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Following the previous results, in this paper, we study affine perturbations of qua-
siconvex functions, and show characterizations of the generalized quasiconvexity in
terms of subdifferentials. We introduce A-quasiconvex functions as a generalized
quasiconvexity. We investigate some properties of A-quasiconvex functions. We
show characterizations of A-quasiconvexity in terms of subdifferentials. Addition-
ally, we show applications of our results. In particular, we study quasiconvexity of
fractional functions.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we introduce A-
quasiconvexity of functions. We show some important properties of A-quasiconvex
functions. Additionally, we show characterizations of A-quasiconvexity in terms of
Clarke subdifferential and Greenberg-Pierskalla subdifferential. In Section 4, we
discuss about our results. We show the characterization (1.1) as a corollary of our
results. We investigate quasiconvexity of a fractional function.

2. Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. We denote B(z, r) the open ball centered at z ∈ Rn with radius
r > 0. We denote the closure, the convex hull, the conical hull, and the interior
generated by A, by clA, coA, coneA, and intA, respectively. The indicator function
δA is defined by

δA(x) =

{
0 x ∈ A,
∞ otherwise.

Let f be a function from Rn to R, where R = [−∞,∞]. We denote the domain of
f by domf , that is,

domf = {x ∈ Rn | f(x) < ∞}.
A function f is said to be proper if domf is nonempty and f(x) > −∞ for each
x ∈ Rn. The epigraph of f is defined as

epif = {(x, α) ∈ Rn × R | f(x) ≤ α}.
f is said to be convex if epif is convex. Fenchel conjugate of f , f∗ : Rn → R, is
defined as

f∗(v) = sup{⟨v, x⟩ − f(x) | x ∈ Rn}.
The subdifferential of f at x is defined as

∂f(x) = {v ∈ Rn | ∀y ∈ Rn, f(y) ≥ f(x) + ⟨v, y − x⟩}.
The Clarke subdifferential of f at x ∈ domf is defined as

∂Cf(x) = {v ∈ Rn | ∀y ∈ Rn, ⟨v, y⟩ ≤ f↑(x; y)},
where

f↑(x; y) = sup
ε>0

inf
γ>0
δ>0
λ>0

sup
z∈B(x,γ)

f(z)≤f(x)+δ
t∈(0,λ)

inf
w∈B(y,ε)

f(z + tw)− f(z)

t

is the Rockafellar directional derivative. If x /∈ domf , we define ∂Cf(x) = ∅. If f
is locally Lipschitzian on Rn, then the Rockafellar directional derivative is equal to
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the generalized Clarke derivative, see [6, 19]. We need the following proposition of
Clarke subdifferential.

Proposition 2.1 ([4, 6, 19]). Let f be an extended real-valued proper lower semi-
continuous (lsc) function on Rn. Then, the following statements hold:

(i) for each v ∈ Rn and x ∈ domf , ∂C(f − ⟨v, ·⟩)(x) = ∂Cf(x)− v,
(ii) if f is convex, ∂f(x) = ∂Cf(x) for each x ∈ Rn,
(iii) f is convex if and only if ∂Cf is monotone, that is, for each x, y ∈ Rn,

u ∈ ∂Cf(x) and w ∈ ∂Cf(y),

⟨u− w, x− y⟩ ≥ 0.

Define the level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, α) := {x ∈ Rn | f(x) ⋄ α}

for any α ∈ R. A function f is said to be quasiconvex if for all α ∈ R, L(f,≤, α)
is convex. A function f is said to be semistrictly quasiconvex if for all x, y ∈ Rn

satisfying f(x) ̸= f(y), and λ ∈ (0, 1),

f((1− λ)x+ λy) < max{f(x), f(y)}.

It is known that a semistrictly quasiconvex function is not always quasiconvex, and
a lsc semistrictly quasiconvex function is quasiconvex. A function f is said to be
explicitly quasiconvex if f is quasiconvex and semistrictly quasiconvex. A function
f is said to be essentially quasiconvex if f is quasiconvex and each local minimizer
x ∈ domf of f in Rn is a global minimizer of f in Rn. Clearly, all explicitly
quasiconvex functions (in particular convex functions) are essentially quasiconvex.
By Proposition 4 in [15], upper semicontinuous (usc) essentially quasiconvex func-
tion is explicitly quasiconvex. However, explicitly quasiconvexity and essentially
quasiconvexity are not equivalent in general, see the following example.

