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In [12], Ighachane and Bouchangour found a result that generalizes another im-
portant result due to Sababheh [26], as follows. If f is a positive h–convex function
for a non–negative supermultiplicative and superadditive function h, then we have

(1.3)

h

(
ν

µ

)
≤ h (1− ν) f (a) + h (ν) f (b)− f ((1− ν) a+ νb)

h (1− µ) f (a) + h (µ) f (b)− f ((1− ν) a+ νb)

≤ h

(
1− ν

1− µ

)
,

where 0 < ν ≤ µ < 1.
Let w1, . . . , wn be positive real numbers (n ≥ 2) with

∑n
i=1wi = 1 and h a

non–negative supermultiplicative function. If f is an h–convex function, then

(1.4) f

(
n∑

i=1

wixi

)
≤

n∑
i=1

h (wi) f(xi)

for all x1, . . . , xn ∈ I. This is the Jensen–type inequality for an h–convex function
[31]. We know that Jensen’s classical inequality is the following:

f

(
n∑

i=1

wixi

)
≤

n∑
i=1

wif(xi)

for all x1, . . . , xn ∈ I, where f is a convex function on I. In [21], Mercer showed an
inequality of Jensen type given by

(1.5) f

(
a+ b−

n∑
i=1

wixi

)
≤ f(a) + f(b)−

n∑
i=1

wif(xi)

for all x1, . . . , xn ∈ [a, b], where f is a convex function on [a, b].
In [28], Sarikaya et al. or Bombardelli and Varošanec [5] proved the Hermite–

Hadamard–Fejér inequalities for an h–convex function. Namely, when f : [a, b] → R
and h is Riemann integrable on [0, 1] with h

(
1
2

)
> 0, we obtain the Hermite–

Hadamard inequality for an h–convex function f , as follows

1

2h
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ (f(a) + f(b))

∫ 1

0
h(t)dt.

We remark that, if h is a non–negative function such that h(ν) ≥ ν for any
ν ∈ [0, 1] and f is a non–negative convex function on I, then f is an h–convex
function on I. If h(ν) ≤ ν for any ν ∈ [0, 1], then any non–negative function f ,
which is h–convex on I is a convex function on I.

In [23], Olbrýs gave a characterization of h–convex functions under the condition
h(ν)+h(1−ν) = 1, where ν ∈ [0, 1]. In [25], Rostamian Delavar et al. investigated a
characterization of an h–convex function via Hermite–Hadamard inequality related
to the h–convex functions. It is determined under what conditions a function is h–
convex if it satisfies the h–convex version of Hermite–Hadamard inequality. Other
properties of h–convexity are given in [2] and [8]. Recently, in [13], Jin et al. gave
other characterizations of h–convex functions and provided some basic applications.
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We refer the interested reader to [2–5, 7, 8, 11–14, 16–21, 23, 25–30] as a list of ref-
erences that treated h–convex functions and other types of convex functions, with
related applications like the Hermite–Hadamard inequality and others.

Our target in this paper is to discuss further properties of h–convex functions in
a way that complements those existing properties and aligns with our knowledge
about convex functions. For example, we will extend the Mercer inequality (1.5) to
the context of h–convex functions as follows:

1

h
(
1
2

)f (a+ b

2

)
− f

(
n∑

i=1

wixi

)

≤ f

(
a+ b−

n∑
i=1

wixi

)

≤ (f(a) + f(b))

n∑
i=1

h(wi)

(
h

(
b− xi
b− a

)
+ h

(
xi − a

b− a

))
−

n∑
i=1

h(wi)f(xi).

Another interesting result will be the h–convex version of the well-known gradient
inequality

(1.6) f(a) + f ′(a)(b− a) ≤ f(b),

valid for the differentiable convex function f : I → R, where a, b ∈ I. Using
the obtained gradient inequality, we will be able to present a Jensen inequality for
h–convex functions that is simpler than (1.4). Many other results will be shown
too.

As applications of the obtained results, we discuss possible matrix versions that
include unital positive mappings, weak majorization, and traces.

2. Main results

In this section, we present our results on h–convex functions. Then, we present
the possible application in the matrix setting.

First, we have the following simple Merer–type inequality that will enable us to
obtain the general form of Mercer–type.

We emphasize that according to the definition of h–convex functions, if f is h–
convex, then f, h ≥ 0 and h is defined on an interval that contains [0, 1].

Lemma 2.1. Let f : [a, b] → [0,∞) be an h–convex function, a < x < b and
h
(
1
2

)
> 0. Then

(2.1)

1

h
(
1
2

)f (a+ b

2

)
− f(x) ≤ f (a+ b− x)

≤
(
h

(
b− x

b− a

)
+ h

(
x− a

b− a

))
(f(a) + f(b))− f(x).

Proof. Using inequality (1.2) we deduce

f

(
a+ b

2

)
= f

(
a+ b− x+ x

2

)
≤ h

(
1

2

)
(f (a+ b− x) + f (x)) .
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This proves the first desired inequality. For the second inequality, let a+ b−x = y,
so that a + b = x + y. Since a < x < b, there is ν = b−x

b−a ∈ (0, 1) such that

x = νa + (1 − ν)b, which implies also y = (1 − ν)a + νb. Using h-convexity of the
function f , we have

f(x) ≤ h (ν) f (a) + h (1− ν) f (b)

and
f(y) ≤ h (1− ν) f (a) + h (ν) f (b) ,

where ν ∈ (0, 1). Adding the above inequalities, we get the second desired inequality
of the statement. This completes the proof. □

Now we are ready to present the Mercer–type inequality for h–convex functions.

