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when dealing with contraction maps. Due to the lack of convergence of Picard
iterates for the class of nonexpansive mappings, alternative iterative procedures
with distinct steps and parameters are employed, recognizing Krasnoselskii’s [17]
and Mann’s work [13], for instance.

The iterative approximation of fixed points is essential for solving a wide range
of issues faced in numerous study fields. As the application domains of iterative
algorithms have expanded, considerable iterative algorithms have been fabricated
for the mappings endowed with set properties. These algorithms have been further
analyzed for their qualitative characteristics, including convergence, rate of conver-
gence, stability, and data dependency(see, for example [3–5, 8, 11, 14, 16, 18, 19] and
references therein).

The classical fixed point approach converges for |L′(u)| < 1. Then, an obvious
question arises.

Does there exist any iterative technique that has a wider interval of
convergence?

Answering to this, V. Kanwar et al. [10] recently presented a novel iterative
approach that relies on geometrical construction and involves only one parameter,
defined by

(1.2) un+1 =
mun + Lun

m+ 1
, n ∈ N ∪ {0},m ∈ R+.

It is proven that the aforementioned approach converges for a larger interval, namely
−2m−1 < L′(u) < 1. This improvement of the technique (1.2) surpasses fixed point
iteration method in use.
Inspired by the potency of algorithm (1.2) and the lack of efficient two-step iterative
schemes relying on a single parameter, we introduce a novel approach that combines
iterative method (1.2) with the widely recognized Picard iteration [16].
The root finding property of fixed point procedures encourages researchers to solve
polynomial equations of varied degrees. The study of finding roots in polynomials
has been a significant focus since 3000 B.C. In 2005, Kalantari’s [9] advanced work
on polynomiography brought new life to the issue of finding roots of polynomials.
This work showcased the aesthetic connection between mathematical sciences and
the world of art and design. Kalantari [9] defined Polynomiography as the “art
and science of visualization in an approximation of zeros of complex polynomials
via fractal and non-fractal images produced using the mathematical convergence
properties of iterative functions”. The resulting image is referred to as a “poly-
nomiograph”. Polynomiographs are distinct from (Mandelbrot’s) fractals, as the
forms of the latter cannot be effectively controlled and are solely determined by the
iteration function’s coefficient. Nevertheless, the shapes of a polynomiograph may
be manipulated and designed in a more foreseeable manner by employing varied it-
erations on different complex polynomials which are applicable for several purposes,
such as creating textures, designing carpets, and producing tapestries.

The researchers utilized Picard [16], Mann [13], and Ishikawa [8] iterative schemes
to create polynomiographs. Inspired by the artistic patterns achieved through these
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schemes, we propose our own scheme to generate polynomiographs with various
shapes and designs.

The paper is structured in the following manner:

(i) Section 3 introduces a fixed point procedure with a single parameter.
(ii) Section 4 examines the qualitative behavior of the technique, including con-

vergence analysis, stability, and data dependency for contractive type map-
pings defined by Imoru and Olantinwo [7].

(iii) Section 5 presents a numerical example and discusses the efficiency, time
complexity, and order of convergence of our new technique to demonstrate
the superiority of our approach compared to other algorithms in the litera-
ture using MATLAB 2023(a) software.

(iv) The approximation procedure is employed to generate polynomiographs for
different complex polynomials in Section 6.

2. Requisite definitions and results

This section recalls few definitions and results of the literature required in the
sequel.

In 2003, Berinde [3] presented a class of mappings that are distinct from con-
traction mappings. Later, Osilike [15] extended the condition on contractive type
mappings to establish stability results for certain fixed point procedures.

Imoru and Olantinwo [7] further expanded upon the definition of Osilike [15] and
utilized it to demonstrate the stability of the Picard and Mann iterative methods.

Definition 2.1 ( [7]). Assume that Xb is a Banach space. A self-mapping L on
a subset A of Banach space Xb is contractive if there is constant δ ∈ [0, 1) and a
function ϕ : R+ → R+ which is

(a) continuous on R+,
(b) monotonic increasing in its domain,
(c) ϕ(0) = 0,

such that

∥Lu− Lv∥ ≤ ϕ(∥u− Lu∥) + δ∥u− v∥, for all u, v ∈ A.(2.1)

In his doctoral dissertation, A. M. Harder [6] discussed the stability of an iterative
process in the following manner.

Definition 2.2 ([6]). An iterative procedure {un} may be expressed as some func-
tion of L and un, i.e., un+1 = f(L, un) converging to fixed point ν is said to be
stable with respect to L if for an arbitrary sequence τn, the value of lim

n→∞
o̊n =

∥τn+1 − f(L, τn)∥ equals zero if and only if lim
n→∞

τn = ν.