Example 2.2. Let f be the following function from R2 to R:

f(x1, x2) =


x1 x1 > 0,
0 x1 = 0, x2 > 1
|x2| − 1 x1 = 0,−1 ≤ x2 ≤ 1
0 x1 = 0, x2 < −1
−1 x1 < 0.

We can easily check that f is quasiconvex. Let x = (x1, x2) be a local minimizer of
f in Rn. Then x1 < 0 or (x1, x2) = 0, hence x is a global minimizer of f in Rn. This
shows that f is essentially quasiconvex. However, f is not semistrictly quasiconvex
on {(x1, x2) ∈ R2 | x1 = 0}. Hence, f is not explicitly quasiconvex.

In Proposition 2.1, a characterization of convexity in terms of Clarke subdifferen-
tial have been introduced. Additionally, it is well known that a real-valued function
f is convex if and only if ∂f is monotone, see [16–18]. For quasiconvex functions,
similar results have been given in terms of the usual derivative and subdifferentials,
for example, see [4, 11,12]. In this paper, we need the following proposition.
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Proposition 2.3 ([4]). Let f be an extended real-valued proper lsc function on Rn.
Then, f is quasiconvex if and only if ∂Cf is quasimonotone, that is, for each x,
y ∈ Rn, u ∈ ∂Cf(x) and v ∈ ∂Cf(y),

min{⟨u, y − x⟩ , ⟨v, x− y⟩} ≤ 0.

In [8], Greenberg and Pierskalla introduce the Greenberg-Pierskalla subdifferen-
tial of f at x0 ∈ Rn as follows:

∂GP f(x0) = {v ∈ Rn | ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.

The Greenberg-Pierskalla subdifferential is closely related to Moreau’s generalized
conjugation and λ-quasiconjugate, for detail, see [8, 13, 14]. In [21], we show the
following characterization of quasiconvexity of the sum of real-valued usc functions
in terms of Greenberg-Pierskalla subdifferential.

Proposition 2.4 ([21]). Let f and g be real-valued usc functions. Then, f + g is
quasiconvex if and only if for each x ∈ Rn, ∂GP (f + g)(x) ̸= ∅.

3. A-quasiconvexity and its characterizations

In this section, we investigate A-quasiconvexity of functions. We show some im-
portant properties of A-quasiconvex functions. We introduce characterizations of
A-quasiconvexity in terms of Clarke subdifferential and Greenberg-Pierskalla subd-
ifferential.

At first, we introduce a definition of a generalized quasiconvexity.

Definition 3.1. Let f be an extended real-valued function on Rn, and A ⊂ Rn. A
function f is said to be A-quasiconvex if f − ⟨v, ·⟩ is quasiconvex for each v ∈ A.

In [1–3], Apetrii defines M -convexity of functions as follows: a function f is said
to be M -convex if for each v ∈ M ⊂ Rn and α ∈ R, the following set is convex:

{x ∈ Rn | f(x) ≤ α+ ⟨v, x⟩}.

Clearly, M -convexity in the sense of [1–3] is equivalent to A-quasiconvexity in Def-
inition 3.1 if M = A. In this paper, we consider the notion as a generalization
of quasiconvexity, and denote by A-quasiconvexity. By (1.1), f is convex if and
only if f − ⟨v, ·⟩ is quasiconvex for each v ∈ Rn, for detail, see [7, 20]. Hence, f is
Rn-quasiconvex if and only if f is convex. In the following theorem, we show some
important properties of A-quasiconvex functions.

Theorem 3.2. Let f be an extended real-valued function on Rn, and A ⊂ Rn.
Assume that f is A-quasiconvex. Then, the following statements hold:

(i) if 0 ∈ A, then f is quasiconvex,
(ii) if 0 ∈ intA, then f is explicitly quasiconvex,
(iii) if f is lsc and proper, then f is clA-quasiconvex.

Proof. The statement (i) is clear, but important.
We prove the statement (ii). Since 0 ∈ A, f is quasiconvex. Assume that f is

not semistrictly quasiconvex. Then, there exist x, y ∈ Rn, and λ0 ∈ (0, 1) such that
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f(x) = f((1 − λ0)x + λ0y) > f(y). This shows that for sufficiently small ε > 0,
f + ⟨ε(y − x), ·⟩ is not quasiconvex. Actually, we can find ε > 0 such that

max{f(x) + ⟨ε(y − x), x⟩ , f(y) + ⟨ε(y − x), y⟩}
< f((1− λ0)x+ λ0y) + ⟨ε(y − x), (1− λ0)x+ λ0y⟩ .

