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A NEW ITERATIVE SCHEME FOR ALTERING POINTS
PROBLEM WITH APPLICATIONS

MOHAMMAD AKRAM

ABSTRACT. In this paper, we introduce a new parallel iterative scheme and em-
ploy the same to investigate an altering points problem. Some consequent results
are also discussed. The obtained results extend and generalize some relevant
results of the existing literature. The usefulness and efficiency of our scheme is
illustrated using numerical examples.

1. INTRODUCTION

The theory of variational inequalities (VIs) is an illustrious research field which
has been implemented and enriched diverse fields of science and engineering, such
as gauge field theory in particle physics, mathematical biology, the general theory
of relativity, etc. This theory has been made systematic advancement in the dis-
cipline of mathematics and engineering. It provides tools for dealing with systems
of nonlinear equations, game theory, equilibrium, optimization theory, operations
research, and complementarity problems, as special cases. Several techniques have
been announced for exploring VIs in diverse directions. An fruitful generalized form
of VI is called variational inclusion (VarIncl) which is to obtain 6 € H such that

(1.1) 0€(¥+G),

where G : CCH — H and 1 : H — 2% with Dom(¢)) C € are single-valued
and set-valued maximal monotone mappings, respectively. VarIncl (1.1) includes
monotone inclusions, equilibrium problems (EPs), VIs, and saddle point problems
as particular cases.

Most of methods for exploring VIs rely on projection techniques. Goldstein [11]
studied a simplest version of the projection technique by generalizing gradient pro-
jection method for solving optimization problems. Projection technique enables us
to reform VIs into fixed point problems (FPPs) and fixed point iterative methods
can be employed to analyze the approximate solutions of VIs. Several schemes based
on fixed points are constructed and implemented for exploring VIs, FPPs, initial
and boundary value problems, image recovery, image restoration, image processing
problems, and machine learning, etc., see, [3,7,12,13,17,22,25,28,30]. Agarwal et
al. [1] came up with a noble iterative method, named S-iteration method. For some
arbitrary point 0y € C, the sequence {6, } is defined as follows:

12) {enﬂ = (1 — an)¥0p + antdy,

7971 = (1 - bn)en + bn¢9m
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where the sequences {a,}, {b,} are in (0,1). Since its inception, S-iterative scheme
and its modified versions have attracted many researchers to investigate real world
problems including FPPs, common fixed point problems and VIs, see, [4-6,10, 14,
16,20, 23]. In [18], the author further analyzed S-iterative method and proved by
considering numerical example that it has efficient convergence rate than Picard as
well as Mann iterative schemes for contraction mappings in metric spaces. By ap-
plying S-iteration method, the author also studied minimization and split feasibility
problems.

In 2014, Sahu [19] brought forward the notion of altering points and outlined the
convergence for the parallel S-iterative scheme as under: For initial point (6, J9) €
C1 x G2 and a € (0,1), the sequence {(6,,7,)} is approximated as follows:

{enH = o[(1 — @) + atp16n],

(1.3) Unt1 = V1[(1 — a)bp + arpaty],Vn € N,

where 17 : €1 — G2 and ¥y : G2 — C; are two mappings. Recently, Zhao et
al. [29] examined the system of variational inclusions for accretive mappings by
carrying through the notion of altering points. Also, they executed these problems
by proposing parallel Mann and parallel S-iterative schemes. Following this concept,
several parallel iterative methods have been announced to deal with mathematical
models including VIs, VarIncl, FPPs with numerous applications, see, for example;
[2,14,27]. In [21], Sintunavarat and Pitea approximated fixed point of a self mapping
by designing following iterative scheme:

0y € C,
&n = (1 = by)0n + bbby,
U = (1 — en)bn + cnén,
= (1= ap)d, + apé,,n=0,1,2,...,

where the real sequences {a,}72 ), {bn}52, {cn}0, are contained in [0, 1] and 1) is
a nonlinear self mapping on a nonempty closed convex subset € of normed linear
space B. Following the attributed facts and methodologies, it is worthy to examine
an altering points problem (APP). We design a new parallel iterative scheme based
on (1.4) as follows.

Let 1 : Co — €1 and vy : €1 — G5 be two mappings. Then for initial point
(00, Y0) € €1 x G2, we estimate the sequence {(0,,7,)} € €1 x Ca as under:

9n+1 = (1 - an)¢2(§n) + anw2(Qn)a ﬁn—o—l = (1 - an)wl(pn) + an¢1(rn)7
(1'5) €n = (1 - bn)en + anm Pn = (1 - bn)ﬂn + bnrm
n = (1 - cn)en =+ Cn¢1(ﬁn)7 n = (1 - Cn)ﬁn + ang((gn),

where the sequences {an}22 ), {bn}02 and {c,}52, are in [0,1]. We shall analyze
the convergence of scheme (1.5) to examine the altering points problem.

The paper is methodized in the succeeding order. The next section comprises
preliminaries and requisite results. In Section 3, we commence the conceptualiza-
tion of problem followed by some particular cases based on imposed conditions on
the mappings. We bring forward a new parallel iterative scheme to achieve the ap-
proximate solution of altering points problem by proving existence and convergence

(1.4)

9n+1
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results under some mild preassumptions. Our theoretical findings are verified by
illustrative examples. At last, we explore some consequent systems of variational
inclusions and inequalities.

