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where the sequences {an}, {bn} are in (0,1). Since its inception, S-iterative scheme
and its modified versions have attracted many researchers to investigate real world
problems including FPPs, common fixed point problems and VIs, see, [4–6, 10, 14,
16, 20, 23]. In [18], the author further analyzed S-iterative method and proved by
considering numerical example that it has efficient convergence rate than Picard as
well as Mann iterative schemes for contraction mappings in metric spaces. By ap-
plying S-iteration method, the author also studied minimization and split feasibility
problems.

In 2014, Sahu [19] brought forward the notion of altering points and outlined the
convergence for the parallel S-iterative scheme as under: For initial point (θ0, ϑ0) ∈
C1 × C2 and α ∈ (0, 1), the sequence {(θn, ϑn)} is approximated as follows:

(1.3)

{
θn+1 = ψ2[(1− α)ϑn + αψ1θn],

ϑn+1 = ψ1[(1− α)θn + αψ2ϑn], ∀n ∈ N,

where ψ1 : C1 → C2 and ψ2 : C2 → C1 are two mappings. Recently, Zhao et
al. [29] examined the system of variational inclusions for accretive mappings by
carrying through the notion of altering points. Also, they executed these problems
by proposing parallel Mann and parallel S-iterative schemes. Following this concept,
several parallel iterative methods have been announced to deal with mathematical
models including VIs, V arIncl, FPPs with numerous applications, see, for example;
[2,14,27]. In [21], Sintunavarat and Pitea approximated fixed point of a self mapping
by designing following iterative scheme:

(1.4)


θ0 ∈ C,

ξn = (1− bn)θn + bnψθn,

ϑn = (1− cn)θn + cnξn,

θn+1 = (1− an)ψϑn + anψξn, n = 0, 1, 2, . . . ,

where the real sequences {an}∞n=0, {bn}∞n=0, {cn}∞n=0 are contained in [0, 1] and ψ is
a nonlinear self mapping on a nonempty closed convex subset C of normed linear
space B. Following the attributed facts and methodologies, it is worthy to examine
an altering points problem (APP). We design a new parallel iterative scheme based
on (1.4) as follows.

Let ψ1 : C2 → C1 and ψ2 : C1 → C2 be two mappings. Then for initial point
(θ0, ϑ0) ∈ C1 × C2, we estimate the sequence {(θn, ϑn)} ∈ C1 × C2 as under:

(1.5)


θn+1 = (1− an)ψ2(ξn) + anψ2(qn), ϑn+1 = (1− an)ψ1(pn) + anψ1(rn),

ξn = (1− bn)θn + bnqn, pn = (1− bn)ϑn + bnrn,

qn = (1− cn)θn + cnψ1(ϑn), rn = (1− cn)ϑn + cnψ2(θn),

where the sequences {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are in [0, 1]. We shall analyze
the convergence of scheme (1.5) to examine the altering points problem.

The paper is methodized in the succeeding order. The next section comprises
preliminaries and requisite results. In Section 3, we commence the conceptualiza-
tion of problem followed by some particular cases based on imposed conditions on
the mappings. We bring forward a new parallel iterative scheme to achieve the ap-
proximate solution of altering points problem by proving existence and convergence
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results under some mild preassumptions. Our theoretical findings are verified by
illustrative examples. At last, we explore some consequent systems of variational
inclusions and inequalities.

2. Preliminaries

Let B∗ be a dual space of a real Banach Space B with norm ∥ · ∥ and duality
pairing ⟨θ, ϑ⟩ between θ ∈ B and ϑ ∈ B∗. Let Ξ = {θ ∈ B : ∥θ∥ = 1} be the unit
sphere. B is called uniformly convex if ∃δ > 0 with θ, ϑ ∈ Ξ satisfying ∥θ − ϑ∥ ≥ ϵ
implies

∥∥ θ−ϑ
2

∥∥ ≤ 1− δ, ∀ϵ ∈ (0, 2] and B is called smooth, if for each θ ∈ Ξ,

(2.1) lim
τ→0

∥θ + τϑ∥ − ∥θ∥
τ

,

exists. If the limit (2.1) is attained uniformly for all θ, ϑ ∈ Ξ then B is known as

uniformly smooth and limτ→0
ρB(τ)

τ = 0. The modulus of smoothness ρB : [0,∞) →
[0,∞) is given as

ρB(τ) = sup

{
1

2
(∥θ + ϑ∥+ ∥θ − ϑ∥)− 1 : θ ∈ Ξ, ∥ϑ∥ ≤ τ

}
.

The normalized duality mapping J : B → B∗ is defined by

J (θ) = {ϑ ∈ B∗ : ⟨θ, ϑ⟩ = ∥θ∥2 = ∥ϑ∥2}, ∀θ ∈ B.

If B is smooth then J is single-valued.

Lemma 2.1 ([26]). Let J : B → B∗ be a normalized duality mapping. Then

∥θ + ϑ∥2 ≤ ∥θ∥2 + 2c2∥ϑ∥2 + 2⟨ϑ,J (θ)⟩, ∀θ, ϑ ∈ B,

where c > 0 is a real constant.

Next, we recall following notions. Let C be a nonempty closed convex subset of a
Banach space B. For each point θ ∈ B, ∃ a unique nearest point ΠC ∈ C, such that
∥θ − ΠCθ∥ = infϑ∈C{∥θ − ϑ∥ : ϑ ∈ C}. Note that the metric projection ΠC : B → C
has the following attributes [24]:
• ∥ΠC(θ)−ΠC(ϑ)∥ ≤ ∥θ − ϑ∥, ∀θ, ϑ ∈ B;
• ⟨θ −ΠC(θ), ϑ−ΠC(θ)⟩ ≤ 0, ∀θ ∈ B, ϑ ∈ C;
• ∥ΠC(θ)−ΠC(ϑ)∥2 ≤ ⟨ΠC(θ)−ΠC(ϑ), θ − ϑ⟩, ∀θ ∈ B, ϑ ∈ C.

A mapping QC : B → C is said to be sunny, if

QC(QC(θ) + t(θ −QC(θ))) = QC(θ), ∀θ ∈ B, t ≥ 0.

QC is called retraction, if Q2
C = QC . Furthermore, QC is a sunny nonexpansive

retraction, if a retraction QC : B → C is sunny as well as nonexpansive. The
following lemma pertinent to the sunny nonexpansive retraction plays a decisive
role to derive our main results.

Proposition 2.2 ([9]). A mapping QC : B → C is a retraction sunny nonexpansive
if and only if

⟨θ −QC(θ),J (ξ −QC(θ))⟩ ≤ 0, ∀θ ∈ C and ξ ∈ B.
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Proposition 2.3. Suppose m = m(θ) : B → B and QC : C → B be a retraction
sunny nonexpansive. Then

QC+m(θ)(θ) = m(θ) +QC(θ −m(θ)), ∀θ ∈ B.