Theorem 2.2. Let f : [a, b] → [0,∞) be an h–convex function, where h is a non–
negative super–multiplicative function with h

(
1
2

)
> 0. If a < xi < b for i = 1, . . . , n

and n ≥ 2, then

1

h
(
1
2

)f (a+ b

2

)
− f

(
n∑

i=1

wixi

)

≤ f

(
a+ b−

n∑
i=1

wixi

)

≤ (f(a) + f(b))
n∑

i=1

h(wi)

(
h

(
b− xi
b− a

)
+ h

(
xi − a

b− a

))
−

n∑
i=1

h(wi)f(xi)

for all wi ∈ [0, 1], with
∑n

i=1wi = 1.

Proof. In (2.1), let x =
∑n

i=1wixi. Then we obtain

1

h
(
1
2

)f (a+ b

2

)
− f

(
n∑

i=1

wixi

)
≤ f

(
a+ b−

n∑
i=1

wixi

)
.

Further, letting x = xi in (2.1), we deduce

(2.2) f (a+ b− xi) ≤ (h(νi) + h(1− νi)) (f(a) + f(b))− f(xi),

where νi =
b−xi
b−a ∈ (0, 1) and xi = νia+ (1− νi)b, i = 1, . . . , n and n ≥ 2. Thus, we

have

f

(
a+ b−

n∑
i=1

wixi

)
= f

(
n∑

i=1

wi(a+ b− xi)

)

≤
n∑

i=1

h (wi) f(a+ b− xi) (by (1.4))

≤ (f(a) + f(b))
n∑

i=1

h(wi) (h(νi) + h(1− νi))

−
n∑

i=1

h(wi)f(xi) (by (2.2)).

This completes the proof. □
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In what follows, we will give a result similar to inequality (1.3), but without
the condition ν ≤ µ. We should remark that such results are applied in matrix
inequalities, as seen in [12,26].

Theorem 2.3. Let f : [a, b] → [0,∞) be an h-convex function, where h is a super–
multiplicative and super–additive function. Then

h (m) (h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b))

≤ h (ν) f (a) + h (1− ν) f (b)− f (νa+ (1− ν)b)

≤ 1

h
(

1
M

) (h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b)) ,

where 0 < ν, µ < 1, m = min
{
ν
µ ,

1−ν
1−µ

}
and M = max

{
ν
µ ,

1−ν
1−µ

}
, provided that

h
(

1
M

)
6= 0.

Proof. Sincem = min
{
ν
µ ,

1−ν
1−µ

}
, we deduce that ν−µm ≥ 0 and 1−ν−(1−µ)m ≥ 0.

Using the following equality m+ (ν − µm) + (1− ν − (1− µ)m) = 1 and inequality
(1.4) for three terms (x1 = µa+ (1− µ)b, x2 = a, x3 = b), we obtain

h(m)f(µa+ (1− µ)b) + h(ν − µm)f(a) + h(1− ν − (1− µ)m)f(b)

≥ f(m(µa+ (1− µ)b) + (ν − µm)a+ (1− ν − (1− µ)m)b)

= f(νa+ (1− ν)b).

It follows that

h (ν) f (a) + h (1− ν) f (b)− f (νa+ (1− ν)b)

≥ h (m) (h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b))

+ f(a) (h(ν)− h(m)h(µ)− h(ν − µm))

+ f(b) (h(1− ν)− h(m)h(1− µ)− h(1− ν − (1− µ)m)) .

But, the function h is a non–negative super–multiplicative and super–additive func-
tion, so we find

h(ν) = h(ν −mµ+mµ) ≥ h(ν −mµ) + h(mµ) ≥ h(ν −mµ) + h(m)h(µ).

Similarly, we obtain

h(1− ν)− h(m)h(1− µ)− h(1− ν − (1− µ)m) ≥ 0.

Because, by assumption, the function f is non–negative, we deduce

h (ν) f (a) + h (1− ν) f (b)− f (νa+ (1− ν)b)

≥ h (m) (h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b)) .

Further, since M = max
{
ν
µ ,

1−ν
1−µ

}
, we have µ− ν

M ≥ 0 and 1− µ− 1−ν
M ≥ 0. Using

the following equality 1
M + (µ − ν

M ) + (1 − µ − 1−ν
M ) = 1 and inequality (1.4) for
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three terms (x1 = νa+ (1− ν)b, x2 = a, x3 = b), we deduce

h

(
1

M

)
f(νa+ (1− ν)b) + h

(
µ− ν

M

)
f(a) + h

(
1− µ− 1− ν

M

)
f(b)

≥ f

(
1

M
(νa+ (1− ν)b) +

(
µ− ν

M

)
a+

(
1− µ− 1− ν

M

)
b

)
= f(µa+ (1− µ)b).

This means that

h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b)

≥ h

(
1

M

)
(h (ν) f (a) + h (1− ν) f (b)− f (νa+ (1− ν)b))

+ f(a)

(
h(µ)− h

(
1

M

)
h(ν)− h

(
µ− ν

M

))
+ f(b)

(
h(1− µ)− h

(
1

M

)
h(1− ν)− h

(
1− µ− 1− ν

M

))
.

We know that h is a non–negative super–multiplicative and super–additive function.
Thus, we have

h(µ) = h
(
µ− ν

M
+

ν

M

)
≥ h

(
µ− ν

M

)
+ h

( ν

M

)
≥ h

(
µ− ν

M

)
+ h

(
1

M

)
h(ν).