2. PRELIMINARIES

Let B* be a dual space of a real Banach Space B with norm || - || and duality
pairing (#,9) between 6 € B and 9 € B*. Let = = {6 € B : ||#]| = 1} be the unit
sphere. B is called uniformly convex if 3§ > 0 with 0,9 € = satisfying [|§ — || > €
implies H%H <1-0,Ve € (0,2] and B is called smooth, if for each 0 € =,

o) Lo I+ 7ol = ol

T—0 T

exists. If the limit (2.1) is attained uniformly for all 6,9 € = then B is known as
p5(T)

uniformly smooth and lim;_,o =5

[0,00) is given as

= 0. The modulus of smoothness pp : [0,00) —

1 —_
pa(r) =sup { 510+ 0 + 10~ 91) =10 € =, |0l < 7}

The normalized duality mapping J : B — B* is defined by
JO) = {9 e B :0,9) =|9|>= |9}, Vb € B.

If B is smooth then J is single-valued.

Lemma 2.1 ([26]). Let J : B — B* be a normalized duality mapping. Then
16+ 9)1> < [10]* + 2¢°[[9]1 + 2(3, T (9)), V0,9 € B,

where ¢ > 0 is a real constant.

Next, we recall following notions. Let C be a nonempty closed convex subset of a
Banach space B. For each point # € B, 9 a unique nearest point Il € C, such that
|0 — eb|| = infyec{||0 — V| : ¥ € C}. Note that the metric projection Il¢ : B — C
has the following attributes [24]:

o |Tc(6) — (9| < [|0 — 9|, V0,9 € B;
o (§ —1IIc(9),9 —IIe(0)) < 0,V0 € B,vY € C;
o |[TIc(0) — T (9)||? < (e (9) — e (9),0 — 9),V0 € B9 € C.

A mapping Q¢ : B — C is said to be sunny, if

Qe(Qe(0) +t(0 — Qc(8))) = Qc(6),V8 € B,t > 0.

Q¢ is called retraction, if Q(Qj = @¢. Furthermore, Q)¢ is a sunny nonexpansive
retraction, if a retraction ¢ : B — C is sunny as well as nonexpansive. The
following lemma pertinent to the sunny nonexpansive retraction plays a decisive
role to derive our main results.

Proposition 2.2 ([9]). A mapping Q¢ : B — C is a retraction sunny nonerpansive
if and only if

(0 —Qc(0), (£ —Qc(9)) <0,V €C and £ € B.
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Proposition 2.3. Suppose m = m(0) : B — B and Q¢ : C — B be a retraction
sunny nonexpansive. Then

Qcsm(e)(0) = m(0) + Qe (0 — m(6)), V0 € B.

Remark 2.4. In a real Hilbert space H, a sunny nonexpansive retraction of B onto
C is the nearest point projection Il from B onto C. But all Banach spaces do not
carry this fact, since in Banach spaces nearest point projections are sunny but not
nonexpansive. In [9], Bruck proved that if the Banach space is uniformly smooth,
then for a nonexpansive retraction there exists a nonexpansive projection.

Lemma 2.5 ([8]). If {0,} and {9,,} are nonnegative real sequences comply with the
inequality
Ont1 < 00p + Uy, Vn €N,

where o € (0,1), lim,,0 ¥, = 0. Then lim,_,~ 6, = 0.

If || - || is a norm on a real Banach space B, then the norm | - || on B x B defined
by
(2.2) 16, )« = 1161l + [19]], 6,9 € B
is a Banach space.
2.1. Generalized accretive mapping. We collect the relevant background ma-

terial which will be utilized to accomplish the goal. A mapping ¢ : C — B is called
e accretive, if

e -strongly accretive, if I > 0 such that
(W(0) = ¥ (9), T (0 = 9)) > pll0 = I||*, 70,0 € C;
e n-expansive, if 3n > 0 such that
14(6) = @) = nl|6 — 9|, ¥0,9 € C;
e Lipschitz continuous, if 30 > 0 such that
19(0) — ()] < 6|0 — |, v8,0 € C.
If 6 € [0,1) then the mapping v is called contraction and nonexpansive if § = 1.
Definition 2.6. Let H : B — B be the single-valued mapping. A set-valued
mapping M : B — 28 is called
(i) accretive, if
(z =2, T —9) >0, V0,0 € B,z € M(0),z" € M(9);
(ii) m-accretive, if M is accretive and (I + oM )(B) = B,Vp > 0;
(iii) H-accretive, if M is accretive and range(H + oM ) = B,Vo > 0.
3

Remark 2.7. H-accretive mapping need not be m-accretive. Consider H(6) = —6
and M (0) = sgn(0),V0 € B, then M is H-accretive but not m-accretive, see, [15].

Definition 2.8. Let C; # () be a closed convex subset of B; 1,11 : C; — B and
H : B x B — B be the single-valued mappings. Then
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(i) H(e1,-) is called pi-cocoercive regarding ; if 31 > 0 such that
(H(p1(0),v) = H(p1(9),v), T (0 = 0)) = pu |0 — 9], ¥0,9, v € Cy;
(ii) H(-,9n) is called 7;-relaxed cocoercive regarding 1 if 3y; > 0 such that
(H (v, 91(0)) — H(v,91(9)), T (0 = 9)) = (=m)[l0 = 9]]*,¥0,9,v € Cy;

(iii) H(-,-) is called (p1,71)-symmetric cocoercive, if H(p1,-) is pi-cocoercive
regarding ¢ and ~vi-relaxed cocoercive regarding 1;
(iv) H(-,-) is called vy-mixed lipschitz continuous if Jv; > 0 such that

[ H (01(0),11(0)) — H(p1(9), 1(9)) || < 1|0 = D], V0,9 € C1.