Remark 2.4. In a real Hilbert space H, a sunny nonexpansive retraction of B onto
C is the nearest point projection ΠC from B onto C. But all Banach spaces do not
carry this fact, since in Banach spaces nearest point projections are sunny but not
nonexpansive. In [9], Bruck proved that if the Banach space is uniformly smooth,
then for a nonexpansive retraction there exists a nonexpansive projection.

Lemma 2.5 ([8]). If {θn} and {ϑn} are nonnegative real sequences comply with the
inequality

θn+1 ≤ ϱθn + ϑn, ∀n ∈ N,
where ϱ ∈ (0, 1), limn→0 ϑn = 0. Then limn→∞ θn = 0.

If ∥ · ∥ is a norm on a real Banach space B, then the norm ∥ · ∥∗ on B×B defined
by

(2.2) ∥(θ, ϑ)∥∗ = ∥θ∥+ ∥ϑ∥, ∀θ, ϑ ∈ B
is a Banach space.

2.1. Generalized accretive mapping. We collect the relevant background ma-
terial which will be utilized to accomplish the goal. A mapping ψ : C → B is called
• accretive, if

⟨ψ(θ)− ψ(ϑ),J (θ − ϑ)⟩ ≥ 0, ∀θ, ϑ ∈ C;
• µ-strongly accretive, if ∃µ > 0 such that

⟨ψ(θ)− ψ(ϑ),J (θ − ϑ)⟩ ≥ µ∥θ − ϑ∥2, ∀θ, ϑ ∈ C;
• η-expansive, if ∃η > 0 such that

∥ψ(θ)− ψ(ϑ)∥ ≥ η∥θ − ϑ∥, ∀θ, ϑ ∈ C;
• Lipschitz continuous, if ∃δ > 0 such that

∥ψ(θ)− ψ(ϑ)∥ ≤ δ∥θ − ϑ∥, ∀θ, ϑ ∈ C.
If δ ∈ [0, 1) then the mapping ψ is called contraction and nonexpansive if δ = 1.

Definition 2.6. Let H : B → B be the single-valued mapping. A set-valued
mapping M : B → 2B is called

(i) accretive, if

⟨z′ − z
′′
,J (θ − ϑ)⟩ ≥ 0, ∀θ, ϑ ∈ B, z′ ∈M(θ), z

′′ ∈M(ϑ);

(ii) m-accretive, if M is accretive and (I + ϱM)(B) = B, ∀ϱ > 0;
(iii) H-accretive, if M is accretive and range(H + ϱM) = B, ∀ϱ > 0.

Remark 2.7. H-accretive mapping need not be m-accretive. Consider H(θ) = −θ3
and M(θ) = sgn(θ), ∀θ ∈ B, then M is H-accretive but not m-accretive, see, [15].

Definition 2.8. Let C1 ̸= ∅ be a closed convex subset of B; φ1, ψ1 : C1 → B and
H : B × B → B be the single-valued mappings. Then
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(i) H(φ1, ·) is called µ1-cocoercive regarding φ1 if ∃µ1 > 0 such that

⟨H(φ1(θ), υ)−H(φ1(ϑ), υ),J (θ − ϑ)⟩ ≥ µ1∥θ − ϑ∥2, ∀θ, ϑ, υ ∈ C1;

(ii) H(·, ψ1) is called γ1-relaxed cocoercive regarding ψ1 if ∃γ1 > 0 such that

⟨H(υ, ψ1(θ))−H(υ, ψ1(ϑ)),J (θ − ϑ)⟩ ≥ (−γ1)∥θ − ϑ∥2, ∀θ, ϑ, υ ∈ C1;

(iii) H(·, ·) is called (µ1, γ1)-symmetric cocoercive, if H(φ1, ·) is µ1-cocoercive
regarding φ1 and γ1-relaxed cocoercive regarding ψ1;

(iv) H(·, ·) is called ν1-mixed lipschitz continuous if ∃ν1 > 0 such that

∥H(φ1(θ), ψ1(θ))−H(φ1(ϑ), ψ1(ϑ))∥ ≤ ν1∥θ − ϑ∥, ∀θ, ϑ ∈ C1.

Definition 2.9. Let ζ1, ξ1 : C1 → B be the single-valued mappings andM : B×B →
2B be a set-valued mapping. Then

(i) M(ζ1, ·) is called ϵ1-accretive regarding ζ1 if ∃ϵ1 > 0 such that

⟨m− n,J (θ − ϑ)⟩ ≥ ϵ1∥θ − ϑ∥2, ∀θ, ϑ, υ ∈ C1,m ∈M(ζ1(θ), υ), n ∈M(ζ1(ϑ), υ);

(ii) M(·, ξ1) is called ω1-relaxed accretive regarding ξ1 if ∃ω1 > 0 such that

⟨m−n,J (θ−ϑ)⟩ ≥ (−ω1)∥θ−ϑ∥2, ∀θ, ϑ, υ ∈ C1,m ∈M(υ, ξ1(θ)), n ∈M(υ, ξ1(ϑ));

(iii) M(·, ·) is called (ϵ1, ω1)-symmetric accretive, if M(ζ1, ·) is ϵ1-accretive re-
garding ζ1 and ω1-relaxed accretive regarding ξ1.

Definition 2.10. Let φ1, ψ1, ζ1, ξ1 : C1 → B and H : B×B → B be the single-valued
mappings. A multi-valued mapping M : B × B → 2B is called H(·, ·)-co-accretive if
H(·, ·) is (µ1, γ1)-symmetric cocoercive; M(·, ·) is (ϵ1, ω1)-symmetric accretive and
[H(φ1, ψ1) + ϱM(ζ1, ξ1)](B) = B, ∀ϱ > 0.

Remark 2.11. Every symmetric cocoercive and symmetric accretive mapping need
not be H(·, ·)-co-accretive.

Definition 2.12. Let φ1, ψ1, ζ1, ξ1 : C1 → B and H : B×B → B be the single-valued
mappings. Let M : B×B → 2B be H(·, ·)-co-accretive mapping. Then the resolvent

operator R
H(·,·)
ϱ1,M(·,·) : B → B is defined as

R
H(·,·)
ϱ1,M(·,·)(θ) = (H(φ1, ψ1) + ϱ1M(ζ1, ξ1))

−1(θ), ∀θ ∈ B, ϱ1 > 0.

Proposition 2.13. Let H : B × B → B and φ1, ψ1, ζ1, ξ1 : C1 → B be the single-
valued mappings such that φ1 is η1-expansive and ψ1 is σ1-Lipschitz continuous with
ε1 > ω1, µ1 > γ1 and η1 > σ1. Let M : B ×B → 2B be H(·, ·)-co-accretive mapping.

Then the mapping R
H(·,·)
ϱ1,M(·,·) : B → B is Υ1-Lipschitz continuous, i.e.,

(2.3) ∥RH(·,·)
ϱ1,M(·,·)(θ)−R

H(·,·)
ϱ1,M(·,·)(ϑ)∥ ≤ Υ1∥θ − ϑ∥,

where Υ1 =
1

ϱ1(ε1−ω1)+(µ1η21−γ1σ2
1)
.