This contradicts that f is A-quasiconvex and 0 ∈ intA.
We prove the statement (iii). Let v ∈ clA, and {vk} ⊂ A satisfying vk → v. By

the assumption, f − ⟨vk, ·⟩ is quasiconvex. By Proposition 2.1 and Proposition 2.3,
for each x, y ∈ Rn, u ∈ ∂Cf(x) and w ∈ ∂Cf(y),

min{⟨u− vk, y − x⟩ , ⟨w − vk, x− y⟩} ≤ 0.

Without loss of generality, there exists a subsequence {vki} of {vk} such that

⟨u− vki , y − x⟩ ≤ 0

for each i ∈ N. Therefore,
⟨u− v, y − x⟩ ≤ 0

since vki → v. This shows that ∂C(f − ⟨v, ·⟩) is quasimonotone, that is, f − ⟨v, ·⟩ is
quasiconvex. This completes the proof. □

Remark 3.3. In the statement (iii) of Theorem 3.2, we show that if f is proper lsc
A-quasiconvex, then f is clA-quasiconvex. However, even if f is A-quasiconvex, f
is not coA-quasiconvex in general. Actually, we show that following example such

that f is A-quasiconvex, and f is not coA-quasiconvex. Let f(x) = x4

4 + x3

3 . Then f

is {0, 4
27}-quasiconvex, and f is not [0, 4

27 ]-quasiconvex. Actually, F (x) = f(x)− x
10

is not quasiconvex since

max

{
F

(
−2

3

)
, F (0)

}
= max

{
7

405
, 0

}
<

13

540
= F

(
−1

3

)
.

Next, we study characterizations of A-quasiconvexity. At first, we show the
following characterization in terms of Clarke subdifferential.

Theorem 3.4. Let f be an extended real-valued proper lsc function on Rn, and A is
a convex subset of Rn. Then, f is A-quasiconvex if and only if for each x, y ∈ Rn,
at least one of the following statements holds:

(i) for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y), ⟨u− w, y − x⟩ ≤ 0,
(ii) for each v ∈ A and u ∈ ∂Cf(x), ⟨u− v, y − x⟩ ≤ 0,
(iii) for each v ∈ A and w ∈ ∂Cf(y), ⟨w − v, x− y⟩ ≤ 0.

Proof. Assume that f is A-quasiconvex, and let x, y ∈ Rn. By Proposition 2.1 and
Proposition 2.3,

min{⟨u− v, y − x⟩ , ⟨w − v, x− y⟩} ≤ 0

for each v ∈ A, u ∈ ∂Cf(x) and w ∈ ∂Cf(y). This shows that

⟨u, y − x⟩ ≤ ⟨v, y − x⟩ , or ⟨w, y − x⟩ ≥ ⟨v, y − x⟩ .

Therefore, A is contained in the union of two closed half spaces, that is,

A ⊂ {v | ⟨u, y − x⟩ ≤ ⟨v, y − x⟩} ∪ {v | ⟨w, y − x⟩ ≥ ⟨v, y − x⟩}.
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If ⟨u− w, x− y⟩ ≥ 0 for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y), then the statement (i)
holds. Hence, we assume that there exists u0 ∈ ∂Cf(x) and w0 ∈ ∂Cf(y) such that
⟨u0 − w0, x− y⟩ < 0. Since ⟨u0, y − x⟩ > ⟨w0, y − x⟩, {v | ⟨u0, y − x⟩ ≤ ⟨v, y − x⟩}
and {v | ⟨w0, y − x⟩ ≥ ⟨v, y − x⟩} are closed half spaces and the intersection is
empty. Since A is convex, A is contained in one of these closed half spaces. Assume
that A ⊂ {v ∈ Rn | ⟨u0, y − x⟩ ≤ ⟨v, y − x⟩}, and let u ∈ ∂Cf(x). If ⟨u, y − x⟩ ≤
⟨u0, y − x⟩, then it is clear that for each v ∈ A, ⟨u− v, y − x⟩ ≤ 0. Additionally, if
⟨u, y − x⟩ > ⟨u0, y − x⟩, then ⟨u, y − x⟩ > ⟨w0, y − x⟩. Since

A ⊂ {v | ⟨u, y − x⟩ ≤ ⟨v, y − x⟩} ∪ {v | ⟨w0, y − x⟩ ≥ ⟨v, y − x⟩},
we can prove that

A ⊂ {v ∈ Rn | ⟨u, y − x⟩ ≤ ⟨v, y − x⟩}.
in the similar way of the first half of the proof. This shows that (ii) holds. If
A ⊂ {v ∈ Rn | ⟨w0, y − x⟩ ≥ ⟨v, y − x⟩}, then we can prove that (iii) holds.