Definition 2.9. Let (1,&1 : C1 — B be the single-valued mappings and M : BxB —
28 be a set-valued mapping. Then

(i) M((1,-) is called e1-accretive regarding (7 if Je; > 0 such that
(m—n,7(0 =) > e1]|§ = 9|*,¥0,9,0 € Ctym € M(Gi(6),v),n € M(¢1(9),v);
(il) M(-, &) is called wi-relaxed accretive regarding &; if Jw; > 0 such that
(m—n,T(O—0)) > (—wn)[0— 0|2, 90, 9,0 € C1,m € M(v,€1(6)),n € M(v,1(9));

(iii) M(-,-) is called (e1,w;)-symmetric accretive, if M((y,-) is €j-accretive re-
garding (; and wi-relaxed accretive regarding &;.

Definition 2.10. Let @1, %1,(1,&1 : C1 — Band H : BxB — B be the single-valued
mappings. A multi-valued mapping M : B x B — 2B is called H(-,-)-co-accretive if
H(-,-) is (u1,v1)-symmetric cocoercive; M(-,-) is (€1,w;)-symmetric accretive and
[H(p1,9¢1) + oM (C1,€)](B) = B, Vo > 0.

Remark 2.11. Every symmetric cocoercive and symmetric accretive mapping need
not be H(-,-)-co-accretive.

Definition 2.12. Let ¢1,%1,(1,&1 : C1 — Band H : BxB — B be the single-valued
mappings. Let M : Bx B — 28 be H(-,-)-co-accretive mapping. Then the resolvent

H() B B is defined as

operator RQLM(”

RICO (0) = (H(pr. 1) + 1M (C1, 1)) 7 (6). V0 € B, oy > 0.
Proposition 2.13. Let H : B x B — B and ¢1,%1,(1,&1 : C1 — B be the single-
valued mappings such that 1 is n1-expansive and Yy is o1-Lipschitz continuous with
€1 > wi, > and m > oq. Let M : Bx B — 28 be H(-,-)-co-accretive mapping.

Then the mapping RZ(X}(. 3 B — B is T1-Lipschitz continuous, i.e.,

(2.3) |R G @) = BE G @) < a6 9],

1
o1(e1—w1)+(p1n? —7102)"

where Y1 =
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2.2. Altering points.

Definition 2.14. [18] Let C1,Cs # () be subsets of a metric space E. The points
0 € C; and ¥ € Cy are called altering points of the mappings ¢ : C; — Co and
o : Co — Cq, if

Pi(0) =
A4
z4 {¢2<ﬁ> 0
We designate the set of altering points by Alt(11,19) = {(0,9) € C; x Ca : ¥1(0) =
¥ and 9 (V) = 0}.

Example 2.15. Let B=R,C; = Cy = Ry. Define 91 : C; — Co and 92 : Co — (3
as 11(0) = €’ and 19(¥) = In¥. Then 1119(¥) = 9 and ¥9ep1() = 6. Thus, (4, 9)
are altering points of ¢ and 1)s.

Example 2.16. Let B =R2.C; = {(0,9) : 0 +9 = 2},C2 = {(6,9) : 6 + 9 = 6}.
Define 11 : C; — Co and 92 : C2 — Cy as ¥1(6,9) = 3(9,0) and 2(0,9) = %(79 0).
Setting 6* = (0,9) € C; and ¥* = 3(19,0) € Cy. Then, 11(6*) = 9* and 12 (9*) = 6*.

Thus, (0*,9*) are altering points of ¥ and s.

Now onward, I' = {1,2}, for each i € I', we assume C;(# ¢) be closed convex
subsets of a real 2-uniformly smooth Banach space B. Hereinafter, it is shown that
APP and the system of generalized variational inequalities (SGVarlInequal) are
analogous.

Lemma 2.17. For each i € I', suppose that Qc, : B — C; are sunny nonexrpansive
retractions and S; : C; — B are nonlinear mappings, then following statements are
identical:

(i) 8 € C1 and ¥ € Ca are altering points of Qc,[I — 0151] and Qc,[I — 0252].
(ii)) (8,9) € C1 x Cq solves the following SGV arInequal: Find (0,9) € C1 x Cy
such that

{<Q151(9) + 19— 9,.,7((«}2 — 19)> > 0, VUJQ S CQ,

2.5
(25) (0353(0) + 6 — 9, T(wr — 1) > 0. Voo € Cy.

Lemma 2.18. Let the single-valued mappings pa,%s : Co — B be such that s
is me-expansive and g is og-Lipschitz continuous; G : B x B — B be (u2,7v2)-
symmetric cocoercive and vo-mized Lipschitz continuous. Let T : Co — B be ko-
strongly accretive and <o-Lipschitz continuous. Suppose that the constant 91 > 0
satisfies

(2.6)  0<de (\/1 — 2p1zmf — 1203) + 26303 + /1~ 20152 + 202.91§2) <1.

Then the mapping Il¢, [G(p2,12) — 01T] : Ca — C1 is ®y-contraction, where

P, = 5(31 (@2 + Ag), O, = \/1 — 2(/1277% — 720'%) + 26%1/22

and Ag = \/1 — 201k + 2c30%63.
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Proof. Let 91,19 € Co, then we have

|G (p2(01),12(01)) — 01T (V1) — (G(p2(F2), P2(P2)) — 01T (V2))]]
(2.7) < NG (p2(91),¥2(01)) — G(w2(P2),1h2(P2)) — (P91 — D2)]|
+ [[91 = P2 — 01(T (V1) — T(I2))]|-

Since G is (u2,7v2)-symmetric cocoercive, vo-mixed Lipschitz continuous, g is 72-
expansive and vy is o9-Lipschitz continuous, then referring Lemma 2.1, we obtain

1G(p2(91), 2(91)) — G(p2(V2), 2 (V2)) — (91 — F2)||

< |91 = 92|* — 2(G(p2(01), ¥2(91)) — G(2(2), ¥2(02)), T (91 — V2))
+263||G(p2(91), P2(91)) — G(2(92), P2(92)) ||

< 191 — V2)|* = 2[pallp2(91) — w2 (W)

— Y2lltha(9h) — a(P2)]1%] + 2305 |91 — Da|?