2868 MOHAMMAD AKRAM

2.2. Altering points.

Definition 2.14. [18] Let C1, C2 ̸= ∅ be subsets of a metric space E. The points
θ ∈ C1 and ϑ ∈ C2 are called altering points of the mappings ψ1 : C1 → C2 and
ψ2 : C2 → C1, if

(2.4)

{
ψ1(θ) = ϑ,

ψ2(ϑ) = θ.

We designate the set of altering points by Alt(ψ1, ψ2) = {(θ, ϑ) ∈ C1 × C2 : ψ1(θ) =
ϑ and ψ2(ϑ) = θ}.

Example 2.15. Let B = R, C1 = C2 = R+. Define ψ1 : C1 → C2 and ψ2 : C2 → C1
as ψ1(θ) = eθ and ψ2(ϑ) = lnϑ. Then ψ1ψ2(ϑ) = ϑ and ψ2ψ1(θ) = θ. Thus, (θ, ϑ)
are altering points of ψ1 and ψ2.

Example 2.16. Let B = R2, C1 = {(θ, ϑ) : θ + ϑ = 2}, C2 = {(θ, ϑ) : θ + ϑ = 6}.
Define ψ1 : C1 → C2 and ψ2 : C2 → C1 as ψ1(θ, ϑ) = 3(ϑ, θ) and ψ2(θ, ϑ) =

1
3(ϑ, θ).

Setting θ∗ = (θ, ϑ) ∈ C1 and ϑ∗ = 3(ϑ, θ) ∈ C2. Then, ψ1(θ
∗) = ϑ∗ and ψ2(ϑ

∗) = θ∗.
Thus, (θ∗, ϑ∗) are altering points of ψ1 and ψ2.

Now onward, Γ = {1, 2}, for each i ∈ Γ, we assume Ci( ̸= ϕ) be closed convex
subsets of a real 2-uniformly smooth Banach space B. Hereinafter, it is shown that
APP and the system of generalized variational inequalities (SGV arInequal) are
analogous.

Lemma 2.17. For each i ∈ Γ, suppose that QCi : B → Ci are sunny nonexpansive
retractions and Si : Ci → B are nonlinear mappings, then following statements are
identical:

(i) θ ∈ C1 and ϑ ∈ C2 are altering points of QC2 [I − ϱ1S1] and QC1 [I − ϱ2S2].
(ii) (θ, ϑ) ∈ C1 × C2 solves the following SGV arInequal: Find (θ, ϑ) ∈ C1 × C2

such that

(2.5)

{
⟨ϱ1S1(θ) + ϑ− θ,J (ω2 − ϑ)⟩ ≥ 0, ∀ω2 ∈ C2,
⟨ϱ2S2(ϑ) + θ − ϑ,J (ω1 − η)⟩ ≥ 0, ∀ω1 ∈ C1.

Lemma 2.18. Let the single-valued mappings φ2, ψ2 : C2 → B be such that φ2

is η2-expansive and ψ2 is σ2-Lipschitz continuous; G : B × B → B be (µ2, γ2)-
symmetric cocoercive and ν2-mixed Lipschitz continuous. Let T : C2 → B be κ2-
strongly accretive and ς2-Lipschitz continuous. Suppose that the constant ϱ1 > 0
satisfies

(2.6) 0 < δC1

(√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2

)
< 1.

Then the mapping ΠC1 [G(φ2, ψ2)− ϱ1T ] : C2 → C1 is Φ1-contraction, where

Φ1 = δC1(Θ2 +∆2),Θ2 =
√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2

and ∆2 =
√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2 .
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Proof. Let ϑ1, ϑ2 ∈ C2, then we have

∥G(φ2(ϑ1), ψ2(ϑ1))− ϱ1T (ϑ1)− (G(φ2(ϑ2), ψ2(ϑ2))− ϱ1T (ϑ2))∥
≤ ∥G(φ2(ϑ1), ψ2(ϑ1))−G(φ2(ϑ2), ψ2(ϑ2))− (ϑ1 − ϑ2)∥
+ ∥ϑ1 − ϑ2 − ϱ1(T (ϑ1)− T (ϑ2))∥.

(2.7)

Since G is (µ2, γ2)-symmetric cocoercive, ν2-mixed Lipschitz continuous, φ2 is η2-
expansive and ψ2 is σ2-Lipschitz continuous, then referring Lemma 2.1, we obtain

∥G(φ2(ϑ1), ψ2(ϑ1))−G(φ2(ϑ2), ψ2(ϑ2))− (ϑ1 − ϑ2)∥2

≤ ∥ϑ1 − ϑ2∥2 − 2⟨G(φ2(ϑ1), ψ2(ϑ1))−G(φ2(ϑ2), ψ2(ϑ2)),J (ϑ1 − ϑ2)⟩
+ 2c22∥G(φ2(ϑ1), ψ2(ϑ1))−G(φ2(ϑ2), ψ2(ϑ2))∥2

≤ ∥ϑ1 − ϑ2∥2 − 2[µ2∥φ2(ϑ1)− φ2(ϑ2)∥2

− γ2∥ψ2(ϑ1)− ψ2(ϑ2)∥2] + 2c22ν
2
2∥ϑ1 − ϑ2∥2

≤ ∥ϑ1 − ϑ2∥2 − 2[µ2η
2
2∥ϑ1 − ϑ2∥2 − γ2σ

2
2∥ϑ1 − ϑ2∥2] + 2c22ν

2
2∥ϑ1 − ϑ2∥2,

(2.8)

which implies

∥G(φ2(ϑ1), ψ2(ϑ1))−G(φ2(ϑ2), ψ2(ϑ2))− (ϑ1 − ϑ2)∥ ≤ Θ2∥ϑ1 − ϑ2∥,(2.9)

where, Θ2 =
√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 . Taking into account the ς2-Lipschitz

continuity and κ2-strongly accretive property of T , we acquire

∥ϑ1 − ϑ2 − ϱ1(T (ϑ1)− T (ϑ2))∥2

≤ ∥ϑ1 − ϑ2∥2 − 2ϱ1⟨T (ϑ1)− T (ϑ2),J (ϑ1 − ϑ2)⟩+ 2c22ϱ
2
1∥T (ϑ1)− T (ϑ2)∥2

≤ ∥ϑ1 − ϑ2∥2 − 2ϱ1κ2∥ϑ1 − ϑ2∥2 + 2c22ϱ
2
1ς

2
2∥ϑ1 − ϑ2∥2,

(2.10)

which implies

∥ϑ1 − ϑ2 − ϱ1(T (ϑ1)− T (ϑ2))∥ ≤ ∆2∥ϑ1 − ϑ2∥,(2.11)

where, ∆2 =
√

1− 2ϱ1κ2 + 2c22ϱ
2
1ς

2
2 . Employing the Lipschitz continuity of ΠC1 , we

obtain

∥ΠC1 [G(φ2, ψ2)− ϱ1T ](ϑ1)−ΠC1 [G(φ2, ψ2)− ϱ1T ](ϑ2) ≤ Φ1∥ϑ1 − ϑ2∥.(2.12)