Similarly, we find

h(1− µ)− h

(
1

M

)
h(1− ν)− h

(
1− µ− 1− ν

M

)
≥ 0.

Since the function f is non–negative, we deduce

h (µ) f (a) + h (1− µ) f (b)− f (µa+ (1− µ)b)

≥ h

(
1

M

)
(h (ν) f (a) + h (1− ν) f (b)− f (νa+ (1− ν)b)) .

This completes the proof. □
Remark 2.4. It is easy to see that if ν ≤ µ in Theorem 2.3, then we have h(m) =

h
(
ν
µ

)
and h

(
1
M

)
= h

(1−µ
1−ν

)
.

The gradient inequality (1.6) has been an important inequality that characterizes
convex functions. We present a possible gradient inequality for h-convex functions
in the following.

Theorem 2.5. Let f : I → [0,∞) be a differentiable h–convex function on I, where
h : J ⊇ [0, 1] → R is differentiable at 0 and 1. Then for all a, b ∈ I,

(b− a) f ′ (a) + h′ (1) f (a) ≤ h′ (0) f (b)

and
h′ (1) f (b)− (b− a) f ′ (b) ≤ h′ (0) f (a)

provided that h (0) = 0 and h (1) = 1. The above inequalities are reversed if f is
h–concave.
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Proof. It follows from (1.1) that

f (a+ ν (b− a))− h (1− ν) f (a)

ν
≤ h (ν)

ν
f (b) ,

when ν ∈ (0, 1). Now, by the assumptions h(0) = 0 and h(1) = 1, one can write

lim
ν→0

f (a+ ν (b− a))− h (1− ν) f (a)

ν

= lim
ν→0

(
f ′ (a+ ν (b− a)) (b− a) + h′ (1− ν) f (a)

)
= f ′ (a) (b− a) + h′ (1) f (a)

≤ lim
ν→0

h (ν)

ν
f (b) = h′ (0) f (b) ,

which completes the proof of the first inequality. In the same way, from (1.1) we
obtain

f (a+ ν (b− a))− h (ν) f (b)

1− ν
≤ h (1− ν)

1− ν
f (a) ,

when ν ∈ (0, 1). Taking the limit for ν → 1 above inequality, we deduce the second
inequality of the statement. □

We employ Theorem 2.5 to show a Jensen–type inequality for h–convex functions.
We remark here that the Jensen inequality (1.4) is given for super–multiplicative
functions. In the following, we present Jensen inequality with a possible reverse
without imposing the super–multiplicativity condition on h.

Theorem 2.6. Let f and h be as in Theorem 2.5 and let x1, x2, . . . , xn ∈ I. If
w1, w2, . . . , wn are positive scalars such that

∑n
i=1wi = 1, then

h′ (1) f

(
n∑

i=1

wixi

)
≤ h′ (0)

n∑
i=1

wif (xi),

and ((
n∑

i=1

wixi

)(
n∑

i=1

wif
′ (xi)

)
−

n∑
i=1

wixif
′ (xi)

)
+ h′ (1)

n∑
i=1

wif (xi)

≤ h′ (0) f

(
n∑

i=1

wixi

)
.

Proof. For i = 1, . . . , n, if xi ∈ I, then

(2.3) f ′ (a) (xi − a) + h′ (1) f (a) ≤ h′ (0) f (xi)

for any a ∈ I, thanks to the first inequality from Theorem 2.5. Multiplying (2.3)
by wi (i = 1, . . . , n), then adding over i from 1 to n, we infer that

f ′ (a)

(
n∑

i=1

wixi − a

)
+ h′ (1) f (a) ≤ h′ (0)

n∑
i=1

wif (xi).
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Letting a =
∑n

i=1wixi in the above inequality yields

h′ (1) f

(
n∑

i=1

wixi

)
≤ h′ (0)

n∑
i=1

wif (xi),

which proves the second inequality. For the first inequality, we have

(2.4) bf ′ (xi)− f ′ (xi)xi + h′ (1) f (xi) ≤ h′ (0) f (b) , 1 ≤ i ≤ n,

due to Theorem 2.5. Multiplying (2.4) by wi (i = 1, . . . , n), then adding over i from
1 to n, we get

b

n∑
i=1

wif
′ (xi)−

n∑
i=1

wif
′ (xi)xi + h′ (1)

n∑
i=1

wif (xi) ≤ h′ (0) f (b) .

Allowing b =
∑n

i=1wixi in the above inequality, it makes((
n∑

i=1

wixi

)(
n∑

i=1

wif
′ (xi)

)
−

n∑
i=1

wixif
′ (xi)

)
+ h′ (1)

n∑
i=1

wif (xi)

≤ h′ (0) f

(
n∑

i=1

wixi

)
.

This completes the proof of the theorem. □

For a, b > 0 and 0 ≤ ν ≤ 1, the weighted arithmetic mean is denoted by a∇νb,
where a∇νb := (1 − ν)a + νb. We use the symbols ∇ instead of ∇1/2. We also

introduce the h–quasi–weighted arithmetic mean a∇h(ν)
ν b := h(1 − ν)a + h(ν)b to

simplify the expressions of our results. We see that ∇ν
ν = ∇ν .

In the following theorem, we present an integral inequality that extends many
results from the literature.