The stability of the suggested iterative technique relies on the following lemma.

Lemma 2.3 ([3]). For any sequence {un} of positive numbers satisfying

un+1 ≤ tun + sn, n ∈ N ∪ {0}
one has lim

n→∞
un = 0 where t ∈ [0, 1] ⊂ R, and {sn} is a sequence of positive numbers

whenever lim
n→∞

sn = 0.
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The identification of fixed points may be a difficult undertaking, particularly
when the behavior of an operator is unknown. This motivates to investigate the
data dependency of fixed points. Data dependence in an iterative scheme refers to
the existence of an approximation method that allows one to determine the fixed
point of an unknown operator based on the fixed point of a known operator.
To examine the data dependence of fixed points in our study, let us review the
following definition.

Definition 2.4 (see [3]). For two self mappings L, L⋆ defined on A, L⋆ is said to be
an approximate operator of L, if ∥L⋆ − L∥ < ϵ, for all u ∈ A.

We establish the superiority of the recently presented approach by comparing it
to the well-known iterative strategies are shown in Table 1.

Sr.No. Name of the Iterative Scheme
Iterative Scheme

1. Ishikawa [8] dn = (1 − bn)fn + bnLfn
fn+1 = (1 − an)fn + anLdn

2. Noor [14] qn = (1 − cn)en + cnLen
wn = (1 − bn)en + bnLqn

en+1 = (1 − an)en + anLwn

3. Mann [13] gn+1 = (1 − an)gn + anLgn

Table 1. Table listing different iterative procedures used for com-
parison

where {an}, {bn} and {cn} are real sequences in (0, 1), n ∈ N ∪ {0}.
The following lemma will be needed in the sequel.

Lemma 2.5 ([1]). Let {pn} be a sequence of positive reals and there exists M ∈ Z+,
such that for all n ≥ N , {pn} satisfies the following inequality:

pn ≤ (1− qn)pn + rn,

where qn ∈ (0, 1) ∀n ∈ Z+ such that
∑∞

n=0 qn = ∞ and rn ≥ 0 is a bounded
sequence. Then

0 ≤ lim sup
n→∞

pn ≤ lim sup
n→∞

rn.

3. Proposed fixed point estimation technique

The present section suggests a new two-step fixed point approximation technique.

Algorithm 1 Fixed Point Iterative Algorithm

Step 1. Choose u0 ∈ A as an initial guess for the approximation.
Step 2. Compute

vn =
mun + Lun

m+ 1

un+1 = Lvn, n ∈ N ∪ {0},where m ∈ R+.(3.1)
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Remark 3.1. • Form = 1, the method becomes Picard- Krasnoselskii scheme
(see [17]).

• For m = 1−λn
λn

, where sequence {λn} ⊂ [0, 1], the algorithm reduces to

Picard-Mann [12] or Normal-S [18] iterative scheme.

The wider interval of convergence of iterative scheme (1.2) proved in [10], makes
our proposed scheme (3.1) different from other vital techniques existing in the lit-
erature.

4. Convergence analysis

This section studies the qualitative features of proposed scheme (3.1) including
convergence behavior, stability analysis and data dependency.

Theorem 4.1. Suppose X is a Banach space and A( ̸= ϕ) is a closed convex subset
of Xb. Let L : A → A be a mapping such that

(1) L satisfies contractive type mapping (2.1),
(2) L has a fixed point ν.

Then the iteration process given by (3.1) converges strongly to a unique fixed point
of L for some u0 ∈ A,m ∈ R+.

Proof. We shall prove that limn→∞ un = ν. Using Definition 2.1 and iteration
process (3.1),

∥vn − ν∥ =
∥∥∥mun + Lun

m+ 1
− ν

∥∥∥
=

1

m+ 1
∥mun + Lun − (m+ 1)ν∥

≤ m

m+ 1
∥un − ν∥+ 1

m+ 1
∥Lun − Lν)∥

≤ m

m+ 1
∥un − ν∥+ 1

m+ 1
∥
[
ϕ(∥ν − Lν∥) + δ∥ν − un∥

]
≤

(m+ δ

m+ 1

)
∥un − ν∥,(4.1)

and

∥un+1 − ν∥ = ∥Lvn − ν∥
= ∥Lν − Lvn∥
≤ ϕ(∥ν − Lν∥) + δ∥ν − vn∥
= δ∥vn − ν∥.(4.2)

Owing to (4.1), the inequality (4.2) becomes,

∥un+1 − ν∥ ≤ δ
(m+ δ

m+ 1

)
∥un − ν∥.

Repetition of the above process yields

∥un − ν∥ ≤ δ
(m+ δ

m+ 1

)
∥un−1 − ν∥
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∥un−1 − ν∥ ≤ δ
(m+ δ

m+ 1

)
∥un−2 − ν∥

.