< 91 = Dal* = 2[pan3 |91 — D2l|* — y203 ][00 — V2||*) + 26505 |91 — B,

(2.8)

which implies

(2.9) |G (p2(01),¢2(01)) — G(p2(P2), Y2(P2)) — (V1 — V2)|| < B[ — V2|,

where, O, = \/1 — 2(u2m3 — 7203) + 2c3v3. Taking into account the ¢o-Lipschitz
continuity and ko-strongly accretive property of T', we acquire

191 — 92 — 01(T (%) — T(92))|?

(2.10) < [[91 = D2|” = 201(T (1) — T(2), T (9 — 92)) + 2301 T (1) — T(92)|”
< 91 = Dal|* = 201k2[|01 — Do + 23 0i<3 |01 — V2%,

which implies

(2.11) 101 = P2 — 1 (T(h) — T(02))]| < Azf|d1 — D2,

where, Ag = \/ 1 — 2p1K2 + 2c3p%s5. Employing the Lipschitz continuity of Il¢,, we
obtain

(2.12)  |[He, [G(p2,¥2) — 01T (V1) — e, [G(pa,1h2) — 01T](92) < P1[91 — V2.

It follows from (2.6) that 0 < ®; < 1, where ®; =4, <\/1 — 2(pans — 1203) + 2c3va+

V11— 201k + 2c§g%g22). Therefore, the mapping Il¢, [G(p2,12) — 01T] : C2 — C1

is ®;-contraction. Similarly, we can verify that Il¢,[H (p1,11) — 025] : C1 — Ca is
dy-contraction. O

Proposition 2.19. Let ¢1 : C1 — Co and 19 : Co — C1 be k1 and ko-contraction
mappings, respectively. Then (6,9) € C1 x Co is the unique solution of the problem

(2.4), i.e.,

wl (9) = 197
(2.13) {1#2(19) .,
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Proof. Since 1 : C1 — Cq is kp-contraction and o : Co — C; is ke-contraction
mapping. It yields that 9t : C; — C; is a contraction mapping. Thus, by
appealing to PBC, 1917 has a unique element 6 € C; such that 6 = 911(0).
Further, there exists a unique element 9 € Cy such that ¢ = 11(#). Thus, we have

0 = Pa(0). O

Lemma 2.20. For each i € T'; let the single-valued mappings p;, i, (i, & : C; — B
be such that @; is n;-expansive and v; is o;-Lipschitz continuous; G : B x B — B be
(2, y2)-symmetric cocoercive and vo-mized Lipschitz continuous with 1 > w1, 1 >
v1 andmy > o1. LetT : Co — B be ko-strongly accretive and so-Lipschitz continuous.
Let M : B x B — 2B be H(-,-)-co-accretive mapping such that Dom(M) C Cj.
Suppose that the constant g1 > 0 satisfies

- V1= 2(uan3 — 1203) + 2¢3v3 + /1 — 201k2 + 2c3072
o1(e1 — wi) + (g — o)

(2.14) <1.

Then the mapping Rm(M)( )[ (p2,12) — 01T] : Co — Cq is Qq-contraction, where

Ql Tl(@g—l-Ag) @2 = \/1 — 2(”277% — ’}/20‘%) + 2031/22, AQ = \/1 — 2@1/&2 + 2C%Q%§22
and Y1 = L

o1(e1—w1)+(p1n—y107) "
Proof. Following the steps as from (2.7)-(2.11) and employing the Lipschitz conti-
nuity of resolvent operator R (’)( )y we obtain

(2. 15)

IR G2, 102) — exTI(01) = R [Gp2, 1) — 1 T)(02) < [y — sl
where Q) = T1(02 + Ajz). From the assumption (2.14), we have 0 < ©; < 1. Thus,

RZ(X/'[)(, .)[G(QOQ, 9) — 01T) : Co — Cy is Qq-contraction mapping. O

3. PROBLEM FORMULATION AND CONVERGENCE

For each ¢ € T, let Ilg, : B — C; be operators; ¢;,¢;,(,& @ C — By H,G -
BxB—B;S5:Ci — Band T :Cy — B be the single-valued mappings. We examine
the following altering points problem (APP): Find (6,9) € C; x Cy such that

(3.1) He, [H(¢1, 1) — 025](0) = 9,
' e, [G(p2,12) — 01 T](9) = 0.
It H(-

,)=H,G(-,") = G,p; = ; = I, then (3.1) is identical to the following AP P:
Find (0,9) € C1 x Cy such that

Ie,[H — 025](0) = 0,
I, [G — 01T)(9) = 6.

If H=G = I, then APP (3.2) is equivalent to the problem of finding (0,v) € C; xCa
such that

e, {1 — 025)(0) = 9,
33 {Hcl 1= orT)(9) = 0

(3.2)
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APP (3.1) includes several problems existing in the literature. A few particular

cases of APP (3.1) are enumerated as under:

(i) It Te, = R and T, = RSUY ), where M < B x B — 28 is H(-,)-
co-accretive with Dom(M) C C; and N : B x B — 2B is G(-, -)-co-accretive
mapping with Dom(N) C Cs, then APP (3.1) turns into the system of
generalized variational inclusions (SGVariIncl): Find (0,9) € C; x Cy such
that

(3.4) 0 € G(p2(9), 1h2(V)) — H(p1(0), ¥1(0)) + 02(N(¢2(V), £2(9)) + S(6)),
' 0 € H(p1(0),v1(0)) — G(p2(9), ¥2(9)) + 01(M(C1(0), £1(0)) + T'(+9)).