Theorem 2.7. Let a, b ∈ I such that a, b > 0 and 0 ≤ ν ≤ 1 Let f : I → [0,∞) be
an integrable h–convex function and let h : [0, 1] → [0,∞). Then

f ((1− ν) a+ νb) ≤
(∫ 1

0
f (a∇νtb) dt

)
∇h(ν)

ν

(∫ 1

0
f
(
b∇(1−ν)ta

)
dt

)
≤ f(a)

∫ 1

0
h(1− νt)∇h(ν)

ν h((1− ν)t)dt

+ f(b)

∫ 1

0
h(νt)∇h(ν)

ν h(1− (1− ν)t)dt.

Proof. Since

(1− ν) a+ νb = ((1− ν) ν (tb+ (1− t) a)) + (1− ν)2a

+ ν (1− ν) ((1− t) b+ ta) + ν2b
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with the definition of h–convex function, we have

f ((1− ν) a+ νb) ≤ h (1− ν)

∫ 1

0
f (ν (tb+ (1− t) a) + (1− ν) a) dt

+ h (ν)

∫ 1

0
f ((1− ν) ((1− t) b+ ta) + νb) dt

= h (1− ν)

∫ 1

0
f (ν (b− a) t+ a) dt

+ h (ν)

∫ 1

0
f ((1− ν)(a− b)t+ b) dt

= h (1− ν)

∫ 1

0
f (a∇νtb) dt+ h (ν)

∫ 1

0
f
(
b∇(1−ν)ta

)
dt

Now, using the fact that f is h–convex, and noting the definition of ∇t, we can
write

f ((1− ν) a+ νb) ≤ h (1− ν)

∫ 1

0
(h (tν) f (b) + h (1− tν) f (a)) dt

+ h (ν)

∫ 1

0
(h ((1− ν)t) f (a) + h (1− (1− ν)t) f (b)) dt

= f(a)

∫ 1

0
(h(1− ν)h(1− νt) + h(ν)h((1− ν)t)) dt

+ f(b)

∫ 1

0
(h(1− ν)h(νt) + h(ν)h(1− (1− ν)t)) dt.

This completes the proof. □

Remark 2.8.

(i) The right hand side of the inequalities in Theorem 2.7 can be written by

f(a)R1(ν) + f(b)R2(ν), (0 < ν < 1),

where

R1(ν) :=
h(ν)

1− ν

∫ 1−ν

0
h(t)dt+

h(1− ν)

ν

∫ 1

1−ν
h(t)dt

and

R2(ν) :=
h(1− ν)

ν

∫ ν

0
h(t)dt+

h(ν)

1− ν

∫ 1

ν
h(t)dt.

Note that R1(ν) = 1 − ν and R2(ν) = ν if h(x) := x. Thus, if we take
h(x) := x in Theorem 2.7, then the inequalities in Theorem 2.7 are reduced
to [24, Theorem 2.1]:

f ((1− ν) a+ νb) ≤ Cf,ν(a, b) ≤ (1− ν)f(a) + νf(b),

where

Cf,ν(a, b) :=

(∫ 1

0
f(a∇νtb)dt

)
∇ν

(∫ 1

0
f(b∇(1−ν)ta)dt

)
.
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(ii) If we take ν := 1
2 in Theorem 2.7, then the inequalities are reduced to

1

2h
(
1
2

)f (a+ b

2

)
≤
∫ 1

0
f ((1− t)a+ tb) dt ≤ (f(a) + f(b))

∫ 1

0
h(t)dt,

which gives the original Hermite–Hadamard inequality for the case h(x) :=
x.

Allowing the derivatives, we have the following interesting Hermite–Hadamard
inequality for h–convex functions. When h(x) = x, this reduces to the original
version of Hermite–Hadamard inequality for convex functions.

Proposition 2.9. Let f : I → [0,∞) be a differentiable h–convex function, where
the function h : J → R is differentiable at 0 and 1 with h(0) = 0 and h(1) = 1. If
h′(0), h′(1) > 0, then for all a, b ∈ I,

h′ (1)

h′ (0)
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f (t) dν ≤ h′ (0)

h′ (1)

f (a) + f (b)

2
.

Proof. It follows from the first inequality in Theorem 2.6 that

(2.5) h′ (1) f ((1− ν) a+ νb) ≤ h′ (0) ((1− ν) f (a) + νf (b))

for 0 ≤ ν ≤ 1. This indicates, by taking integral over 0 ≤ ν ≤ 1,

(2.6) h′ (1)

∫ 1

0
f ((1− ν) a+ νb) dν ≤ h′ (0)

(
f (a) + f (b)

2

)
.

Moreover, since

h′ (1) f

(
a+ b

2

)
≤ h′ (0)

(
f (a) + f (b)

2

)
,

we conclude, by substituting a and b with (1−ν)a+νb and (1−ν)b+νa, respectively,

(2.7) h′ (1) f

(
a+ b

2

)
≤ h′ (0)

∫ 1

0
f ((1− ν) a+ νb) dν,

due to ∫ 1

0
f ((1− ν) a+ νb) dν =

∫ 1

0
f ((1− ν) b+ νa) dν.

Therefore, if h′(0), h′(1) > 0 and using relations (2.6) and (2.7), then we deduce

h′ (1)

h′ (0)
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f (t) dν ≤ h′ (0)

h′ (1)

f (a) + f (b)

2
,

as desired. □
We give supplemental inequalities for (2.5).