It follows from (2.6) that 0 < Φ1 < 1, where Φ1=δC1

(√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2+√

1− 2ϱ1κ2 + 2c22ϱ
2
1ς

2
2

)
. Therefore, the mapping ΠC1 [G(φ2, ψ2) − ϱ1T ] : C2 → C1

is Φ1-contraction. Similarly, we can verify that ΠC2 [H(φ1, ψ1) − ϱ2S] : C1 → C2 is
Φ2-contraction. □

Proposition 2.19. Let ψ1 : C1 → C2 and ψ2 : C2 → C1 be κ1 and κ2-contraction
mappings, respectively. Then (θ, ϑ) ∈ C1 × C2 is the unique solution of the problem
(2.4), i.e.,

(2.13)

{
ψ1(θ) = ϑ,

ψ2(ϑ) = θ.
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Proof. Since ψ1 : C1 → C2 is κ1-contraction and ψ2 : C2 → C1 is κ2-contraction
mapping. It yields that ψ2ψ1 : C1 → C1 is a contraction mapping. Thus, by
appealing to PBC, ψ2ψ1 has a unique element θ ∈ C1 such that θ = ψ2ψ1(θ).
Further, there exists a unique element ϑ ∈ C2 such that ϑ = ψ1(θ). Thus, we have
θ = ψ2(ϑ). □

Lemma 2.20. For each i ∈ Γ; let the single-valued mappings φi, ψi, ζi, ξi : Ci → B
be such that φi is ηi-expansive and ψi is σi-Lipschitz continuous; G : B ×B → B be
(µ2, γ2)-symmetric cocoercive and ν2-mixed Lipschitz continuous with ε1 > ω1, µ1 >
γ1 and η1 > σ1. Let T : C2 → B be κ2-strongly accretive and ς2-Lipschitz continuous.
Let M : B × B → 2B be H(·, ·)-co-accretive mapping such that Dom(M) ⊆ C1.
Suppose that the constant ϱ1 > 0 satisfies

(2.14) 0 <

√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2

ϱ1(ε1 − ω1) + (µ1η21 − γ1σ21)
< 1.

Then the mapping R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2) − ϱ1T ] : C2 → C1 is Ω1-contraction, where

Ω1 = Υ1(Θ2+∆2),Θ2 =
√

1− 2(µ2η22 − γ2σ22) + 2c22ν
2
2 ,∆2 =

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2

and Υ1 =
1

ϱ1(ε1−ω1)+(µ1η21−γ1σ2
1)
.

Proof. Following the steps as from (2.7)-(2.11) and employing the Lipschitz conti-

nuity of resolvent operator R
H(·,·)
ϱ1,M(·,·), we obtain

∥RH(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](ϑ1)−R

H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](ϑ2) ≤ Ω1∥ϑ1 − ϑ2∥,

(2.15)

where Ω1 = Υ1(Θ2 +∆2). From the assumption (2.14), we have 0 < Ω1 < 1. Thus,

R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ] : C2 → C1 is Ω1-contraction mapping. □

3. Problem formulation and convergence

For each i ∈ Γ, let ΠCi : B → Ci be operators; φi, ψi, ζi, ξi : Ci → B;H,G :
B×B → B;S : C1 → B and T : C2 → B be the single-valued mappings. We examine
the following altering points problem (APP ): Find (θ, ϑ) ∈ C1 × C2 such that

(3.1)

{
ΠC2 [H(φ1, ψ1)− ϱ2S](θ) = ϑ,

ΠC1 [G(φ2, ψ2)− ϱ1T ](ϑ) = θ.

If H(·, ·) = H,G(·, ·) = G,φi = ψi = I, then (3.1) is identical to the following APP :
Find (θ, ϑ) ∈ C1 × C2 such that

(3.2)

{
ΠC2 [H − ϱ2S](θ) = ϑ,

ΠC1 [G− ϱ1T ](ϑ) = θ.

IfH = G = I, then APP (3.2) is equivalent to the problem of finding (θ, ϑ) ∈ C1×C2
such that

(3.3)

{
ΠC2 [I − ϱ2S](θ) = ϑ,

ΠC1 [I − ϱ1T ](ϑ) = θ.
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APP (3.1) includes several problems existing in the literature. A few particular
cases of APP (3.1) are enumerated as under:

(i) If ΠC1 = R
H(·,·)
ϱ1,M(·,·) and ΠC2 = R

G(·,·)
ϱ2,N(·,·), where M : B × B → 2B is H(·, ·)-

co-accretive with Dom(M) ⊆ C1 and N : B × B → 2B is G(·, ·)-co-accretive
mapping with Dom(N) ⊆ C2, then APP (3.1) turns into the system of
generalized variational inclusions (SGV arIncl): Find (θ, ϑ) ∈ C1 × C2 such
that

(3.4)

{
0 ∈ G(φ2(ϑ), ψ2(ϑ))−H(φ1(θ), ψ1(θ)) + ϱ2(N(ζ2(ϑ), ξ2(ϑ)) + S(θ)),

0 ∈ H(φ1(θ), ψ1(θ))−G(φ2(ϑ), ψ2(ϑ)) + ϱ1(M(ζ1(θ), ξ1(θ)) + T (ϑ)).

(ii) If φi = ψi = ζi = ξi = I,ΠC1 = RH
ϱ1,M

and ΠC2 = RG
ϱ2,N

, where M : B → 2B

is H-accretive with Dom(M) ⊆ C1 and N : B → 2B is G-accretive mapping

with Dom(N) ⊆ C2, then APP (3.1) is identical to the problem: Find
(θ, ϑ) ∈ C1 × C2 such that

(3.5)

{
0 ∈ G(ϑ)−H(θ) + ϱ2(N(ϑ) + S(θ)),

0 ∈ H(θ)−G(ϑ) + ϱ1(M(θ) + T (ϑ)).

(iii) If H = G = I, ΠC1 = RM
ϱ1 and ΠC2 = RN

ϱ2 , where M,N : B → 2B

are m-accretive mappings with Dom(M) ⊆ C1 and Dom(N) ⊆ C2, then
SGV arIncl (3.5) turns to the system of variational inclusions: Find (θ, ϑ) ∈
C1 × C2 such that

(3.6)

{
0 ∈ ϑ− θ + ϱ2(N(ϑ) + S(θ)),

0 ∈ θ − ϑ+ ϱ1(M(θ) + T (ϑ)).

(iv) If ΠCi = QCi , the sunny nonexpansive retractions onto Ci, then APP (3.1)
becomes the system of generalized variational inequalities (SGV arIneq) of
finding (θ, ϑ) ∈ C1 × C2 such that

(3.7)

{
⟨ϱ1T (ϑ) + θ −G(φ2(ϑ), ψ2(ϑ)),J (ω2 − θ)⟩ ≥ 0, ∀ω2 ∈ C2,
⟨ϱ2S(θ) + ϑ−H(φ1(θ), ψ1(θ)),J (ω1 − ϑ)⟩ ≥ 0, ∀ω1 ∈ C1.

