 1

104(3k+1)
, ζk = 1

15k+1 , µk = k
10k+1 , τk = 1

(20k+7)2
, γk,i =

1
40k+1 . Starting points: x0 = (1, 0, 0, 0, 0)⊤, x1 = (0, 0, 1, 1, 0)⊤.

The numerical results are showed in Figure 2 and Table 2.

No. Iter. CPU times
Problems (PPA) (HSDA) (PIPA) (PPA) (HSDA) (PIPA)

1 114 5918 32 8.9219 154.6094 1.1563
2 174 983 28 14.4688 28.8125 1.0313
3 85 2317 27 6.6563 56.1719 0.9375
4 86 8573 29 6.7344 219.3906 1.1563
5 101 3885 31 10.1250 102.0938 1.0625
6 124 3425 29 11.1719 88.9375 1.0313
7 130 2095 33 11.0938 97.1034 1.2188
8 138 4095 30 11.7344 173.0448 1.2188
9 83 6033 32 7.0313 195.36500 1.4063
10 126 5031 28 9.9688 168.4924 1.0938

Table 2. Comparison results.

Figure 2. Comparisons of successive iteration difference (∥xk −
xk+1∥) for 5 random tests (problems).
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4. Image recovery. Problem 2 is a useful mathematical model for many inverse
problems, one of them is signal/image restoration. In this problem, the goal is
to recover an original signal/image x ∈ Rs from a noisy observed signal/image
y ∈ Rm. Let B be the (linear) blurring operator (i.e., a m × s matrix) and ϵ be a
sample of zero-mean white Gaussian noise with variance σ2. It means that p(s) =
N(s|0, σ2Id), where N(g|µ,Σ) denotes a multivariate Gaussian density with mean
µ and covariance Σ, evaluated at g. The image restoration problem is formulated
as:

(4.1) y = Bx+ ϵ.

Examples of observation mechanisms which are adequately approximated by (4.1)
are optical or motion blur, tomographic projections, electronic noise, photoelectric
noise, and more. One classical approach for handling (4.1) is the following Least
Absolute Shrinkage and Selection Operator, mainly known as Lasso [16]:

(4.2) min

{
1

2
∥y − Bx∥2 + λ∥x∥1 : x = (x1, x2, ..., xs)

⊤ ∈ Rs

}
,

where ∥x∥1 =
∑s

k=1 |xk|. Under standard assumption, (4.2) is a special case of
Problem 2.

In this section we consider a special case of Problem 2 which is the image restora-
tion problem ( 4.1). We choose

f1(x) :=
1

2
∥Bx− y∥2, f2(x) = λ∥x∥1.

One can easily verify that f1 : Rs → R is convex and differentiable and its gradient
of f1 is ∇f1(x) = ⟨B,Bx − y⟩ which is L := ∥B∥2-Lipschitz continuous. Moreover,
f2 : Rs → R is proper, lower semicontinuous and convex.

Now, choose ϵi ∈ (0, 2/L) and mappings Si : Rs → Rs be defined by Si(x) =

proxϵif2Rs (Id − ϵi∇f1)(x) for all x ∈ Rs, i ∈ I. Via the fixed point characterization
of the proximity operator and by choosing F = 0 in Problem 1, we treat the image
restoration problem ( 4.1) as a common fixed point problem with this nonexpansive
mappings Si (also 0−demicontractive on Rs) and then apply Algorithm 3.1 for
solving Problem 2. We call this algorithm the Modified Parallel Inertial Proximal
Algorithm (MPIPA) and its strong convergence follows directly from Theorem 3.4.

All programming is implemented in Matlab R2016a running on a PC with In-
tel(R) Core(TM) i9-9900KS CPU @ 4.00GHz 32.0 GB Ram. The proximal oper-
ators evaluation is computed via the Matlab optimization toolbox (fmincon). The
stopping criterion for all tested algorithms is ∥xk+1 − xk∥ ≤ ϵ.

Test 1. We test the convergence of the MPIPA for the image restoration problem
by means of Peak Signal-to-Noise Ratio (PSNR) in decibel (dB) in [17] and Struc-
tural Similarity Index Metric (SSIM) [22]. The parameters αk, τk, µk, γk,i and ζk are
different. The blurring operator is chosen as B := fspecial(′gaussian′, [256 256], 4).
Let F (x) := 0.7x, ϵ1 = 0.1, ϵ2 = 0.3 and ϵ3 = 0.7. Then, we have β = L = 0.7.
Case 1.2. Consider Gaussian blur of filter size with standard deviation σ = 4 and
noise 10−4. The values of PSNR (dB) and SSIM for the ”bird” image corrupted
by Gaussian blur are PSNR = 20.532 dB and SSIM = 0.6803. For all k = 1, 2, . . .,
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the parameters of the IPPA are chosen as follows:

µk =
k

100k + 1
, τk =

1

(k + 1)2
, γk,i =

1

50k
, ζk =

1

10k + 1
, λk = 0, 01.

The numerical results are showed in Figure 3 and Table 3.

Case µk τk γk,i ζk λk PSNR SSIM CPU time/s

1 k
100k+1

1
(k+1)2

1
50k

1
10k+1 0.01 28.1825 0.9016 3677.0425

2 0.01 1
(3k+2)2

1
50k

1
10k+1 0.01 31.3307 0.9615 3402.5581

3 k
100k+1

1
(k+2)2

1
50k

1
10k+1 10−3 28.9304 0.9083 3677.7022

4 0.8 1
(k+1)2

1
100k

1
10k+1 0.01 26.9910 0.7048 3633.9307

5 k
10k+300

1
(2k+1)2

1
100k

1
100k+1 10−3 32.3016 0.9204 3509.5591

Table 3. Results for the algorithm MPIPA with different parame-
ters and the tolerance error ϵ = 10−2.

Figure 3. Restoration results of Algorithm MPIPA with different parameters.

Test 2. In this experiment we compare the performances of the MPIPA with
the FBSA (1.2), the FISTA (1.3) and the Fast Viscosity Forward-Backward Al-
gorithm in [12] (shortly FVFBA) by means of PSNR and SSIM. First, we take
a color image of the Halong bay. Then, the blurring operator is chosen as B :=
fspecial(′gaussian′, [288 288], 13), i.e., size of the original image is 288× 288 with
standard deviation σ = 13. Parameters in each algorithm are chosen as follows:

(i) In the FBSA: λk := 1
50k+1 for all k = 1, 2, · · · ;

(ii) In the FISTA: y0 = x0, t0 = 1.5;
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(iii) In the FVFBA: τk = 1015

k2
, µk = 1

100k+1 , γk = 1
50(k+1) , βk = 0.99k

k+1 ;

(iv) In the MPIPA: The parameters are chosen as in Test 1.

The comparative results are shown in Figures 4-6.

Figure 4. Restoration results using the different algorithms.
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Figure 5. The PSNR comparison.

Figure 6. The SSIM comparison.

Test 3. In this experiment we use the same data as in Test 2 and compare
the previous three algorithms with the PSNR and SSIM quality measurement. We
take the ”flower” image and consider Motion blur B = fspecial(′motion′, len, θ)
specifying with Motion length 20 pixels (len = 20) and Motion orientation 45o(θ =
45). The results are showed in Figure 7.
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Figure 7. Restoration results using the different algorithms.

In the above experiments we tried to illustrate the performances of our scheme
besides its theoretical advantages, one of which is that no projections are com-
puted/approximated. We also decided to present results and comparison for the
image restoration problem since we think that the reader can have an idea on the
practical usage of our scheme.
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