Let v ∈ A, x, y ∈ Rn, and assume that one of the statements (i), (ii) and (iii)
holds. If (ii) or (iii) holds, it is clear that for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y),

min{⟨u− v, y − x⟩ , ⟨w − v, x− y⟩} ≤ 0.

This shows that ∂C(f − ⟨v, ·⟩) is quasimonotone, that is, f − ⟨v, ·⟩ is quasiconvex.
Assume that (i) holds, that is, for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y),

⟨u− w, y − x⟩ ≤ 0.

For each v ∈ A,

⟨u− v, y − x⟩+ ⟨w − v, x− y⟩ = ⟨u− v + v − w, y − x⟩ ≤ 0.

This shows that
min{⟨u− v, y − x⟩ , ⟨w − v, x− y⟩} ≤ 0.

This completes the proof. □
Remark 3.5. If f is a real-valued differentiable function on Rn, then ∂Cf(x) =
{∇f(x)}. Hence, we can show the following characterization of A-quasiconvexity in
terms of the usual derivative: f is A-quasiconvex if and only if for each x, y ∈ Rn,
at least one of the following statements holds:

(i) ⟨∇f(x)−∇f(y), y − x⟩ ≤ 0,
(ii) for each v ∈ A, ⟨∇f(x)− v, y − x⟩ ≤ 0,
(iii) for each v ∈ A, ⟨∇f(y)− v, x− y⟩ ≤ 0.

Next, we show the following characterization of A-quasiconvexity in terms of
Greenberg-Pierskalla subdifferential and the usual subdifferential.

Theorem 3.6. Let f be an usc real-valued function on Rn, and A ⊂ Rn. Then, the
following statements are equivalent:

(i) f is A-quasiconvex,
(ii) for each v ∈ A and x ∈ Rn, ∂GP (f − ⟨v, ·⟩)(x) is nonempty.
(iii)

A ⊂
∩

x∈Rn

∪
w∈Rn

∂(f + δL(w,≥,⟨w,x⟩))(x).
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Proof. By Proposition 2.4, (i) and (ii) are equivalent. Assume that (ii) holds, and
let v ∈ A. Then, for each x ∈ Rn, ∂GP (f − ⟨v, ·⟩)(x) is nonempty. Hence, there
exists w ∈ Rn such that

inf{f(y)− ⟨v, y⟩ | ⟨w, y⟩ ≥ ⟨w, x⟩} ≥ f(x)− ⟨v, x⟩ .

This shows that for each y ∈ Rn with ⟨w, y⟩ ≥ ⟨w, x⟩,

f(y) ≥ f(x) + ⟨v, y − x⟩ ,

that is, v ∈ ∂(f + δL(w,≥,⟨w,x⟩))(x). Therefore,

A ⊂
∩

x∈Rn

∪
w∈Rn

∂(f + δL(w,≥,⟨w,x⟩))(x).

The proof of the converse implication is similar and will be omitted. □

4. Discussions and applications

In this section, we discuss about our results and show applications. We show that
the characterization (1.1) as a corollary of our results. We study A-monotonicity
in [3] and investigate Theorem 3.4 precisely. We show a characterization of quasi-
convexity of fractional functions.

4.1. Characterization of convexity in terms of A-quasiconvexity. At first,
we show the characterization (1.1) as a corollary of our result.

Corollary 4.1. Let f be an extended real-valued proper lsc function on Rn. Then,
f is convex if and only if f − ⟨v, ·⟩ is quasiconvex for each v ∈ Rn.

Proof. Assume that f is convex. We can check easily that for each v ∈ Rn, f−⟨v, ·⟩
is convex. Hence f is Rn-quasiconvex.