.

.

∥u1 − ν∥ ≤ δ
(m+ δ

m+ 1

)
∥u0 − ν∥

Combining all the above inequalities, one gets

(4.3) ∥un+1 − ν∥ ≤ δn+1
(m+ δ

m+ 1

)n+1
∥u0 − ν∥.

Because δ ∈ (0, 1), so m+δ < m+1, which gives m+δ
m+1 < 1 and hence

(
m+δ
m+1

)n+1
→ 0

as n → ∞.
Consequently, with respect to inequality (4.3), the sequence {un} converges strongly
to ν.

Uniqueness of fixed point

Take ν, µ ∈ Fix(L) with ν ̸= µ satisfying Lν ̸= Lµ, using 2.1, we have

∥ν − µ∥ = ∥Lν − Lµ∥
≤ ϕ(∥ν − Lν∥) + δ∥ν − µ∥
= δ∥ν − µ∥
< ∥ν − µ∥,

which is absurd. Henceforth, the fixed point is unique. □

The subsequent part of this section reflects L - stability of the fixed point approx-
imation procedure defined by (3.1).

Theorem 4.2. Suppose X is a Banach space and A( ̸= ϕ) is a closed convex subset
of Xb. Let L : A → A be a mapping such that

(1) L satisfies contractive type mapping (2.1),
(2) L has a fixed point ν.

Then, the iteration process given by (3.1) is L - stable.

Proof. Let us denote the sequence {un} defined by (3.1) as some function of L and
un, i.e., un+1 = f(L, un) converging to fixed point ν. Consider an arbitrary sequence
{τn} in A and define o̊n = ∥τn+1 − f(L, τn)∥.

By Harder’s definition of stability [6], the iterative procedure (3.1) will be stable
with respect to L, if limn→∞ o̊ = 0 if and only if limn→∞ τn = ν.

∥τn+1 − ν∥ = ∥τn+1 − f(L, τn) + f(L, τn)− ν∥
≤ ∥τn+1 − f(L, τn)∥+ ∥f(L, τn)− ν∥
= o̊n + ∥f(L, τn)− ν∥

= o̊n +
∥∥∥Lν − L

(mτn + Lτn
m+ 1

)∥∥∥
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≤ o̊n + ϕ(∥ν − Lν∥) + δ
∥∥∥ν −

(mτn + Lτn
m+ 1

)∥∥∥
= o̊n + δ

∥∥∥(m+ 1)ν − (mτn + Lτn)

m+ 1

∥∥∥
≤ o̊n + δ

[ m

m+ 1
∥τn − ν∥+ 1

m+ 1
∥Lν − Lτn∥

]
≤ o̊n +

mδ

m+ 1
∥τn − ν∥+ δ

m+ 1

[
ϕ(ν − Lν) + δ∥ν − τn∥

]
≤ o̊n +

mδ

m+ 1
∥τn − ν∥+ δ2

m+ 1
∥ν − τn∥

= o̊n +
δ(m+ δ)

m+ 1
∥τn − ν∥.(4.4)

Since δ < 1, m+δ
m+1 < 1 and limn→∞ o̊n = 0. Using Lemma 2.3, limn→∞ τn = ν.

Conversely, assume that limn→∞ τn = ν. We shall claim that limn→∞ o̊ = 0.
Consider

o̊ = ∥τn+1 − f(L, τn)∥
= ∥τn+1 − ν + ν − f(L, τn)∥
≤ ∥τn+1 − ν∥+ ∥f(L, τn)− ν∥.(4.5)

Proceeding as the previous arguments, the inequality (4.5) reduces to

o̊ ≤ ∥τn+1 − ν∥+ δ(m+ δ)

m+ 1
∥τn − ν∥.

By assumption, it holds that limn→∞ o̊ = 0 and hence the result. □
Next, we attempt to estimate the fixed point of mapping L by taking into account

an approximate mapping L⋆ with known fixed point.

Theorem 4.3. Suppose X is a Banach space and A( ̸= ϕ) is a closed convex subset
of Xb. Let L : A → A be a mapping such that

(1) L satisfies contractive type mapping (2.1),
(2) L has a fixed point ν.

With maximum permissible error ϵ, assume L⋆ is an approximate mapping of con-
tractive type mapping L with L⋆(ν⋆) = ν⋆. Consider the iteration process given by
(3.1) for L and the iteration process {u⋆n} generated by

v⋆n =
mu⋆n + L⋆u⋆n

m+ 1
,

u⋆n+1 = L⋆v⋆n n ∈ N,(4.6)

for the approximate mapping L⋆ such that limn→∞ u⋆n = ν⋆. Then ∥ν − ν⋆∥ < 2ϵ
(1−δ) .