(v) If B = H, a real Hilbert space then SGV arIneq (3.7) turns into the following
SGV arIneq: Find (θ, ϑ) ∈ C1 × C2 such that

(3.8)

{
⟨ϱ1T (ϑ) + θ −G(φ2(ϑ), ψ2(ϑ)), ω2 − θ⟩ ≥ 0, ∀ω2 ∈ C2,
⟨ϱ2S(θ) + ϑ−H(φ1(θ), ψ1(θ)), ω1 − ϑ⟩ ≥ 0, ∀ω1 ∈ C1.

Lemma 3.1. For each i ∈ Γ; let φi, ψi, ζi, ξi : Ci → B and H,G : B × B → B be
the single-valued mappings. Let S : C1 → B and T : C2 → B be the single-valued
mappings. Let M : B ×B → 2B be H(·, ·)-co-accretive mapping with Dom(M) ⊆ C1
and N : B × B → 2B be G(·, ·)-co-accretive mapping with Dom(N) ⊆ C2. Then
SGV arIncl (3.4) has a solution (θ, ϑ), if and only if (θ, ϑ) ∈ C1 × C2 solves the
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following APP :

(3.9)

{
R

G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)− ϱ2S](θ) = ϑ,

R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](ϑ) = θ.

Next, we shall estimate the solution of APP (3.1) by implementing iterative
method (1.5).

Theorem 3.2. Let ΠCi : B → Ci be δΩi-Lipschitz continuous mappings; the single-
valued mappings φi, ψi, ζi, ξi : Ci → B be such that φi is ηi-expansive and ψi is
σi-Lipschitz continuous; H : B × B → B be (µ1, γ1)-symmetric cocoercive and ν1-
mixed Lipschitz continuous and G : B × B → B be (µ2, γ2)symmetric cocoercive
and ν2-mixed Lipschitz continuous. Let S : C1 → B be κ1-strongly accretive and
ς1-Lipschitz continuous and T : C2 → B be κ2-strongly accretive and ς2-Lipschitz
continuous. Let M : B×B → 2B be H(·, ·)-co-accretive mapping with Dom(M) ⊆ C1
and N : B × B → 2B be G(·, ·)-co-accretive mapping with Dom(N) ⊆ C2. Suppose
that the constants ϱi > 0 comply with

0 < δC1

(√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2

)
< 1.

0 < δC2

(√
1− 2(µ1η21 − γ1σ21) + 2c21ν

2
1 +

√
1− 2ϱ2κ1 + 2c21ϱ

2
2ς

2
1

)
< 1.

1 + 2c2i ν
2
i > 2(µiη

2
i − γiσ

2
i ), 1 + 2c22ϱ

2
1ς

2
2 > 2ϱ1κ2, 1 + 2c21ϱ

2
2ς

2
1 > 2ϱ2κ1.

(3.10)

(i) Then there exists a unique element (θ, ϑ) ∈ C1 × C2 such that (θ, ϑ) solves
APP (3.1).

(ii) The sequence {(θn, ϑn)} ∈ C1 × C2 generated by parallel scheme (1.5) con-
verges strongly to (θ, ϑ).

Proof. (i) Define Λ1 =: ΠC1 [G(φ2, ψ2)− ϱ1T ] and Λ2 = ΠC2 [H(φ1, ψ1)− ϱ2S].
Then, it follows from Lemma 2.18 that Λ1 : C2 → C1 is Φ1-contraction
mapping and Λ2 : C1 → C2 is Φ2-contraction. Hence, the required proof can
be obtained by utilizing the Proposition 2.19.

(ii) It follows from (1.5) that

∥qn − q∥ = ∥(1− cn)θn + cnΛ1(ϑn)− [(1− cn)θ + cnΛ1(ϑ)]∥
≤ (1− cn)∥θn − θ∥+ cn∥Λ1(ϑn)− Λ1(ϑ)∥
≤ (1− cn)∥θn − θ∥+ cnΦ1∥ϑn − ϑ∥.

(3.11)

∥ξn − ξ∥ = ∥(1− bn)θn + bnqn − [(1− bn)θ + bnq]∥
≤ (1− bn)∥θn − θ∥+ bn∥qn − q∥.

(3.12)

∥θn+1 − θ∥ = ∥(1− an)Λ2(ξn) + anΛ2(qn)− [(1− an)Λ2(ξ) + anΛ2(q)]∥
≤ (1− an)∥Λ2(ξn)− Λ2(ξ)∥+ an∥Λ2(qn)− Λ2(q)∥
≤ (1− an)Φ2∥ξn − ξ∥+ anΦ2∥qn − q∥
≤ (1− an)Φ2(1− bn)∥θn − θ∥+Φ2[bn + an(1− bn)]∥qn − q∥
≤ Φ2[(1− an)(1− bn) + (1− cn)(bn + an(1− bn))]∥θn − θ∥
+Φ1Φ2cn[bn + an(1− bn)]∥ϑn − ϑ∥.

(3.13)
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In the similar manner, we obtain

∥rn − r∥ = ∥(1− cn)ϑn + cnΛ2(θn)− [(1− cn)ϑ+ cnΛ2(θ)]∥
≤ (1− cn)∥ϑn − ϑ∥+ cn∥Λ2(θn)− Λ2(θ)∥
≤ (1− cn)∥ϑn − ϑ∥+ cnΦ2∥θn − θ∥.

(3.14)

∥pn − p∥ = ∥(1− bn)ϑn + bnrn − [(1− bn)ϑ+ bnr]∥
≤ (1− bn)∥ϑn − ϑ∥+ bn∥rn − r∥.

(3.15)

∥ϑn+1 − ϑ∥ = ∥(1− an)Λ1(pn) + anΛ1(rn)− [(1− an)Λ1(p) + anΛ1(r)]∥
≤ (1− an)∥Λ1(pn)− Λ1(p)∥+ an∥Λ1(rn)− Λ1(r)∥
≤ (1− an)Φ1∥pn − p∥+ anΦ1∥rn − r∥
≤ (1− an)Φ2(1− bn)∥θn − θ∥+Φ2(bn + an(1− bn))∥qn − q∥]
≤ Φ1[(1− an)(1− bn) + (1− cn)(an + bn(1− an))]∥ϑn − ϑ∥
+Φ1Φ2cn[an + bn(1− an)]∥θn − θ∥.

(3.16)

Choose Φ = max{Φ1,Φ2}, taking the assumptions that an, bn, cn ∈ [0, 1] and
Φ1,Φ2 are contractions into consideration and combining (3.13) and (3.16),
we obtain

∥θn+1 − θ∥+ ∥ϑn+1 − ϑ∥ ≤ Φ1[1− cn(1− Φ2)]∥θn − θ∥
+Φ2[1− cn(1− Φ1)]∥ϑn − ϑ∥
≤ Φ[∥θn − θ∥+ ∥ϑn − ϑ∥].