Conversely, assume that f is Rn-quasiconvex. Then, by Theorem 3.4, for each x,
y ∈ Rn, at least one of the following statements holds:

(i) for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y), ⟨u− w, y − x⟩ ≤ 0,
(ii) for each v ∈ Rn and u ∈ ∂Cf(x), ⟨u− v, y − x⟩ ≤ 0,
(iii) for each v ∈ Rn and w ∈ ∂Cf(y), ⟨w − v, x− y⟩ ≤ 0.

Assume that there exists x0, y0 ∈ Rn, u0 ∈ ∂Cf(x0) and w0 ∈ ∂Cf(y0) such that

⟨u0 − w0, x0 − y0⟩ < 0.

Then, one of the above statements (ii), (iii) holds, and x0 ̸= y0. However, {v ∈ Rn |
⟨u0, y0 − x0⟩ ≤ ⟨v, y − x0⟩} and {v ∈ Rn | ⟨w0, y0 − x0⟩ ≥ ⟨v, y0 − x0⟩} are closed
half spaces and not equal to Rn. This is a contradiction. Hence, for each x, y ∈ Rn,
u ∈ ∂Cf(x) and w ∈ ∂Cf(y),

⟨u− w, x− y⟩ ≥ 0,

that is, ∂Cf is monotone. This shows that f is convex, and completes the proof. □
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4.2. A-quasiconvexity and A-monotonicity. In [1–3], Apetrii definesM -convexity
and shows some important results for generalized convexity. In this paper, we con-
sider the notion as a generalization of quasiconvexity, and denote by A-quasiconvexity.
In this subsection, we study relation between A-quasiconvexity and A-monotonicity
in [3].

Definition 4.2 ([3]). Let X be a normed space, X∗ its topological dual, and A a
nonempty subset of X∗. A set-valued operator F on X is said to be A-monotone if
for every x, y ∈ X, x∗ ∈ F (x), and y∗ ∈ F (y),

⟨x∗, y − x⟩ ≤ inf
x∗
0∈My,x(y∗)

⟨x∗0, y − x⟩

where

My,x(y
∗) = {x∗0 ∈ A | ⟨y∗ − x∗0, y − x⟩ < 0}.

Apetrii shows the following characterization of A-quasiconvexity, see Theorem 34
in [3].

Theorem 4.3 ([3]). Let X be a normed space, X∗ its topological dual, A a nonempty
subset of X∗, and f a lsc function from X to R ∪ {∞}. Then, f is A-quasiconvex
if and only if the upper Dini subdifferential ∂D+f is A-monotone, where

∂D+f(x, v) =

{
x∗ ∈ X∗ | ⟨x∗, v⟩ ≤ lim sup

t↘0

f(x+ tv)− f(x)

t

}
,

∂D+f(x) =
∩
v∈X

∂D+f(x, v).

A-monotonicity of subdifferentials are closely related to the following statements
in Theorem 3.4:

(i) for each u ∈ ∂Cf(x) and w ∈ ∂Cf(y), ⟨u− w, y − x⟩ ≤ 0,
(ii) for each v ∈ A and u ∈ ∂Cf(x), ⟨u− v, y − x⟩ ≤ 0,
(iii) for each v ∈ A and w ∈ ∂Cf(y), ⟨w − v, x− y⟩ ≤ 0.

Assume that ∂Cf is A-monotone, and (iii) in Theorem 3.4 does not hold. Then
there exists v0 ∈ A and w0 ∈ ∂Cf(y), ⟨w0 − v0, x− y⟩ > 0. Since v0 ∈ My,x(w0),

⟨u, y − x⟩ ≤ inf
x∗
0∈My,x(y∗)

⟨x∗0, y − x⟩ ≤ ⟨v0, y − x⟩

for each u ∈ ∂Cf(x). This shows that ⟨u− v0, y − x⟩ ≤ 0. However, we can not
show that the statement (ii) in Theorem 3.4 holds. By A-monotonicity of ∂Cf , we
can only show that if the inequality in (iii) does not hold for v ∈ A and w ∈ ∂Cf(y),
then the inequality in (ii) holds for each u ∈ ∂fC(x). Additionally, we use ∂Cf in
the paper, though Apetrii uses the upper Dini subdifferential. Hence, we can not
show Theorem 4.3 as a corollary of Theorem 3.4, and vice versa.