Lemma 2.10. Let f : I → [0,∞) be a differentiable h–convex function, where the
function h : J → R is differentiable at 0 and 1, with h(0) = 0 and h(1) = 1. Then
for all a, b ∈ I,

(2.8) h′ (1) (1− ν) f (a) + h′ (0) νf (b) ≤ h′ (0) f ((1− ν) a+ vb) , (ν < 0)

and

(2.9) h′ (0) (1− ν) f (a) + h′ (1) νf (b) ≤ h′ (0) f ((1− ν) a+ vb) , (ν > 1).
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Proof. Assume that µ > 0. Then by (2.5), we have

h′ (1) f (a) = h′ (1) f

(
1

1 + µ
((1 + µ) a− µb) +

µ

1 + µ
b

)
≤ h′ (0)

(
1

1 + µ
f ((1 + µ) a− µb) +

µ

1 + µ
f (b)

)
.

Then, we prove that

h′ (1) (1 + µ) f (a)− h′ (0)µf (b) ≤ h′ (0) f ((1 + µ) a− µb) .

Putting µ := −ν with ν < 0, we have (2.8). Assume that µ < −1. Then by (2.5),
we have

h′(1)f(b) = h′(1)f

(
− 1

µ
((1 + µ)a− µb) +

1 + µ

µ
a

)
≤ h′(0)

(
− 1

µ
f ((1 + µ)a− µb) +

1 + µ

µ
f(a)

)
,

which implies

µh′(1)f(b) ≥ h′(0) ((1 + µ)f(a)− f ((1 + µ)a− µb)) , (µ < −1).

Putting µ := −ν with ν > 1, we have (2.9). □

Note that we both inequalities (2.8) and (2.9) recover the following inequality for
convex function f :

(1− ν)f(a) + νf(b) ≤ f((1− ν)a+ νb), ν /∈ [0, 1],

when h(x) := x.
When dealing with convex functions, it is interesting to find refinements and

reverses of the existing inequalities. In the following, we present possible refinement
and reverse for the Jensen inequality shown in Theorem 2.6 when n = 2.

Proposition 2.11. Let f : I → [0,∞) be a differentiable h–convex function, where
the function h : J → R is differentiable at 0 and 1 with h(0) = 0 and h(1) = 1.
Then for all a, b ∈ I,

h′ (1) f ((1− ν) a+ νb)

≤ h′ (0)

(
(1− ν) f (a) + νf (b)− 2r

(
f (a) + f (b)

2
− f

(
a+ b

2

)))
,

and

(2.10)
(1− ν)h′ (0) f (a) + νf (b)− 2R

(
h′ (0) f (a) + f (b)

2
− h′ (1) f

(
a+ b

2

))
≤ h′ (0) f ((1− ν) a+ νb)

where R = max {ν, 1− ν}, r = min {ν, 1− ν}, and 0 ≤ ν ≤ 1.
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Proof. Let 0 ≤ ν ≤ 1/2. In this case, we have by (2.5) that

h′ (1) f ((1− ν) a+ νb)

= h′ (1) f

(
(1− 2ν) a+ 2ν

a+ b

2

)
≤ h′ (0)

(
(1− 2ν) f (a) + 2νf

(
a+ b

2

))
= h′ (0)

(
(1− ν) f (a) + νf (b)− 2r

(
f (a) + f (b)

2
− f

(
a+ b

2

)))
.

The same inequality holds when 1/2 ≤ ν ≤ 1. This completes the proof of the first
inequality.

To prove the second inequality, notice that by Lemma 2.10,

(1− ν)h′ (0) f (a) + νf (b)− 2R

(
h′ (0) f (a) + f (b)

2
− h′ (1) f

(
a+ b

2

))
= 2νh′ (1) f

(
a+ b

2

)
+ (1− 2ν)h′ (0) f (a)

≤ h′ (0) f ((1− ν) a+ νb)

for 1/2 ≤ ν ≤ 1. The same approach shows the inequality (2.10) holds when
0 ≤ ν ≤ 1/2. □
Remark 2.12. From the second inequality in Theorem 2.6, we have for any 0 ≤
ν ≤ 1,

(2.11)

((1− ν) a+ νb)
(
(1− ν) f ′ (a) + νf ′ (b)

)
−
(
(1− ν) af ′ (a) + νbf ′ (b)

)
+ h′ (1) ((1− ν) f (a) + νf (b))

≤ h′ (0) f ((1− ν) a+ νb) .

In particular, we deduce

(2.12)
(a− b) (f ′ (b)− f ′ (a))

4
+ h′ (1)

(
f (a) + f (b)

2

)
≤ h′ (0) f

(
a+ b

2

)
.

Taking integral over 0 ≤ ν ≤ 1, in (2.11), we obtain

(f ′ (b)− f ′ (a)) (a− b)

6
+ h′ (1)

(
f (a) + f (b)

2

)
≤ h′ (0)

∫ 1

0
f ((1− ν) a+ νb) dν.

By (2.12), we also have

h′ (1)

∫ 1

0
f ((1− ν) a+ νb) dν +

1

4

∫ 1

0
((2ν − 1) (b− a)) f ′ ((1− ν) b+ νa) dν

− 1

4

∫ 1

0
((2ν − 1) (b− a)) f ′ ((1− ν) a+ νb) dν ≤ h′ (0) f

(
a+ b

2

)
.

Proposition 2.13. Let f and h be as in Theorem 2.5 and let x1, x2, . . . , xn ∈ I,
y1, y2, . . . , yn ∈ I. If w1, w2, . . . , wn are positive scalars, then

(2.13)
n∑

i=1

wi (xi − yi) f
′ (yi) ≤ h′ (0)

n∑
i=1

wif (xi)− h′ (1)
n∑

i=1

wif (yi).