Proof. Owing to (2.1), (3.1), (4.6) and by definition of an approximate mapping
2.4, we have

∥un+1 − u⋆n+1∥ = ∥Lvn − L⋆v⋆n∥
≤ ∥Lvn − Lv⋆n∥+ ∥Lv⋆n − L⋆v⋆n∥
< ϕ(∥vn − Lvn∥) + δ∥vn − v⋆n∥+ ϵ.(4.7)
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Also,

∥vn − v⋆n∥ =
∥∥∥mun + Lun

m+ 1
− mu⋆n + L⋆u⋆n

m+ 1

∥∥∥
≤ m

m+ 1
∥un − u⋆n∥+

1

m+ 1
∥Lun − L⋆u⋆n∥

≤ m

m+ 1
∥un − u⋆n∥+

1

m+ 1

[
∥Lun − Lu⋆n∥+ ∥Lu⋆n − L⋆u⋆n∥

]
≤ m

m+ 1
∥un − u⋆n∥+

1

m+ 1

[
ϕ(∥un − Lun∥) + δ∥un − u⋆n∥

]
+

ϵ

m+ 1

=
m+ δ

m+ 1
∥un − u⋆n∥+

1

m+ 1
ϕ(∥un − Lun∥) +

ϵ

m+ 1
.(4.8)

Keeping in view m+δ
m+1 < 1, δ

m+1 < 1, substituting (4.8) in (4.7), one gets

∥un+1 − u⋆n+1∥

≤ ϕ(∥vn − Lvn∥) + δ
[m+ δ

m+ 1
∥un − u⋆n∥+

1

m+ 1
ϕ(∥un − Lun∥) +

ϵ

m+ 1

]
+ ϵ(4.9)

≤ δ∥un − u⋆n∥+ ϕ(∥vn − Lvn∥) +
δ

m+ 1
ϕ(∥un − Lun∥) + 2ϵ.

Writing pn = ∥un−u∗n∥, qn = (1− δ) ∈ (0, 1), rn =
ϕ(∥vn−Lvn∥)+ δ

m+1
ϕ(∥un−Lun∥)+2ϵ

(1−δ) ,

(4.9) takes the form

pn+1 ≤ (1− qn)pn + rn.

Therefore, using Lemma 2.5, we get

0 ≤ lim sup
n→∞

∥un− u⋆n∥ ≤ lim sup
n→∞

ϕ(∥vn − Lvn∥) + δ
m+1ϕ(∥un − Lun∥) + 2ϵ

(1− δ)
=

2ϵ

(1− δ)
.

In view of Theorem 4.1 and above hypothesis, one gets

∥ν − ν∗∥ <
2ϵ

(1− δ)
, for all n ∈ N.

This completes the proof. □

Remark 4.4. As the value of m → ∞, an improved upper limit can be obtained.
Taking m → ∞ in (4.9), we have

∥un+1 − u⋆n+1∥ ≤ ϕ(∥vn − Lvn∥) + δ∥un − u⋆n∥+ ϵ.(4.10)

Writing pn = ∥un − u∗n∥, qn = (1− δ) ∈ (0, 1), rn = ϕ(∥vn−Lvn∥)+ϵ
(1−δ) , (4.10) becomes

pn+1 ≤ (1− qn)pn + rn.

Therefore, using Lemma 2.5, we get

0 ≤ lim sup
n→∞

∥un − u⋆n∥ ≤ lim sup
n→∞

ϕ(∥vn − Lvn∥) + ϵ

(1− δ)
=

ϵ

(1− δ)
.
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In view of Theorem 4.1 and above hypothesis, one gets

∥ν − ν∗∥ <
ϵ

(1− δ)
, for all n ∈ N.

5. Discussion on efficiency, time complexity and order of
convergence for algorithm (3.1) with numerical example

In this part, we will analyze the rate of convergence of the algorithms listed in
the Table 1 and demonstrate that the new fixed point approach is efficient among
them in terms of both speed and time.

Theorem 5.1. Suppose Xb is a Banach space and A( ̸= ϕ) is a closed convex subset
of Xb. Let L : A → A be a mapping such that

(1) L satisfies contractive type mapping (2.1),
(2) L has a fixed point ν.

Assume that all the iterative techniques in Table 1 along with algorithm (3.1) con-
verge to same fixed point ν. Then for u0 ∈ A,m > 0, the new fixed point technique
(3.1) converges faster than the ones listed in Table 1 for the class of mappings
agreeing Definition 2.1.

Proof. Using inequality (4.3) of Theorem 4.1, we observe,

(5.1) ∥un+1 − ν∥ ≤ δn+1
(m+ δ

m+ 1

)n+1
∥u0 − ν∥m ∈ R+, n ∈ N ∪ {0}.