(i) If @i = ¢ = ¢ = & = LTI, = RY , and Tle, = RS, where M : B — 28
is H-accretive with Dom(M) C C; and N : B — 25 is G-accretive mapping
with Dom(N) C Ca, then APP (3.1) is identical to the problem: Find
(0,79) € C1 x Cq such that

55) {o € G(9) — H(8) + o2(N (9) + S(9)),
0€ H(O) — G(0) + o1(M(0) + T(0)).

(i) If H = G = I, ll;;, = RY and Ile, = R}, where M,N : B — 2P
are m-accretive mappings with Dom(M) C C; and Dom(N) C Co, then
SGVarIncl (3.5) turns to the system of variational inclusions: Find (0,v) €
C1 x Co such that

56) {060—9+@ﬂwa+swm

0€6—7J+01(M(O)+T(9)).
(iv) If ¢, = Qc,, the sunny nonexpansive retractions onto C;, then APP (3.1)
becomes the system of generalized variational inequalities (SGVarlIneq) of
finding (6,9) € C1 x Cq such that

(3.7) (01T (V) + 0 — G(p2(9),12(0)), T (wa — 0)) = 0, Vws € Co,
‘ (028(0) + 9 — H(p1(0),91(0)), T (w1 —9)) > 0, Vw; € C1.

(v) If B = H, areal Hilbert space then SGVarlIneq (3.7) turns into the following
SGVarIneq: Find (6,9) € C; x Ca such that

(3.8)

(01T (0) + 6 — G(p2(9), ¥2(9)),w2 — 0) > 0, Vs € Ca,
(025(0) + 9 — H(p1(0),91(0)),w1 —3J) > 0, Vwr € C1.

Lemma 3.1. For each i € T'; let p;,1;,(,& : C; — B and H /G : Bx B — B be
the single-valued mappings. Let S : C1 — B and T : Co — B be the single-valued
mappings. Let M : B x B — 2B be H(-,-)-co-accretive mapping with Dom(M) C Cy
and N : B x B — 28 be G(-,-)-co-accretive mapping with Dom(N) C Cy. Then
SGVarIncl (3.4) has a solution (0,9), if and only if (0,9) € C1 x Ca solves the
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following APP:

(3.9) {Ri(,&)(-,-)[H(wlj 1) — 025](0) =,
| =0

Ri(,}\})(.,.)[G(SDQ, P2) — o1 T)(V)

Next, we shall estimate the solution of APP (3.1) by implementing iterative
method (1.5).

Theorem 3.2. Let Il¢, : B — C; be dq,-Lipschitz continuous mappings; the single-
valued mappings ©;, i, G, & + C; — B be such that ; is n;-expansive and ; is
o;-Lipschitz continuous; H : B x B — B be (u1,v1)-symmetric cocoercive and v -
mized Lipschitz continuous and G : B x B — B be (ug2,7y2)symmetric cocoercive
and vo-mized Lipschitz continuous. Let S : Cy — B be ki-strongly accretive and
c1-Lipschitz continuous and T : Co — B be ko-strongly accretive and ¢o-Lipschitz
continuous. Let M : BxB — 28 be H(-,-)-co-accretive mapping with Dom(M) C Cy
and N : B x B — 28 be G(-,-)-co-accretive mapping with Dom(N) C Co. Suppose
that the constants o; > 0 comply with

0 < d¢c, (\/1 — 2(pam3 — v203) + 2c3v3 + \/1 —201K2 + 20%@%22) <1

(31000 < 5, (\/1 — 202 — m0?) + 2607 + /1 200 + 230367 ) < 1.

1+ 2702 > 2(uim? — vi02), 1 + 230165 > 201k2, 1 + 2c1 036t > 20251

(i) Then there exists a unique element (6,9) € C; x Cy such that (0,7) solves
APP (3.1).

(ii) The sequence {(0,,Vy)} € C1 x Ca generated by parallel scheme (1.5) con-
verges strongly to (6,1).

Proof. (i) Define Ay =: Il¢, [G(p2,%2) — e1T] and Ag = Tlc,[H (1, ¢1) — 025].
Then, it follows from Lemma 2.18 that A; : Co — C; is Pp-contraction
mapping and As : C; — Co is ®o-contraction. Hence, the required proof can
be obtained by utilizing the Proposition 2.19.

(ii) It follows from (1.5) that

lgn — qll = |(1 = €n)0n + cnhi(Vn) — [(1 = )8 + cn A (V)]
(3.11) < (1= cn)[|0n = 0|l + callA1(95) — AL ()]
< (1= cp)l|0n — Ol + cn @1 |95 — I

Hgn - 5” = H(l - bn)en + bngn — [(1 - bn)9 + an]H

(3.12) < (1= b6 — 0] + bullan — all
1011 — 0[] = [[(1 = an)A2(§n) + anAa(gn) — [(1 — an)A2(E) + ana2(q)]||
< (1= an)[[A2(&n) — A2()[| + anllA2(gn) — A2(q)||
(313) < (1_an)(p2H€n_§H +an(p2HQn_QH