4.3. Discussion about Theorem 3.4. In Theorem 3.4, we show that for each x,
y ∈ Rn, at least one of the statements (i), (ii), (iii) holds. Next, we investigate the
set of all x, y ∈ Rn satisfying the statement (i) in Theorem 3.4.
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Theorem 4.4. Let f be an extended real-valued proper lsc function on Rn, A is a
convex subset of Rn, and X = {x ∈ Rn | ∂Cf(x) ⊂ A}. Then, for each x, y ∈ X,
u ∈ ∂Cf(x) and w ∈ ∂Cf(y), ⟨u− w, y − x⟩ ≤ 0.

Proof. Let x, y ∈ X, u ∈ ∂Cf(x) and w ∈ ∂Cf(y). Then u+w
2 ∈ A since A is

convex. By Theorem 3.4, one of the following statements holds:

(A) ⟨u− w, y − x⟩ ≤ 0,
(B)

⟨
u− u+w

2 , y − x
⟩
≤ 0,

(C)
⟨
w − u+w

2 , x− y
⟩
≤ 0.

Actually, the above inequalities are equivalent to the following inequality:

⟨u− w, y − x⟩ ≤ 0.

This completes the proof. □

By Theorem 4.4, ∂Cf is monotone on X. In Remark 3.3, we show that f(x) =
x4

4 + x3

3 is {0, 4
27}-quasiconvex, and not [0, 4

27 ]-quasiconvex. Additionally, we can

check that f is (−∞, 0] ∪ [ 427 ,∞)-quasiconvex. Hence, if A is a convex subset of

(−∞, 0]∪[ 427 ,∞), then Theorem 3.4 and Theorem 4.4 hold. Actually, let A = [38 ,∞),

then X = [12 ,∞) and f ′(x) = x3 + x2 is monotone on X. If A = (−∞, 0], then
X = (−∞,−1] ∪ {0}. Although X is not convex, Y = {x ∈ R | ∇f(x) ⊂ intA} =
(−∞,−1) is convex. In more general setting, whether Y is convex or not is an open
question.

4.4. An example of Theorem 3.6. In this subsection, we investigate character-
izations in Theorem 3.6. We show the following example.

Example 4.5. Let f(x) = x4

4 + x3

3 , and A is a subset of R. By Theorem 3.6, the
following statements are equivalent:

(i) f is A-quasiconvex,
(ii) for each v ∈ A and x ∈ R, ∂GP (f − ⟨v, ·⟩)(x) is nonempty.
(iii)

A ⊂
∩
x∈R

∪
w∈R

∂(f + δL(w,≥,wx))(x).

Let v0 = 1
8 . Then, x0 = −1

2 is a strict local maximizer of f − v0. This shows that

∂GP (f−⟨v0, ·⟩)(x0) is empty. By the similar way, we can prove that for each w ∈ R,

v0 /∈ ∂(f + δL(w,≥,wx0))(x0).

Hence, by (ii) or (iii), if v0 ∈ A, then f is not A-quasiconvex. Additionally, we can
check that ∩

x∈R

∪
w∈R

∂(f + δL(w,≥,wx))(x) = (−∞, 0] ∪ [
4

27
,∞).

Hence, if A ⊂ (−∞, 0] ∪ [ 427 ,∞), then f is A-quasiconvex.
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4.5. Quasiconvexity of fractional functions. In fractional programming, qua-
siconvexity plays an important role. Especially, in the case of convex fractional
programming, an objective function is explicitly quasiconvex. Next, we study qua-
siconvexity of fractional functions in terms of A-quasiconvexity.

In the following theorem, we show some sufficient conditions for quasiconvexity
of F = f

g , where D is an open convex subset of Rn, A is a convex subset of D, f is

a real-valued quasiconvex function on Rn such that f + δD is non-negative, g is a
real-valued quasiconcave function on Rn such that g + δD is positive, and F is the
following function:

F (x) =


f(x)

g(x)
x ∈ D,

∞ otherwise.

Theorem 4.6. The following statements hold:

(i) if f is −(cone dom(−g)∗)-quasiconvex and g is concave, then F is quasi-
convex,

(ii) if there exists r > 0 such that f is (cone dom(−g)∗) + B(0, r)-quasiconvex
and g is concave, then F is essentially quasiconvex.