In the first part, we shall prove that for the class of mapping under consideration,
the new fixed point scheme provided by (3.1) converges faster than the Ishikawa
scheme [8].
By (2.1), we have

∥dn − ν∥ = ∥(1− bn)fn + bnLfn − ν∥
≤ (1− bn)∥fn − ν∥+ bn∥Lν − Lfn∥

≤ (1− bn)∥fn − ν∥+ bn

[
ϕ(∥ν − Lν∥) + δ∥fn − ν∥

]
=

[
1− bn(1− δ)

]
∥fn − ν∥.(5.2)

Therefore, we can write

∥fn+1 − ν∥ = ∥(1− an)fn + anLdn − ν∥
= ∥(1− an)fn + anLdn − (1− an + an)ν∥
≥ (1− an)∥fn − ν∥ − an∥Lν − Ldn∥

≥ (1− an)∥fn − ν∥ − an

[
ϕ(∥ν − Lν∥) + δ∥dn − ν∥

]
= (1− an)∥fn − ν∥ − δan∥dn − ν∥

≥ (1− an)∥fn − ν∥ − δan

(
1− bn(1− δ)

)
∥fn − ν∥

=
[
1− an

(
1 + δ(1− bn(1− δ)

)]
∥fn − ν∥.
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Repeating the above argument for n = 0, 1, 2, 3..., we obtain

∥fn+1 − ν∥ ≥
n∏

s=0

[
1− as

(
1 + δ(1− bs(1− δ)

)]
∥f0 − ν∥

≥
n∏

s=0

[
1− as

(
1 + δ

)]
∥f0 − ν∥.(5.3)

In view of (5.1) and (5.3), we can write,

(5.4)
∥un+1 − ν∥
∥fn+1 − ν∥

≤
δn+1

(
m+δ
m+1

)n+1
∥u0 − ν∥∏s=n

s=0

[
1− as

(
1 + δ

)]
∥f0 − ν∥

= Vn (say).

Therefore,

Vn+1

Vn
=

δn+2
(
m+δ
m+1

)n+2∏n
s=0

[
1− as

(
1 + δ

)]
∏n+1

s=0

[
1− as

(
1 + δ

)]
δn+1

(
m+δ
m+1

)n+1

=
δ(m+δ

m+1)(
1− an+1

(
1 + δ

)) .
Taking the limit n → ∞, we get

lim
n→∞

Vn+1

Vn
= lim

n→∞

δ(m+δ
m+1)(

1− an+1

(
1 + δ

))
= lim

n→∞
δ
(m+ δ

m+ 1

)
.

Owing to δ < 1, m+δ
m+1 < 1, and by ratio test,

∑
Vn is convergent which implies

limn→∞ Vn = 0. Henceforth, new fixed point procedure {un} converges faster than
the Ishikawa iterative procedure {fn} for the said class of mapping.
We will now assess the rate of convergence of new algorithm (3.1) with Mann iter-
ation [13].
In view of Definition 2.1, for n ∈ N ∪ {0},

∥gn+1 − ν∥ = ∥(1− an)gn + anLgn − ν∥
≥ (1− an)∥gn − ν∥ − an∥Lν − Lgn∥

≥ (1− an)∥gn − ν∥ − an

[
ϕ(∥ν − Lν∥) + δ∥gn − ν∥

]
= (1− an)∥gn − ν∥ − δan∥gn − ν∥

=
(
1− an

(
1 + δ)

)
∥gn − ν∥

≥
n∏

s=0

[
1− as

(
1 + δ

)]
∥g0 − ν∥, n = 0, 1, 2, 3, ...(5.5)



STABILITY AND DATA DEPENDENCY 2903

On account of (5.1) and (5.5), we can write,

(5.6)
∥un+1 − ν∥
∥gn+1 − ν∥

≤
δn+1

(
m+δ
m+1

)n+1
∥u0 − ν∥∏s=n

s=0

[
1− as

(
1 + δ

)]
∥g0 − ν∥

= Mn(say).

Therefore,

Mn+1

Mn
=

δn+2
(
m+δ
m+1

)n+2∏n
s=0

[
1− as

(
1 + δ

)]
∏n+1

s=0

[
1− as

(
1 + δ

)]
δn+1

(
m+δ
m+1

)n+1

=
δ(m+δ

m+1)(
1− an+1

(
1 + δ

)) .
Taking the limit n → ∞, we get

lim
n→∞

Mn+1

Mn
= lim

n→∞

δ(m+δ
m+1)(

1− an+1

(
1 + δ

))
= lim

n→∞
δ
(m+ δ

m+ 1

)
.