(3.17)

Thus, from (2.2), (3.17) yields

(3.18) ∥(θn+1, ϑn+1)− (θ, ϑ)∥∗ ≤ Φ∥(θn, ϑn)− (θ, ϑ)∥∗.
Noting Φ ∈ (0, 1), then by appealing the Lemma 2.5, we get

(3.19) lim
n→∞

∥(θn, ϑn)− (θ, ϑ)∥∗ = 0,

which implies limn→∞ ∥θn− θ∥ = limn→∞ ∥ϑn−ϑ∥ = 0. Thus, {(θn, ϑn)} converges
to (θ, ϑ) ∈ C1 × C2. □
Example 3.3. Let B = R, C1 = C2 = R with usual norm and inner product. Define
ΠC1 : B → C1 and ΠC2 : B → C2 by

ΠC1(θ) =
2θ + 1

5
and ΠC2(θ) =

2θ + 2

6
, ∀θ ∈ B.

Then ΠC1 and ΠC2 are Lipschitz continuous with constant δC1 = 2
5 and δC2 = 1

3 ,
respectively. Define the single-valued mappings φ1, ψ1, ζ1, ξ1, S : C1 → B;
φ2, ψ2, ζ2, ξ2, T : C2 → B;H,G : B × B → B and the set-valued mappings M,N :
B × B → 2B by

φ1(θ)=
θ + 1

3
, ψ1(θ)=

2θ

3
+

1

5
, ζ1(θ)=

θ + 3

8
, ξ1(θ)=−θ − 5

10
, S(θ)=

θ + 1

6
, ∀θ ∈ C1,

φ2(θ)=
θ + 1

2
, ψ2(θ)=

2θ + 1

6
, ζ2(θ)=

θ + 2

10
, ξ2(θ)=−θ − 8

6
, T (θ)=

θ

10
+

1

2
, ∀θ ∈ C2,

H(φ1(θ), ψ1(θ)) = φ1(θ)− ψ1(θ), G(φ2(ϑ), ψ2(ϑ)) = φ2(ϑ)− ψ2(ϑ), ∀θ, ϑ ∈ B,
M(ζ1(θ), ξ1(θ)) = ζ1(θ) + ξ1(θ), N(ζ2(ϑ), ξ2(ϑ)) = ζ2(ϑ) + ξ2(ϑ), ∀θ, ϑ ∈ B.
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Now, we calculate

∥φ1(θ)− φ1(ϑ)∥ =
∣∣∣θ + 1

3
− ϑ+ 1

3

∣∣∣ ≥ 1

3
∥θ − ϑ∥, ∀θ, ϑ ∈ C1,

∥φ2(θ)− φ2(ϑ)∥ =
∣∣∣θ + 1

2
− ϑ+ 1

2

∣∣∣ ≥ 1

2
∥θ − ϑ∥, ∀θ, ϑ ∈ C2.

Thus, φ1 is 1
3 -expansive and φ2 is 1

2 -expansive.

∥ψ1(θ)− ψ1(ϑ)∥ =
∣∣∣2θ
3

+
1

5
− 2ϑ

3
− 1

5

∣∣∣ ≤ 2

3
∥θ − ϑ∥, ∀θ, ϑ ∈ C1,

∥ψ2(θ)− ψ2(ϑ)∥ =
∣∣∣2θ + 1

6
− 2ϑ+ 1

6

∣∣∣ ≤ 1

3
∥θ − ϑ∥, ∀θ, ϑ ∈ C2.

Thus, ψ1 is 2
3 -Lipschitz continuous and ψ2 is 1

3 -Lipschitz continuous.

⟨H(φ1(θ), ϖ)−H(φ1(ϑ), ϖ), θ − ϑ⟩ =
〈θ + 1

3
− ϑ+ 1

3
, θ − ϑ

〉
=

1

3
(θ − ϑ)2,

∥φ1(θ)− φ1(ϑ)∥2 =
〈θ + 1

3
− ϑ+ 1

3
,
θ + 1

3
− ϑ+ 1

3

〉
=

1

9
(θ − ϑ)2

which implies

H(φ1(θ), ϖ)−H(φ1(ϑ), ϖ), θ − ϑ⟩ ≥ 3∥φ1(θ)− φ1(ϑ)∥2,
and

⟨H(ϖ,ψ1(θ))−H(ϖ,ψ1(ϑ)), θ − ϑ⟩ = −
〈2θ
3

+
1

5
− 2ϑ

3
+

1

5
, θ − ϑ

〉
= −2

3
(θ − ϑ)2,

∥ψ1(θ)− ψ1(ϑ)∥2 =
〈2θ
3

+
1

5
− 2ϑ

3
+

1

5
,
2θ

3
+

1

5
− 2ϑ

3
+

1

5

〉
=

4

9
(θ − ϑ)2

which implies〈
H(ϖ,ψ1(θ))−H(ϖ,ψ1(ϑ)), θ − ϑ

〉
≥ −3

2
∥ψ1(θ)− ψ1(ϑ)∥2.

Thus, H(·, ·) is 3-cocoercive and 3
2 -relaxed cocoercive with respect to φ1 and ψ1,

respectively.

⟨G(φ2(θ), ϖ)−G(φ2(ϑ), ϖ), θ − ϑ⟩ =
〈θ + 1

2
− ϑ+ 1

2
, θ − ϑ

〉
=

1

2
(θ − ϑ)2,

∥φ2(θ)− φ2(ϑ)∥2 =
〈θ + 1

2
− ϑ+ 1

2
,
θ + 1

2
− ϑ+ 1

2

〉
=

1

4
(θ − ϑ)2
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which implies

⟨G(φ2(θ), ϖ)−G(φ2(ϑ), ϖ), θ − ϑ⟩ ≥ 2∥φ1(θ)− φ1(ϑ)∥2,

and

⟨G(ϖ,ψ2(θ))−G(ϖ,ψ2(ϑ)), θ − ϑ⟩ = −
〈2θ + 1

6
− 2ϑ+ 1

6
, θ − ϑ

〉
= −1

3
(θ − ϑ)2,

∥ψ2(θ)− ψ2(ϑ)∥2 =
〈2θ + 1

6
− 2ϑ+ 1

6
,
2θ + 1

6
− 2ϑ+ 1

6

〉
=

1

9
(θ − ϑ)2

which implies〈
G(ϖ,ψ2(θ))−G(ϖ,ψ2(ϑ)), θ − ϑ

〉
≥ −3∥ψ2(θ)− ψ2(ϑ)∥2,

Thus, G(·, ·) is 2-cocoercive and 3-relaxed cocoercive with respect to φ2 and ψ2,
respectively. Also, M and N are H(·, ·) and G(·, ·)-co-accretive mappings, respec-
tively. Further,

⟨S(θ)− S(ϑ), θ − ϑ⟩ =
〈θ + 1

6
− ϑ+ 1

6
, θ − ϑ

〉
≥ 1

6
∥θ − ϑ∥2, ∀θ, ϑ ∈ B,

∥S(θ)− S(ϑ)∥ =
∣∣∣θ + 1

6
− ϑ+ 1

6

∣∣∣ ≤ 1

6
∥θ − ϑ∥2, ∀θ, ϑ ∈ B.

i.e., S is 1
6 -strongly accretive and 1

6 -Lipschitz continuous.