S (1 - an)(p2(1 - bn)Hen - 0” + (I)Q[bn + an(l - bn)”’% - QH
< Oo[(1 = an)(1 = bp) + (1 = cn)(bn + an(1 — bn))][|0n — 0|
+ (I)l(DQCn[bn + an(l - bn)]Hﬂn - 19”
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In the similar manner, we obtain
[ = 7ll = 11 = cn)Vn + cnB2(6n) — [(1 — cn)U + crAa(0)]]|
(3.14) < (1= ca)l[9n = Ol + cal A2(0n) — A2(0) |
< (1= cp) ||V — V| + cn®2||0,, — 6|
[P = pll = [[(1 = bp) U + by — [(1 = bp )0 + bur]|

(3.15) < (= ba)ln — O]+ ballra 7]
[Un41 = O] = [[(1 = an)A1(pn) + anhi(rn) — [(1 = an)Ar(p) + andi(r)]]]
< (L= an)[|A1(pn) — M) + an[[A1(rs) — Ar(r)|]
(3.16) < (1= an)®1llpn — pll + an®1l|rn — 7|
< (1= ap)P2(1 = bp)[|0, — O + P2(bp + an(1l — bn))llgn — qll]
< @1[(1 = an)(1 = bn) + (1 = cp)(an + bp(1 — an))][|9n — 9|
+ &1 Pacpfan + bn(1 — ay)]||0n — 0.
Choose ® = max{®;, Py}, taking the assumptions that ay, by, ¢, € [0, 1] and
®;, &y are contractions into consideration and combining (3.13) and (3.16),
we obtain
651 — 0]l + 91 — 9] < Ba[1 = cn(1 — D)6, — 0]
(3.17) + o[l — cn(1 — @1)][| 05 — I

< O[[|6, — Ol + [[9n = D]].
Thus, from (2.2), (3.17) yields

(3.18) [(On+1, Ing1) = (6, 9) ][« < @[(0n, In) — (6,7)]s
Noting ® € (0, 1), then by appealing the Lemma 2.5, we get
(3.19) ILm 10, 00) — (0,9)]]« =0,

which implies limy, o ||0r, — 0| = limp o0 ||95 — 9| = 0. Thus, {(n, )} converges
to (0,9) € C1 x Ca. 0

Example 3.3. Let B =R,(; = C2 = R with usual norm and inner product. Define
Ilg, : B— Cy and ¢, : B — C3 by

29+1andHC2(9) 29;2

Then Ile, and Ilg, are Lipschitz continuous with constant d¢, = % and 6¢c, = %,
respectively. Define the single-valued mappings ¢1,v1,(1,61,5 @ C1 — B;
02, 9,(2,&0, T : Co — B;H,G : B x B — B and the set-valued mappings M, N :
BxB— 28 by

e, (0) = V6 € B.

a®)="2Lu0=2 11 00=" a0)=-"2"50)=" wea,
eo0)="3 L 020 =" 0= "2 (0= -T2 0 1(0) = 1% lwee,
H(1(0),91(0)) = ¢1(0) — ¥1(0), G(2(V), 2(V)) = p2(9) — ¢2(V ),V0,19 € B,
M(G(0).60(60)) = 1 (6) + (60). N ((0). 2(9)) = Go(9) + E2(9), V6.9 € B.



2874 MOHAMMAD AKRAM

Now, we calculate

0+1 9+1 1
le10) = 1) = | 5= = 5| = 50— vl w0 € cu,
0+1 9+1 1
l2(6) = 2Dl = | 5= = = | = 5llo = ), ¥6,9 € o
Thus, ¢ is %—expanswe and o is §—expansive.
29 1
[41(6) — ¥1 (¢ \—] f—?;—g ,W 9|,v0,9 € Cy,
20+1 20+1
I9200) — ga(0)ll = |20+~ 2 < S~ ol ve,0 € ¢
Thus, v is %—Lipschitz continuous and g is %—Lipschitz continuous.
0+1 9+1
<H<w1<9>,w>—H(solw),w),e—w=<T—T o)
~ Loy
3( ) ?
f+1 I94+160+1 941
) — o1 (9| = — -
le1(6) =1 )P = (5= = 5= == = 5—)

which implies
H(p1(0), @) — H(p1(9), @), 0 — 9) > 3[|1(8) — 1(0) |,

and
(H(w,91(0)) — H(w, 1 (9) <§+1_ %70_@
=200,
:gw—ﬁf

which implies
(H (e, 61(68)) — H(w,2(9)),0 — 9) >~ 11 (6) — n (9)]*

Thus, H(-,-) is 3-cocoercive and %—relaxed cocoercive with respect to 1 and 1y,

respectively.
0+1 J+1
(Gla(6). ) = Glea(0), ), 0 = ) = (—— = “5—.0-0)

_Ll o2

0+1 J9+1 60641 JI+1
le2(0) — 202 = (= = = = = )

1
ZZW—ﬁF
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which implies
(G(p2(0), @) — Glpa(9), @), 0 — 0) > 2[p1(8) — 1 (V)%

and

20+1_219+1

(G, 42(0)) — Glem,va(9)),0 — 9) = —( 0-9)

6 6
_ 1 2
20+1 2941 20+1 2041
e 0) = o) ? = (5= - =5 — =~ — )
1
= —(0 —0)?
50—

which implies

(G(@,2(0)) = G(w,v2(9)),0 = 9) = =3[|v2(0) — ()],

Thus, G(-,) is 2-cocoercive and 3-relaxed cocoercive with respect to @9 and )9,
respectively. Also, M and N are H(-,-) and G(-,-)-co-accretive mappings, respec-
tively. Further,

0+1 041 1 )
_ N =(T- T pg_ > 29 —
(S(0) = S(0).0— ) = (—5= — =0 —9) > G0~ 0| V6.9 € B,
o+1 V1) 1
18(6) = @) = |5~ = | < clo—I>,v8,0 € B.

ie., Sis %—strongly accretive and %—Lipschitz continuous.