RESULTS FOR h–CONVEX FUNCTIONS 2855

Proof. If we employ (1.1) for the selection b = xi, a = yi (i = 1, . . . , n), we may
write

(2.14) f ′ (yi) (xi − yi) + h′ (1) f (yi) ≤ h′ (0) f (xi) .

Multiplying (2.14) by wi (i = 1, . . . , n) and summing over i from 1 to n we may
deduce (2.13). □
Corollary 2.14. Let the assumptions of Proposition 2.13 hold. Let x1 − y1,
x2 − y2, . . . , xn − yn and f ′ (y1) , f

′ (y2) , . . . , f
′ (yn) be both non-decreasing or non-

increasing. If
∑n

i=1wixi =
∑n

i=1wiyi, then

h′ (1)

n∑
i=1

wif (yi) ≤ h′ (0)

n∑
i=1

wif (xi).

Proof. Chebyshev’s inequality says that

(2.15)
1

Wn

(
n∑

i=1

wiai

)(
n∑

i=1

wibi

)
≤ (resp. ≥)

n∑
i=1

wiaibi

provided that a1, a2, . . . , an and b1, b2, . . . , bn are monotonic in the same (resp. op-
posite) sense, Wn =

∑n
i=1wi > 0. We reach

0 =
1

Wn

(
n∑

i=1

wi (xi − yi)

)(
n∑

i=1

wif
′ (yi)

) (
since

n∑
i=1

wixi =
n∑

i=1

wiyi

)
≤

n∑
i=1

wif
′ (yi) (xi − yi) (by (2.15))

≤ h′ (0)
n∑

i=1

wif (xi)− h′ (1)
n∑

i=1

wif (yi) (by Proposition 2.13).

This completes the proof. □
Remark 2.15. Let Wn =

∑n
i=1wi > 0.

(i) If we take y1 = y2 = · · · = yn =
∑n

i=1wixi/Wn , in Proposition 2.13, we get

h′ (1) f

(∑n
i=1wixi
Wn

)
≤ h′ (0)

Wn

n∑
i=1

wif (xi).

(ii) If we take x1 = x2 = · · · = xn =
∑n

i=1wiyi/Wn , in Proposition 2.13, we get(∑n
i=1wiyi
Wn

)(∑n
i=1wif

′ (yi)

Wn

)
−
∑n

i=1wiyif
′ (yi)

Wn

≤ h′ (0) f

(∑n
i=1wiyi
Wn

)
− h′ (1)

Wn

n∑
i=1

wif (yi).

It is well–known that a convex function f : [0,∞) → [0,∞) with f(0) = 0 satisfies
the super–additive behavior

f(a+ b) ≥ f(a) + f(b).

In the following, we present an interesting super–additive inequality for h–convex
functions.
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Theorem 2.16. Let f : [0,∞) → [0,∞) be h–convex such that f(0) = 0. If a, b > 0,
then

f (a) + f (b) ≤
(
h

(
a

a+ b

)
+ h

(
b

a+ b

))
f (a+ b) .

Proof. By (1.1), one can write

(2.16) f (νb) ≤ h (1− ν) f (0) + h (ν) f (b) = h (ν) f (b) .

Using (2.16), we reach

f (a) = f

(
a

a+ b
· (a+ b)

)
≤ h

(
a

a+ b

)
f (a+ b) .

Similarly, we find

f (b) ≤ h

(
b

a+ b

)
f (a+ b) .

Adding the last two inequalities together shows the desired inequality. □
The inequality (1.1) can be written in the following format

f (ν1a+ ν2b) ≤ h (ν1) f (a) + h (ν2) f (b) ,

provided that ν1 + ν2 = 1. In the following result, we present this inequality under
the assumption ν1 + ν2 ≤ 1.

Theorem 2.17. Let f : [0,∞) → [0,∞) be h-convex such that f(0) = 0, and let
ν1, ν2 > 0 be such that ν1 + ν2 ≤ 1. If a, b > 0, then

f (ν1a+ ν2b) ≤ h (ν1 + ν2)

(
h

(
ν1

ν1 + ν2

)
f (a) + h

(
ν2

ν1 + ν2

)
f (b)

)
.

Proof. Employing (1.1) two times, we obtain

f (ν1a+ ν2b) = f

(
(ν1 + ν2)

(
ν1

ν1 + ν2
a+

ν2
ν1 + ν2

b

)
+ (1− (ν1 + ν2)) · 0

)
≤ h (ν1 + ν2) f

(
ν1

ν1 + ν2
a+

ν2
ν1 + ν2

b

)
+ h (1− (ν1 + ν2)) f (0)

= h (ν1 + ν2) f

(
ν1

ν1 + ν2
a+

ν2
ν1 + ν2

b

)
≤ h (ν1 + ν2)

(
h

(
ν1

ν1 + ν2

)
f (a) + h

(
ν2

ν1 + ν2

)
f (b)