⟨T (θ)− T (ϑ), θ − ϑ⟩ =
〈 θ

10
+

1

2
− ϑ

10
− 1

2
, θ − ϑ

〉
≥ 1

10
∥θ − ϑ∥2, ∀θ, ϑ ∈ B,

∥T (θ)− T (ϑ)∥ =
∣∣∣ θ
10

+
1

2
− ϑ

10
− 1

2

∣∣∣ ≤ 1

10
∥θ − ϑ∥2, ∀θ, ϑ ∈ B.

i.e., T is 1
10 -strongly accretive and 1

10 -Lipschitz continuous. Also, for constants

ϱ1 = 1, δC1 = 2
5 , µ1 = 3, η1 = 1

3 , γ1 = 3
2 , σ1 = 2

3 , ν1 = 1
3 , κ1 = 1

6 , ς1 = 1
6 , ϱ2 = 1, δC2 =

1
3 , µ2 = 2, η2 =

1
2 , γ2 = 3, σ2 =

1
3 , ν2 =

1
6 , κ2 =

1
10 , ς2 =

1
10 , the conditions

0 < δC1

(√
1− 2(µ1η21 − γ1σ21) + 2c21ν

2
1 +

√
1− 2ϱ1κ1 + 2c21ϱ

2
1ς

2
1

)
= 0.71241 < 1

0 < δC2

(√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 +

√
1− 2ϱ2κ2 + 2c22ϱ

2
2ς

2
2

)
= 0.68012 < 1

are also satisfied. Further,

ΠC2 [H(φ1, ψ1)− ϱ2S](−0.16344) = 0.04838,

ΠC1 [G(φ2, ψ2)− ϱ1T ](0.04838) = −0.16344,

i.e., (−0.16344, 0.04838) is the altering point of APP (3.1).
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Consequences and applications

Here, we shall look over the convergence of proposed iterative scheme (1.5) to
investigate the SGV arIncl (3.4) and SGV arIneq (3.7). We can re-design scheme

(1.5) by taking ψ1 =: R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)−ϱ1T ] and ψ2 = R

G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)−ϱ2S].

For initial point (θ0, ϑ0) ∈ C1 × C2, we estimate the sequence (θn, ϑn) ∈ C1 × C2 as
under:

(3.20)



θn+1 = (1− an)R
G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)− ϱ2S](ξn)

+anR
G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)− ϱ2S](qn),

ϑn+1 = (1− an)R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](pn)

+anR
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](rn),

ξn = (1− bn)θn + bnqn, pn = (1− bn)ϑn + bnrn,

qn = (1− cn)θn + cnR
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](ϑn),

rn = (1− cn)ϑn + cnR
G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)− ϱ2S](θn),

where the sequences {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 are in [0, 1].

Theorem 3.4. For each i ∈ Γ; let the single-valued mappings φi, ψi, ζi, ξi : Ci → B
be such that φi is ηi-expansive and ψi is σi-Lipschitz continuous; H : B × B → B
be (µ1, γ1)-symmetric cocoercive and ν1-mixed Lipschitz continuous and G : B ×
B → B be (µ2, γ2)-symmetric cocoercive and ν2-mixed Lipschitz continuous. Let
S : C1 → B be κ1-strongly accretive and ς1-Lipschitz continuous and T : C2 → B
be κ2-strongly accretive and ς2-Lipschitz continuous. Let M : B × B → 2B be
H(·, ·)-co-accretive mapping with Dom(M) ⊆ C1 and N : B × B → 2B be G(·, ·)-co-
accretive mapping with Dom(N) ⊆ C2. Suppose that the constants ϱi comply with
the following inequalities:

0 <

√
1− 2(µ2η22 − γ2σ22) + 2c22ν

2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2

ϱ1(ε1 − ω1) + (µ1η21 − γ1σ21)
< 1,

0 <

√
1− 2(µ1η21 − γ1σ21) + 2c21ν

2
1 +

√
1− 2ϱ2κ1 + 2c21ϱ

2
2ς

2
1

ϱ2(ε2 − ω2) + (µ2η22 − γ2σ22)
< 1,

1 + 2c2i ν
2
i > 2(µiη

2
i − γiσ

2
i ), 1 + 2c22ϱ

2
1ς

2
2 > 2ϱ1κ2, 1 + 2c21ϱ

2
2ς

2
1 > 2ϱ2κ1.

(3.21)

(i) Then there exists a unique element (θ, ϑ) ∈ C1 × C2 such that (θ, ϑ) solves
SGV arIncl (3.4).

(ii) The sequence {(θn, ϑn)} ∈ C1 × C2 generated by the parallel scheme (3.20)
converges strongly to (θ, ϑ).

Proof. (i) Define Ψ1 =: R
H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ] and Ψ2 =: R

G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)−

ϱ2S]. Then taking the Lemma 2.20 into account, one can achieve that Ψ1 : C2 → C1
is Ω1-contraction mapping. Similarly Ψ2 : C1 → C2 is Ω2-contraction mapping. By
utilizing Proposition 2.19, we infer that there exists a unique element (θ, ϑ) ∈ C1×C2
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such that Ψ1(ϑ) = θ and Ψ2(θ) = ϑ and the definitions of Ψ1 and Ψ2 lead to{
R

H(·,·)
ϱ1,M(·,·)[G(φ2, ψ2)− ϱ1T ](ϑ) = θ,

R
G(·,·)
ϱ2,N(·,·)[H(φ1, ψ1)− ϱ2S](θ) = ϑ.

Thus by implementing Lemma 3.1, we deduce that (θ, ϑ) ∈ C1×C2 solves SGV arIncl
(3.4).
(ii) Since Ψ1 : C2 → C1 is Ω1-contraction mapping and Ψ2 : C1 → C2 is Ω2-
contraction mapping. Then from (3.20), we have

∥qn − q∥ = ∥(1− cn)θn + cnΨ1(ϑn)− [(1− cn)θ + cnΨ1(ϑ)]∥
≤ (1− cn)∥θn − θ∥+ cn∥Ψ1(ϑn)−Ψ1(ϑ)∥
≤ (1− cn)∥θn − θ∥+ cnΩ1∥ϑn − ϑ∥.

(3.22)

∥ξn − ξ∥ = ∥(1− bn)θn + bnqn − [(1− bn)θ + bnq]∥
≤ (1− bn)∥θn − θ∥+ bn∥qn − q∥.