Because δ < 1, m+δ
m+1 < 1, and by ratio test,

∑
Mn is convergent which implies

limn→∞Mn = 0. Henceforth, new fixed point procedure {un} converges faster than
the Mann iterative procedure {fn} for Definition 2.1 type mapping.

We will now compare the rate of convergence of algorithm (3.1) and Noor iteration
[14].
For n ∈ N ∪ {0},

∥qn − ν∥ = ∥(1− cn)en + cnLen − ν∥
≤ (1− cn)∥en − ν∥+ cn∥Len − Lν∥

≤ (1− cn)∥en − ν∥+ cn

[
ϕ(∥ν − Lν∥) + δ∥en − ν∥

]
=

[
1− cn(1− δ)

]
∥en − ν∥.(5.7)

Also

∥wn − ν∥ = ∥(1− bn)en + bnLqn − ν∥
≤ (1− bn)∥en − ν∥+ bn∥Lqn − Lν∥

≤ (1− bn)∥en − ν∥+ bn

[
ϕ(∥ν − Lν∥) + δ∥qn − ν∥

]
≤ (1− bn)∥en − ν∥+ δbn

[
1− cn(1− δ)

]
∥en − ν∥

=
[
1− bn

(
1− δ(1− cn(1− δ))

)]
∥en − ν∥.(5.8)

Using (5.7) and (5.8), we get

∥en+1 − ν∥ = ∥(1− an)en + anLwn − ν∥
≥ (1− an)∥en − ν∥ − an∥Lν − Lwn∥
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≥ (1− an)∥en − ν∥ − δan∥wn − ν∥

≥ (1− an)∥en − ν∥ − δan

[
1− bn

(
1− δ(1− cn(1− δ))

)]
∥en − ν∥

≥
[
1− an

(
1 + δ(1− bn(1− δ(1− cn(1− δ))))

)]
∥en − ν∥

≥
(
1− (1 + δ)an

)
∥en − ν∥.

It implies that

∥en+1 − ν∥ ≥
s=n∏
s=0

(1− (1 + δ)as)∥e0 − ν∥, n = 0, 1, 2, 3, ...(5.9)

In view of (5.1) and (5.9), we have

(5.10)
∥un+1 − ν∥
∥en+1 − ν∥

≤
δn+1(m+δ

m+1)
n+1∏s=n

s=0 (1− (1 + δ)as)
= En(say).

Therefore,

lim
n→∞

En+1

En
= lim

n→∞

δ(m+δ
m+1)

1− (1 + δ)an+1
= δ

(m+ δ

m+ 1

)
< 1.

By ratio test, we conclude that new iterative procedure (3.1) converges faster than
Noor iteration for the class of contractive type mappings defined by (2.1). □

Next, we will discuss the order of convergence for a new iterative procedure (3.1).

Theorem 5.2. Suppose Xb is a Banach space and A( ̸= ϕ) is a closed convex subset
of Xb. Let L : A → A be a mapping such that

(1) L satisfies contractive type mapping (2.1),
(2) L has a fixed point ν.

Then the order of convergence of new iterative algorithm given by (3.1) is

• at least linear.
• second order in case m = −L′

(ν).

Proof. Applying Taylor’s series expansion on L about ν and denoting (un − ν) by
ϵun we have,

Lun = L(ν) + L
′
(ν)(un − ν) +

L
′′
(ν)

2!
(un − ν)2 +O(un − ν)3

= ν + L
′
(ν)ϵun +

L
′′
(ν)

2!
ϵ2un +O(ϵ3un).

Therefore, using the above expansion, we can write

ϵvn = vn − ν

=
mun + Lun

m+ 1
− ν

=
mun + ν + L

′
(ν)ϵun +

L
′′
(ν)
2! ϵ2un +O(ϵ3un)

m+ 1
− ν
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=
mun + L

′
(ν)ϵun +

L
′′
(ν)
2! ϵ2un +O(ϵ3un)−mν

m+ 1

=
m+ L

′
(ν)

m+ 1
ϵun +

L
′′
(ν)

2!(m+ 1)
ϵ2un +O(ϵ3un).

Proceeding in a similar pattern and employing the above expansion, we obtain

ϵun+1 = un+1 − ν = Lvn − ν

= L
′
(ν)ϵvn +

L
′′
(ν)

2!
ϵ2vn +O(ϵ3vn)

= L
′
(ν)

[(m+ L
′
(ν)

m+ 1

)
ϵun +

L
′′
(ν)

2!(m+ 1)
ϵ2un +O(ϵ3un)

]
+

L
′′
(ν)

2!

[(m+ L
′
(ν)

m+ 1

)
ϵun +

L
′′
(ν)

2!(m+ 1)
ϵ2un +O(ϵ3un)

]2
+O(ϵ3un)

=
(m+ L

′
(ν)

m+ 1

)
L
′
(ν)ϵun +

L
′′
(ν)ϵ2un

2!(m+ 1)2

[
(m+ 1)L

′
(ν) + (m+ L

′
(ν))2

]
+O(ϵ3un).