)
,

as desired. □

3. Matrix inequalities

Let H be a complex Hilbert space, endowed with the inner product 〈·, ·〉 and as-
sociated norm ‖·‖. Let B(H) denote the C∗–algebra of all bounded linear operators
on H, with identity operator IH. We say that an operator T ∈ B(H) is positive if
〈Tx, x〉 ≥ 0 for all x ∈ H, and then we write T ≥ 0. If a bounded linear operator T
onH is positive, then there exists a unique positive bounded linear operator denoted
by T 1/2 such that T = (T 1/2)2. Furthermore, the absolute value of T , denoted by

|T |, is defined by |T | = (T ∗T )1/2. We remark that |T | ≥ 0.
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To study the eigenvalues of a Hermitian matrix T , we use the notation λi(T )
to mean the i-th eigenvalue of T , when written in decreasing order. A way to
compare matrices is given by the Löwner partial order ‘’≤”. In other words, when
T and S are Hermitian such that T ≤ S, we have that λi(T ) ≤ λi(S) for all
i ∈ {1, . . . , n}, which is another perspective to compare between T and S. We
remark that the relation λi(T ) ≤ λi(S), for all i ∈ {1, . . . , n} prove the inequality∑p

i=1 λi(T ) ≤
∑p

i=1 λi(S) for all p ∈ {1, . . . , n}. The last comparison is what we
call weak majorization and is denoted by “≺w”. Thus, if we have T ≤ S, then
λi(T ) ≤ λi(S) for all i ∈ {1, . . . , n}, which then implies T ≺w S. When H is finite
dimensional of dimension n, we identify B(H) with the algebra Mn of all n × n
complex matrices.

In the sequel, a positive linear map Φ : B(H) → B(H) is a linear map that satisfies
Φ(T ) ≥ 0 whenever T ≥ 0.

In the following result, we present a possible h-convex version of the celebrated
Jensen inequality that asserts f (〈Tx, x〉) ≤ 〈f(T )x, x〉 whenever T is a self-adjoint
operator with spectrum in the domain of the convex function f , and where x ∈ H
is a unit vector.

Lemma 3.1. Let f : I → [0,∞) be a differentiable h–convex function on an interval
I that contains [0,∞), where h : J ⊇ [0, 1] → R is differentiable at 0 and 1. Let
T1, T2, . . . , Tn ∈ B (H) be positive operators and let Φ1,Φ2, . . . ,Φn be positive linear
map on B (H) such that

∑n
i=1Φi (IH) = IH. Then for any unit vector x ∈ H,

h′ (1) f

(⟨
n∑

i=1

Φi (Ti)x, x

⟩)
≤ h′ (0)

⟨
n∑

i=1

Φi (f (Ti))x, x

⟩
.

In particular, we have

h′ (1) f (〈Tx, x〉) ≤ h′ (0) 〈f (T )x, x〉 .

Proof. By employing functional calculus for the self–adjoint operators Ti, we have
from Theorem 2.5 that

f ′ (a) (Ti − aIH) + h′ (1) f (a) IH ≤ h′ (0) f (Ti) .

Applying positive linear maps Φi and adding, it follows that

f ′ (a)

(
n∑

i=1

Φi (Ti)− aIH

)
+ h′ (1) f (a) IH ≤ h′ (0)

n∑
i=1

Φi (f (Ti)).

Hence for any unit vector x ∈ H,

f ′ (a)

(⟨
n∑

i=1

Φi (Ti)x, x

⟩
− a

)
+ h′ (1) f (a) ≤ h′ (0)

⟨
n∑

i=1

Φi (f (Ti))x, x

⟩
.

Putting a = 〈
∑n

i=1Φi (Ti)x, x〉 in the above inequality, gives the desired result. □

Theorem 3.2. Let f and h be as in Lemma 3.1. Let T1, T2, . . . , Tn ∈ Mn be
positive semidefinite matrices and let Φ1,Φ2, . . . ,Φn be positive linear map on Mn
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such that
∑n

i=1Φi (IMn) = IMn. Then

λ

(
h′ (1) f

(
n∑

i=1

Φi (Ti)

))
≺w λ

(
h′ (0)

n∑
i=1

Φi (f (Ti))

)
.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of
∑n

i=1Φi (Ti) and let u1, u2, . . . , un
be the corresponding orthonormal eigenvectors arranged such that f (λ1)≥
f (λ2) ≥ · · · ≥ f (λn). Let k = 1, . . . , n. Then using Lemma 3.1, we deduce

k∑
j=1

λj

(
h′ (1) f

(
n∑

i=1

Φi (Ti)

))
=

k∑
j=1

h′ (1) f

(⟨(
n∑

i=1

Φi (Ti)

)
uj , uj

⟩)

≤
k∑

j=1

h′ (0)

⟨
n∑

i=1

Φi (f (Ti))uj , uj

⟩

=
k∑

j=1

⟨(
h′ (0)

n∑
i=1

Φi (f (Ti))

)
uj , uj

⟩

≤
k∑

j=1

λj

(
h′ (0)

n∑
i=1

Φi (f (Ti))

)
,

where the last inequality follows from the fact that when X ∈ Mn is Hermitian,
one has

k∑
j=1

λj(X) = sup
k∑

j=1

〈Xxj , xj〉 ,

where the supremum is taken over all possible choices of orthonormal vectors
{x1, · · · , xk} ⊂ Cn.

That is, for 1 ≤ k ≤ n,

k∑
j=1

λj

(
h′ (1) f

(
n∑

i=1

Φi (Ti)

))
≤

k∑
j=1

λj

(
h′ (0)

n∑
i=1

Φi (f (Ti))

)
.

This proves the desired result. □

The following extends an outstanding result about weak majorization under con-
vex functions to the context of h–convex functions. We refer the reader to [3] for
the original version for convex functions.