6 1 9 1 1 5
— _ = Z_ —_ 0= > _
(T(8) — T(9),0 — 0 <104-2 i ﬁ>__10H9 9)2,v6,9 € B,
6 1 9 1 1
T®)-T =|—4-——=—=| < —|0=9|? .

ie., T is %—strongly accretive and %—Lipschitz continuous. Also, for constants

2 1 3 2 1 1 1
01 = 1)501 = gaMI :37771 :g,’Yl - 550-1 - §aV1 - gv’{'l - gugl :€7Q2: ]_)602 =

1 1 1 1 1 1 o
S.f2 =2,m2 = 35,72 = 3,02 = 5,V2 = §,K2 = 15,S2 = jg, the conditions

0 < dc, (\/1 —2(pam? — o) + 233 + \/1 —201Kk1 + 20%9%%) =0.71241 < 1

0 < dc, (\/1 — 2(p2n3 — 1203) + 2c3v3 + \/1 — 209kKo + 20%@%§22> =0.68012 < 1
are also satisfied. Further,

e, [H(p1, 1) — 025)(—0.16344) = 0.04838,
Ie, [, 12) — 01T)(0.04838) = —0.16344,

i.e., (—0.16344,0.04838) is the altering point of APP (3.1).
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CONSEQUENCES AND APPLICATIONS
Here, we shall look over the convergence of proposed iterative scheme (1.5) to
investigate the SGVarIncl (3.4) and SGVarIneq (3.7). We can re-design scheme
(1.5) by taking 1y =: Z(M)( )G (@2, ¥2) =01 T and 1y = Ri(&)(.,.)[H(%,wl)—gzs]-
For initial point (6y, ) € C1 x Ca, we estimate the sequence (6,,,9,) € C1 x Cy as
under:
G’
(041 = (1 - an)R SH (@1, ¢1) — 0251(6n)
+anlt,)) N ,)[H(sm ¢1) — 025](qn),
Uny1 = (1—%) Ql,M( ) (G2, 42) — 01T (pn)
(3.20) +a, R 01, M( [ (9027¢2) —o1T)(rn),
&n = (1 -b )0 + bugGn, Pn = ( - bn)ﬁn + b1,
H o
qn = ( Cn)9 +cn 01(]\/[)( )[G(§023¢2) - QlT] (’ﬂn),
\T'n = ( C’I’L)lﬁ +cn g(jv)(7)[H(<)017/l/)1) _QQS](en)v

where the sequences {a,}52, {bn}o>, and {c,}22, are in [0, 1].

Theorem 3.4. For each i € I'; let the single-valued mappings v;, ¥, G, & : Ci — B
be such that p; is n;-expansive and ; is o;-Lipschitz continuous; H : B x B — B
be (p1,v1)-symmetric cocoercive and vi-mized Lipschitz continuous and G : B X
B — B be (ug2,7v2)-symmetric cocoercive and vo-mized Lipschitz continuous. Let
S : C1 — B be ki-strongly accretive and ¢y-Lipschitz continuous and T : Co — B
be ko-strongly accretive and <y-Lipschitz continuous. Let M : B x B — 28 be
H(-,-)-co-accretive mapping with Dom(M) C C; and N : B x B — 28 be G(-,)-co-
accretive mapping with Dom(N) C Ca. Suppose that the constants o; comply with
the following inequalities:

V1= 2(pan3 — 71203) + 26505 + /1 — 2013 + 2650165
o1(e1 —wi) + (ung —mo7)

(3.21) 0 < V1=2(un? —y107) + 2c3? + /1 — 200k1 + 263 0367
02(e2 — wa) + (p2n3 — v203)

1426202 > 2(pim? — vi02), 1 + 230565 > 201k9, 1 + 2c3 0562 > 200k1.

0<

<1,

<1

)

(i) Then there exists a unique element (0,9) € C; x Co such that (0,7) solves
SGVarlncl (3.4).

(ii) The sequence {(0,,Vy)} € C1 x Co generated by the parallel scheme (3.20)
converges strongly to (0,9).

Proof. (i) Define ¥y =: RZE}{}(.,.)[G(¢27¢2) —oT] and ¥y =: Ri(;&)(.,.)[H(@h?ﬁl) -
025]. Then taking the Lemma 2.20 into account, one can achieve that ¥; : Co — C;
is ()1-contraction mapping. Similarly Ws : C; — Cs is 29-contraction mapping. By
utilizing Proposition 2.19, we infer that there exists a unique element (6, 9) € C; xCa
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such that Wq(9¥) = 0 and Wy(0) = ¢ and the definitions of U1 and ¥y lead to

RZS}(Q)(.,.)[G(SO%%) — o T)(¥) = 6,
sz(,}&)(.,.)[ﬂ(% P1) — 025](0) = 9.