(3.23)

∥θn+1 − θ∥ = ∥(1− an)Ψ2(ξn) + anΨ2(qn)− [(1− an)Ψ2(ξ) + anΨ2(q)]∥
≤ (1− an)∥Ψ2(ξn)−Ψ2(ξ)∥+ an∥Ψ2(qn)−Ψ2(q)∥
≤ (1− an)Ω2∥ξn − ξ∥+ anΩ2∥qn − q∥
≤ (1− an)Ω2(1− bn)∥θn − θ∥+Ω2[bn + an(1− bn)]∥qn − q∥
≤ Ω2[(1− an)(1− bn) + (1− cn)(bn + an(1− bn))]∥θn − θ∥
+Ω1Ω2cn[bn + an(1− bn)]∥ϑn − ϑ∥.

(3.24)

In the similar manner, we obtain

∥rn − r∥ = ∥(1− cn)ϑn + cnΨ2(θn)− [(1− cn)ϑ+ cnΨ2(θ)]∥
≤ (1− cn)∥ϑn − ϑ∥+ cn∥Ψ2(θn)−Ψ2(θ)∥
≤ (1− cn)∥ϑn − ϑ∥+ cnΩ2∥θn − θ∥.

(3.25)

∥pn − p∥ = ∥(1− bn)ϑn + bnrn − [(1− bn)ϑ+ bnr]∥
≤ (1− bn)∥ϑn − ϑ∥+ bn∥rn − r∥.

(3.26)

∥ϑn+1 − ϑ∥ = ∥(1− an)Ψ1(pn) + anΨ1(rn)− [(1− an)Ψ1(p) + anΨ1(r)]∥
≤ (1− an)∥Ψ1(pn)−Ψ1(p)∥+ an∥Ψ1(rn)−Ψ1(r)∥
≤ (1− an)Ω1∥pn − p∥+ anΩ1∥rn − r∥
≤ (1− an)Ω2(1− bn)∥θn − θ∥+Ω2[bn + an(1− bn)]∥qn − q∥]
≤ Ω1[(1− an)(1− bn) + (1− cn)(an + bn(1− an))]∥ϑn − ϑ∥
+Ω1Ω2cn[an + bn(1− an)]∥θn − θ∥.

(3.27)

Choose Ω = max{Ω1,Ω2}, where Ω1,Ω2 are contractions and an, bn, cn ∈ [0, 1].
Combining (3.24) and (3.27), we obtain

∥θn+1 − θ∥+ ∥ϑn+1 − ϑ∥ ≤ Ω1[1− cn(1− Ω2)]∥θn − θ∥
+Ω2[1− cn(1− Ω1)]∥ϑn − ϑ∥
≤ Ω[∥θn − θ∥+ ∥ϑn − ϑ∥].

(3.28)
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Thus, from (2.2), (3.28) yields

(3.29) ∥(θn+1, ϑn+1)− (θ, ϑ)∥∗ ≤ Ω∥(θn, ϑn)− (θ, ϑ)∥∗.
Noting Ω ∈ (0, 1), then by appealing the Lemma 2.5, we get

(3.30) lim
n→∞

∥(θn, ϑn)− (θ, ϑ)∥∗ = 0,

which implies limn→∞ ∥θn− θ∥ = limn→∞ ∥ϑn−ϑ∥ = 0. Thus, {(θn, ϑn)} converges
to (θ, ϑ) ∈ C1 × C2. □
Theorem 3.5. For each i ∈ Γ; let QCi : B → Ci be sunny nonexpansive retractions
and the mappings φi, ψi, ζi, ξi,H,G, S, T are identical as in Theorem 3.4. Suppose
that the constants ϱi > 0 comply with the following inequalities:√

1− 2(µ1η21 − γ1σ21) + 2c21ν
2
1 +

√
1− 2ϱ2κ1 + 2c21ϱ

2
2ς

2
1 < 1,√

1− 2(µ2η22 − γ2σ22) + 2c22ν
2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2 < 1,

1 + 2c2i ν
2
i > 2(µiη

2
i − γiσ

2
i ), 1 + 2c22ϱ

2
1ς

2
2 > 2ϱ1κ2, 1 + 2c21ϱ

2
2ς

2
1 > 2ϱ2κ1.

(3.31)

(i) Then (θ, ϑ) ∈ C1 × C2 is the unique solution of SGV arIneq (3.7).
(ii) The sequence {(θn, ϑn)} ∈ C1×C2 generated by the following parallel iterative

scheme:

(3.32)



(θ0, ϑ0) ∈ C1 × C2,
θn+1 = (1− an)QC2 [H(φ1, ψ1)− ϱ2S](ξn)

+anQC2 [H(φ1, ψ1)− ϱ2S](qn),

ϑn+1 = (1− an)QC1 [G(φ2, ψ2)− ϱ1T ](pn)

+anQC1 [G(φ2, ψ2)− ϱ1T ](rn),

ξn = (1− bn)θn + bnqn, pn = (1− bn)ϑn + bnrn,

qn = (1− cn)θn + cnQC1 [G(φ2, ψ2)− ϱ1T ](ϑn),

rn = (1− cn)ϑn + cnQC2 [H(φ1, ψ1)− ϱ2S](θn),

converges strongly to (θ, ϑ).

Proof. (i) Define g1 =: QC1 [G(φ2, ψ2)− ϱ1T ] and g2 =: QC2 [H(φ1, ψ1)− ϱ2S]. Since
QC1 and QC2 are sunny nonexpansive, then one can deduce from Lemma 2.18 and
(3.31) that g1 : C2 → C1 is L1-contraction mapping, where

(3.33) L1 =
√

1− 2(µ2η22 − γ2σ22) + 2c22ν
2
2 +

√
1− 2ϱ1κ2 + 2c22ϱ

2
1ς

2
2 ,

and g2 : C1 → C2 is L2-contraction mapping, where

(3.34) L2 =
√
1− 2(µ1η21 − γ1σ21) + 2c21ν

2
1 +

√
1− 2ϱ2κ1 + 2c21ϱ

2
2ς

2
1 .

From Proposition 2.19, it follows that there exists unique element (θ, ϑ) ∈ C1 × C2
such that g2(θ) = ϑ and g1(ϑ) = θ. Thus, the required result can be obtained by
invoking Lemma 2.17.
(ii) Since g1 : C2 → C1 is L1-contraction and g2 : C1 → C2 is L2-contraction. Then
following the steps as in (3.22)-(3.27) and choosing L = max{L1, L2}, we obtain

(3.35) ∥θn+1 − θ∥+ ∥ϑn+1 − ϑ∥ ≤ L[∥θn − θ∥+ ∥ϑn − ϑ∥].
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Thus, from (2.2), (3.35) yields

(3.36) ∥(θn+1, ϑn+1)− (θ, ϑ)∥∗ ≤ L∥(θn, ϑn)− (θ, ϑ)∥∗.

Noting L ∈ (0, 1), then by appealing the Lemma 2.5, we get

(3.37) lim
n→∞

∥(θn, ϑn)− (θ, ϑ)∥∗ = 0,

which implies limn→∞ ∥θn− θ∥ = limn→∞ ∥ϑn−ϑ∥ = 0. Thus, {(θn, ϑn)} converges
to (θ, ϑ) ∈ C1 × C2. □
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