Theorem 3.3. Let f and h be as in Lemma 3.1. Let A,B ∈ Mn be positive
semidefinite matrices and let 0 ≤ ν ≤ 1. If h′ (1) > 0, then

λ (f ((1− ν)A+ νB)) ≺w λ

(
h′ (0)

h′ (1)
(h (1− ν) f (A) + h (ν) f (B))

)
.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of (1− ν)A+ νB and let u1, u2, . . . , un
be the corresponding orthonormal eigenvectors arranged such that f (λ1) ≥ f (λ2) ≥
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· · · ≥ f (λn). Let k = 1, . . . , n. Then, implementing Lemma 3.1,

k∑
j=1

λj (f ((1− ν)A+ νB))

=

k∑
j=1

f (〈((1− ν)A+ νB)uj , uj〉)

=

k∑
j=1

f ((1− ν) 〈Auj , uj〉+ ν 〈Buj , uj〉)

≤
k∑

j=1

(h (1− ν) f (〈Auj , uj〉) + h (ν) f (〈Buj , uj〉))

≤
k∑

j=1

(
h′ (0)

h′ (1)
(h (1− ν) 〈f (A)uj , uj〉+ h (ν) 〈f (B)uj , uj〉)

)

=
k∑

j=1

((⟨(
h′ (0)

h′ (1)
(h (1− ν) f (A) + h (ν) f (B))

)
uj , uj

⟩))

=
k∑

j=1

λj

(
h′ (0)

h′ (1)
(h (1− ν) f (A) + h (ν) f (B))

)
.

Thus, for 1 ≤ k ≤ n,

k∑
j=1

λj (f ((1− ν)A+ νB)) ≤
k∑

j=1

λj

(
h′ (0)

h′ (1)
(h (1− ν) f (A) + h (ν) f (B))

)
.

This completes the proof. □

Proposition 3.4. Let f : I → [0,∞) be a differentiable h–convex function on an
interval I, where h : J ⊇ [0, 1] → R is differentiable at 0 and 1, and let A,B ∈ Mn

be Hermitian matrices with spectra in I. If h′(1) > 0, then

h′(1)Tr [f ((1− ν)f(A) + νf(B))] ≤ h′(0)Tr [h(1− ν)f(A) + h(ν)f(B)] ,

for any 0 ≤ ν ≤ 1.

Proof. Let {ϕk}k∈{1,...,n} be an orthonormal basis of eigenvectors for (1 − ν)A +

νB. Since Sp ((1− ν)A+ νB) ⊂ (1 − ν)Sp(A) + νSp(B), where Sp(·) denotes the
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spectrum, we have

h′(1)Tr [f ((1− ν)f(A) + νf(B))]

= h′(1)

n∑
k=1

f (〈((1− ν)A+ νB)ϕk, ϕk〉)

= h′(1)

n∑
k=1

f ((1− ν)〈Aϕk, ϕk〉+ ν〈Bϕk, ϕk〉)

≤
n∑

k=1

(
h′(1)h(1− ν)f (〈Aϕk, ϕk〉) + h′(1)h(ν)f (〈Bϕk, ϕk〉)

)
≤

n∑
k=1

(
h′(0)h(1− ν)〈f (A)ϕk, ϕk〉+ h′(0)h(ν)〈f (B)ϕk, ϕk〉

)
= h′(0)

n∑
k=1

〈(h(1− ν)f(A) + h(ν)f(B)x)ϕk, ϕk〉

= h′(0)Tr [h(1− ν)f(A) + h(ν)f(B)] .

In the first and second inequality, we used (1.1) and Lemma 3.1, respectively, noting
that h′(1) > 0. This completes the proof. □

Remark 3.5. We call the function f a quasi–h–convex, if we have

h′(1)f ((1− ν)a+ νb) ≤ h′(0) (h(1− ν)f(a) + h(ν)f(b)) ,

for any 0 ≤ ν ≤ 1. Then Proposition 3.4 states that A 7→ Tr[f(A)] is quasi–
h–convex whenever f is h–convex, provided that h is differentiable at 0, 1 and
h′(1) > 0.

One can show the following proposition by the standard method [9, 14].

Proposition 3.6. Let f : I → [0,∞) be a differentiable h–convex function on an
interval I, where h : J ⊇ [0, 1] → R is differentiable at 0 and 1, and let A,B ∈ Mn

be Hermitian matrices with spectra in I. Then

Tr
[
(B −A)f ′(A) + h′(1)f(A)− h′(0)f(B)

]
≤ 0.

The above inequality is reversed if f is h–concave.

Proof. Let A :=
∑n

i=1 λjPi and B :=
∑n

j=1 µjQj be spectral decompositions. Since∑n
i=1 Pi =

∑n
j=1Qj = IMn , PiPj = δijPi and QiQj = δijQi, where IMn is the
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identity matrix in Mn and δij is Kronecker delta, we have from Theorem 2.5,

Tr
[
(B −A)f ′(A) + h′(1)f(A)− h′(0)f(B)

]
= Tr

[
f ′ (A) (B −A) + h′ (1) f (A)− h′ (0) f (B)

]
=

n∑
i=1

n∑
j=1

Tr
[
Pi

(
f ′ (A) (B −A) + h′ (1) f (A)− h′ (0) f (B)

)
Qj

]
=

n∑
i=1

n∑
j=1

Tr
[
Pi

(
f ′(λi) (µj − λi) + h′(1)f(λi)− h′(0)f(µj)

)
Qj

]
=

n∑
i=1

n∑
j=1

(
(µj − λi) f

′(λi) + h′(1)f(λi)− h′(0)f(µj)
)
Tr[PiQj ] ≤ 0,

because Tr[PiQj ] ≥ 0. □

For the case h(x) := x in Proposition 3.6 is often called Klein inequality [1,
Lemma 9.5]. Proposition 3.6 can be regarded as a generalization of Klein inequality.
We should note that the usual Klein inequality is given for a differentiable convex
function as an opposite inequality.
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