Also, if m = −L′
(ν), then above expression gives

ϵun+1 =
L
′′
(ν)ϵ2un

2!(m+ 1)2

[
(m+ 1)L

′
(ν) + (m+ L

′
(ν))2

]
+O(ϵ3un).

It indicates that the aforementioned iterative procedure is at least linearly conver-
gent, however depending upon the choice of m, the order of convergence becomes
2. □

Now, we’ll illustrate to substantiate our assertions.

Example 5.3. Suppose Xb = R,A = [0, 14], define L : A → A by

L(u) =

{
u
7 , u ∈ [0, 7]
u
14 , u ∈ [7, 14].

Here, the fixed point of mapping L is zero.
Further, define ϕ : R+ → R+ by ϕ(u) = u

4 for all u ∈ [0,∞). It is evident that ϕ
fulfils all the requirements specified in Definition 2.1.
Also, for u ∈ [0, 7], ϕ(∥u − Lu∥) = ϕ(∥u − u

7∥) =
3u
14 and u ∈ [7, 14], ϕ(∥u − Lu∥) =

ϕ(∥u− u
14∥) =

13u
56

We only need to demonstrate that L is a contractive type mapping.
Case 1 When u, v ∈ [0, 7],

∥Lu− Lv∥ =
∥∥∥u
7
− v

7

∥∥∥
=

1

7
∥u− v∥

≤ 3u

14
+

1

7
∥u− v∥

= ϕ(∥u− Lu∥) + δ∥Lu− Lv∥ for δ ∈
[1
7
, 1
)
.
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Case 2 When u, v ∈ [7, 14],

∥Lu− Lv∥ =
∥∥∥ u

14
− v

14

∥∥∥
=

1

14
∥u− v∥

≤ 13u

56
+

1

7
∥u− v∥

= ϕ(∥u− Lu∥) + δ∥Lu− Lv∥, for δ ∈
[1
7
, 1
)
.

Case 3 When one of the u, v ∈ [0, 7] while other in [7, 14],
say, u ∈ [0, 7] and v ∈ [7, 14],

∥Lu− Lv∥ =
∥∥∥u
7
− v

14

∥∥∥
= ∥ u

14
+

u

14
− v

14
∥

≤ u

14
+

1

14
∥u− v∥

≤ 3u

14
+

1

7
∥u− v∥

= ϕ(∥u− Lu∥) + δ∥Lu− Lv∥, for δ ∈
[1
7
, 1
)
.

Combining, we obtain, ∥Lu− Lv∥ ≤ ϕ(∥u− Lu∥) + δ∥Lu− Lv∥ for δ ∈
[
1
7 , 1

)
, for all

u, v ∈ [0, 14].

Hence, L is a contractive type mapping in the sense of Definition 2.1, with a
fixed point at 0. Using MATLAB 2023(a) software, we have demonstrated that our
proposed iterative scheme exhibits faster convergence compared to other iterative
algorithms. This is achieved by selecting control sequences with specific values:
an = n

n+2 , bn = 3
(n+1)2

, cn = 14n
n5+8

,m = 0.1 and prescribed tolerance as 0.0001. We

start the iteration with an initial guess value of u = 10 (refer to Figure 1 and Table
2 for further details).

Figure 1. Graphical representation of rate of convergence
of various iterative schemes under study.
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Iteration.No. Proposed FPS Ishikawa FPS Noor FPS Mann FPS

1. 0.5114 6.8099 6.8186 7.0833
2. 0.0407 3.7064 3.7072 3.9844
3. 0.0032 1.7149 1.7143 1.8926
4. 0.0002 0.8317 0.8311 0.9463
5. 0.0000 0.3769 0.3765 0.4393
6. 0.0000 0.1616 0.1615 0.1922
7. 0.0000 0.0662 0.0662 0.0801
8. 0.0000 0.0261 0.0261 0.0320
9. 0.0000 0.0100 0.0100 0.0124
10. 0.0000 0.0037 0.0037 0.0046
11. 0.0000 0.0013 0.0013 0.0017
12. 0.0000 0.0005 0.0005 0.0006
13. 0.0000 0.0002 0.0002 0.0002
14. 0.0000 0.0001 0.0001 0.0001
15. 0.0000 0.0000 0.0000 0.0000

Table 2. Tabular comparison of various iterative methods in the
context of Example 5.3.

In addition, we establish the contrast for absolute and relative error, time com-
plexity, number of iterations and order of convergence of different iterative algo-
rithms (see Table 3).