Thus by implementing Lemma 3.1, we deduce that (6,1) € C; xCa solves SGVarIncl
(3.4).
(ii) Since ¥; : Co — Cp is Qi-contraction mapping and ¥y : C; — Cy is Qo-
contraction mapping. Then from (3.20), we have
lgn —all = [[(1 = en)bn + cnP1(9n) — [(1 — cn)f + cn U1 (I)]|]
(3.22) < (L= cn)[|0n = 0l + callO1(In) — T1(9) ]|
< (1 —cn)l|fn — Ol + e[ — 9.

an - f” = H(l - bn)en + bngn — [(1 - bn)e + an]H

(8.23) < (1= b)llf — 61| + bullgn — all
10n i1 — 0] = (1~ ) Wa(En) + anTa(gn) — [(1 — an) ¥a(€) + an Va(g)] |
< (1 an)[Wa(En) — To(©)]] + anl[Ta(gn) — Talg)]
oo < (1 )60 — €]l + ansllgn — gl

< (1= an)Q2(1 = bn)[|0n — O] + Q2[bp + an(1 = by)]llgn — 4l
< Do(1 = an)(1 = by) 4+ (1 = ) (bn + an(l = bn))][|6n — 0|
+ Q1Q9¢p[bn, + an(1 — by)]||Yn — 9.
In the similar manner, we obtain

I =7 = (1 = cn)On + cnW2(0n) — [(1 — cn)? + ca a2 (0)]|
(3.25) < (1= c)l[0n = O 4 cnl|¥2(0n) — T2(0)]
< (1= cn)l[n = O] + cna||0 — 0]

[Pn = pll = [[(1 = bn)n + b, — [(1 = by)0 + b1

(3.26) < (1= b) [0 = 91| + bullr — 7.
Wt — 0 = (1 = ) W1 (pn) + anW1(r) — [(1 = an)T1(p) + an T2 ()]
< (1= an)| W1 (pn) — T2 ()] + [0 (1) — 01 (1)
(3'27) < (1 - an)QIHPn — p” + aanHTH - TH

S (1 - an)QQ(l - bn)Hen - 9” + Q2[bn + an(l - bn)]an - QH]
<[(1 = ap)(1 = bp) + (1 = en)(an + bn(1 — an))] |9y — I
+ W Qacplan + bp(1 — an)]||0n — 0.

Choose © = max{Q,Q}, where Q;,{ are contractions and ay,b,,c, € [0,1].
Combining (3.24) and (3.27), we obtain

[0n1 = 0l + [9n+1 = I < [l — cp(1 — Q)]0 — 0|
(3.28) + D[l = cn(1 = Q)][|dn — Y
< Q[f|0n = 0]l + [[9n — D).
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Thus, from (2.2), (3.28) yields

(3:29) [Ont1, Int1) = (0, 9) ]« < Q| (On, ) — (0,9)]]
Noting Q € (0, 1), then by appealing the Lemma 2.5, we get
(3.30) li_>m 1(0n,0n) — (0,9)]]« = 0,

which implies lim, 0 ||, — 0| = limy, 00 ||, — || = 0. Thus, {(0,,3,)} converges
to (6,9) € C1 x Ca. O

Theorem 3.5. For each i € I'; let Q¢, : B — C; be sunny nonexpansive retractions
and the mappings p;, Vi, G, &, H, G, S, T are identical as in Theorem 3.4. Suppose
that the constants p; > 0 comply with the following inequalities:

\/1 — 2(#1771 7101) + 2011/1 + \/1 — 209K1 + 20%@%(12 <1,

(3.31) \/1 — 2(u2n3 — Y203) + 2c3v3 + \/1 — 201K2 + 2630362 < 1,
1+ 20?%2 > 2(,uml YO ) 14+ 20291§2 > 201kKo, 1 + 20192§1 > 209K1.

(i) Then (0,9) € C1 x Cy is the unique solution of SGVarIneq (3.7).
(ii) The sequence {(0y,9,)} € C1 xCq generated by the following parallel iterative
scheme:

((60,00) € C1 % Ca,
Ont1 = (1 — an)Qcy [H (1, 91) — 025](&n)
+anQc, [H(p1,91) — 025](qn),
Unt1 = (1 = an)Qc, [G(p2,92) — 01T](pn)
+anQc, [G(9027¢2) - QlT] (Tn)a
&n=(1—=0,)0n + bpnqn, Pn=(1—="0by)0, + byra,
qn = (1 = )b + cnQc, (G2, 92) — o1 T](Un),
)
(9,

(3.32)

74n - ( — Cp 19 + CnQCQ[ (sm;%) - QQS](en)a
converges strongly to 9).
Proof. (i) Define g1 =: Qc¢, [G(p2,12) — 01T] and g2 =: Qc,[H (¢1,11) — 025]. Since

Qc, and @)¢, are sunny nonexpansive, then one can deduce from Lemma 2.18 and
(3.31) that g1 : Co — C; is Li-contraction mapping, where

(3.33) L, = \/1 — 2(pam3 — Y203) + 2c2v3 + \/1 — 201K2 + 2c30%63,
and go : C; — Cy is Lo-contraction mapping, where
(3.34) Ly = \/1 —2(mn? —m10?) + 232 + \/1 — 209k + 2¢2 03¢2.

From Proposition 2.19, it follows that there exists unique element (6,19) € C; x Ca
such that go(6) = ¥ and g1(¥) = 0. Thus, the required result can be obtained by
invoking Lemma 2.17.

(ii) Since g1 : Co — Cy is Ly-contraction and go : C; — Cy is La-contraction. Then
following the steps as in (3.22)-(3.27) and choosing L = max{L;, Lo}, we obtain

(3.35) 10nt1 = Ol + [[9n41 — O < L{[|6n — O + |95 — O[]
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Thus, from (2.2), (3.35) yields

(3.36) [(On+1, Vnt1) — (0,9) [« < L[(Ons 9n) — (0,9) ]|

Noting L € (0,1), then by appealing the Lemma 2.5, we get

(3.37) li_>m 1(0n, 0n) — (0,9)]|« =0,

which implies limy, o0 ||0r, — 0| = limy,—00 |95 — || = 0. Thus, {(6,,9,)} converges

to (0,9) € C1 x Ca. O
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