Proof. We show the statement (i). Assume that f is (cone dom(−g)∗)-quasiconvex,
and g is concave. We show that L(F,≤, α) is convex for each α ∈ R. If α < 0, then
L(F,≤, α) is empty since f + δD is non-negative and g + δD is positive, If α = 0,
then L(F,≤, 0) = L(f,≤, 0) is convex by 0 ∈ −(cone dom(−g)∗) and Theorem 3.2.
Assume that α > 0. Then,

x ∈ L(F,≤, α)

⇐⇒ F (x) =
f(x)

g(x)
≤ α

⇐⇒ f(x)− αg(x) ≤ 0

⇐⇒ f(x) + α sup
w∈dom(−g)∗

{⟨w, x⟩ − (−g)∗(w)} ≤ 0

⇐⇒ ∀w ∈ dom(−g)∗, f(x) + ⟨αw, x⟩ − α(−g)∗(w) ≤ 0

⇐⇒ ∀w ∈ dom(−g)∗, (f + αw)(x) ≤ α(−g)∗(w).

By the assumption, f+αw is quasiconvex for each w ∈ dom(−g)∗. Hence, L(F,≤, α)
is a convex set, that is, F is quasiconvex.

Next, we show the statement (ii). Assume that there exists r > 0 such that f is
−(cone dom(−g)∗) + B(0, r)-quasiconvex and g is concave. At first, we show that
f − αg is explicitly quasiconvex for each α > 0. Let α > 0 and v ∈ B(0, r). For
each β ∈ R,

x ∈ L(f − αg + v,≤, β)

⇐⇒ f(x)− αg(x) + ⟨v, x⟩ ≤ β

⇐⇒ f(x) + α sup
w∈dom(−g)∗

{⟨w, x⟩ − (−g)∗(w)}+ ⟨v, x⟩ ≤ β

⇐⇒ ∀w ∈ dom(−g)∗, f(x) + ⟨αw, x⟩ − α(−g)∗(w) + ⟨v, x⟩ ≤ β

⇐⇒ ∀w ∈ dom(−g)∗, (f + αw + v)(x) ≤ β + α(−g)∗(w).
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By the assumption, f + αw + v is quasiconvex for each w ∈ dom(−g)∗. Hence,
L(f −αg+ v,≤, β) is a convex set, that is, f −αg+ v is quasiconvex. Since f −αg
is B(0, r)-quasiconvex, f − αg is explicitly quasiconvex by Theorem 3.2.

Next, we show that F is essentially quasiconvex. By the similar way in the proof
of statement (i), we can show that F is quasiconvex. Let x0 be a local minimizer
of F in D and α0 = F (x0). If α0 = 0, then we can check easily that x0 is a global
minimizer of F in D. Hence, we assume that α0 > 0. Then, there exists an open
sub set U ⊂ D such that x0 is a minimizer of F in U . For each x ∈ U ,

F (x) ≥ α0 = F (x0)

⇐⇒ f(x)

g(x)
≥ α0 =

f(x0)

g(x0)

⇐⇒ f(x)− α0g(x) ≥ 0 = f(x0)− α0g(x0).

This shows that x0 is a local minimizer of f − α0g in D. Since f − α0g is explicitly
quasiconvex, f − α0g is essentially quasiconvex, that is, x0 is a global minimizer of
f − α0g in D. We can check easily that x0 is a global minimizer of F in D. Hence,
F is essentially quasiconvex. This completes the proof. □

By Theorem 4.6, we can show the following corollary.

Corollary 4.7. The following statements are sufficient conditions for essentially
quasiconvexity of F :

(i) f is convex and g is concave,
(ii) there exists r > 0 such that f is cone{v}+B(0, r)-quasiconvex and g = v ∈

Rn.

Proof. We can see that f is convex if and only if Rn-quasiconvex, and dom(−⟨v, ·⟩)∗ =
{−v}. Hence, we can easily show that the statements (i) and (ii) are sufficient con-
ditions for (ii) of Theorem 4.6. □

In [5], it is shown that a ratio of a concave function and a convex function
is semistrictly quasiconcave. Additionally, a real-valued continuous quasiconvex
function is essentially quasiconvex if and only if it is semistrictly quasiconvex, see [5,
9,10]. Hence, a convex fractional function is essentially quasiconvex. In this paper,
we give another proof of essentially quasiconvexity of a convex fractional function
in Theorem 4.6 and Corollary 4.7.

Remark 4.8. In Theorem 4.6, we assume that g is concave. We can prove that
the following conditions is also a sufficient condition for quasiconvexity of F :

f is convex and − g is − (cone domf∗)-quasiconvex.
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