Proposed FPS Ishikawa FPS Noor FPS Mann FPS
Absolute Error 1.8845e-05 3.7414e-05 3.7376e-05 4.8225e-05
Relative Error 0.09205 0.6637 0.6637 0.6618

Order of Convergence 1 1.0175 1.0175 1.0185
No.of Iterations 5 15 15 15

Time involved(in seconds) 0.978224 1.062799 1.03538 1.070094

Table 3. Comparison in terms of error and time in the context of
Example 5.3.

6. Application to polynomiograph

Polynomiography unveils the aesthetic allure and artistic essence inherent in the
process of solving polynomial equations. It has transformed the arduous and com-
plex work of root finding problem of polynomials into a captivating and aesthet-
ically pleasing form of artistic expression, design, invention, creativity, scientific
exploration, and educational engagement. To explore the theoretical foundation
and artistic implementation of polynomiography, see [9]. Polynomiography uses it-
eration methods to approximate polynomial roots, such as Newton’s and Halley’s
methods. We employ the suggested iteration strategy instead of Picard iteration to
modify the Newton technique to generate polynomiographs.

The Newton technique for determining the roots is given by

(6.1) zn+1 = zn − q(zn)

q′(zn)
, n ∈ N ∪ {0},
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where z0 represents the initial point for the approximation of root of complex poly-
nomial q(z). Modifying (6.1) using the suggested algorithm (3.1) , we obtain

zn+1 = vn − q(vn)

q′(vn)

vn =
mzn + (zn − q(zn)

q′(zn)
)

m+ 1
.(6.2)

The sequence {zn} is referred to as the orbit of the point z0 converging to a root
z# of q, then we say that z0 is attracted to z#. The set of all such initial points for
which the sequence {zn} converges to root z# is termed as basin of attraction of z#.
Therefore, in view of Fundamdntal theorem of Algebra, the degree of polynomial
determines the number of basins of attraction.

We apply (6.2) over complex Banach space with initial guess u0 = (x0, y0) to
generate polynomiographs for different complex polynomials. The various colors
of an image are determined by the number of iterations performed to get a root
with a specified precision of ϵ = 0.00001. By varying the number of iterations
and parameter m, one may generate an endless number of aesthetically pleasing
polynomiographs. However, for the sake of this study, we have set the maximum
number of iterations to be fixed at 15 with escape criterion |zn+1 − zn| < ϵ.

Below are the polynomiographs of various complex polynomial equations q(z) = 0
and few special polynomials. Resolution for each of the images is 800 by 800 pixels.
It can be easily observed that the basins of attraction obtained by the suggested
technique are entirely different from the orbits of standard Picard iteration.

(1) Polynomiograph of z3 − 1
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(2) Polynomiograph of z6 − 1

Picard Iteration
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

New Technique for m = 0.8
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

New Technique for m = 3
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

New Technique for m = 50
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

(3) Polynomiograph of z10 − 3z2 + 2

Picard Iteration

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

New Technique for m = 2.5
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15

(4) Polynomiograph of z19 − 1

Picard Iteration

-3 -2 -1 0 1 2 3

-3

-2

-1

0
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3 0
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10

15

New Technique for m = 1
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3 0

5

10

15
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(5) Polynomiograph of Special Polynomials

Alexander Polynomial (Butterfly, m=10)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
Chebyshev Polynomial (Sparrow, m=10)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

7. Conclusion

The article presents a suggestion for Picard-Kanwar hybrid two-step fixed point
procedure [10], based on a single parameter and has a wider interval of convergence,
which sets it apart from conventional fixed point procedure. We demonstrated that
our novel technique exhibits strong convergence towards the invariant points of con-
tractive type mappings, as defined by Imoru and Olantinwo [7]. After discussing the
data dependency of fixed points, we proceeded to illustrate the stability of our tech-
nique. We have demonstrated by analytical, numerical, and graphical methods that
the new algorithm has faster rate of convergence compared to the previous impor-
tant algorithms through MATLAB 2023(a) software. We have additionally proven
that the novel technique exhibits at least linear convergence, which can potentially
reach second order depending on the choice of parameter m. The efficiency and
superiority of new fixed point technique is also established by taking into account,
the elapsed time, absolute error, relative error, number of iterations, and order of
convergence using a relevant example. Finally, we showcased visually appealing
aesthetic patterns called Polynomiographs, which were generated by utilizing our
technique to determine the roots of various complex polynomials.

Few Open Problems:

(1) Is it possible to define an iterative technique with indeed larger interval of
convergence?

(2) What will be the convergence behavior of the new technique when dealing
with non-unique fixed points?

(3) Is it possible to discuss the convergence of the suggested technique for a
different class of mappings, such as nonexpansive, quasi nonexpansive or
generalized nonexpansive mappings?
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