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solutions. Entropy and renormalized solutions present two possible ways of such
generalizations [2] authors studied the renormalized solutions in the case when the
exponent p is a constant; in [19] C. Zhang and X. Zhang considered the existence
and uniqueness of renormalized and entropy solutions for nonlinear parabolic par-
tial differential equations with variable Laplacian; in [18] C. Zhang and X. Zhang
proved the existence of unique nonnegative renormalized solution to the fractional
Laplacian problem; the regularity of solutions to in variable spaces were considered
in [2,4–6,10,11,13–15]; in [17] J. X. Yin, J. K. Li, Y. Y. Ke applied the Krasnoselskii
fixed point theorem on the cone to show global regularity of positive solutions to
p (x)-Laplace equation with the good right side, authors also proved the Harnack
inequality and the Liouville theorem.

In the present article, we extend L. Boccardo, D. Giachetti, J. I. Diaz, F. Murat,
C. Zhang, S. Zhou C. Zhang, and S. Zhou results [2, 18, 19] to consider bound-
ary problem for a nonlinear elliptic partial differential equation with the variable
exponential operator (3.1), (3.2) under the generalized Leray-Lions conditions, we
establish the existence and uniqueness of the renormalized solution in the case p ∈
P log (Ω). To formulate precise restrictions on the right side of the differential equa-
tion (3.1), we studied the properties of the variable exponential variational capacity,
which is connected with the minimization of the modular function of the gradient or

the norm of variable exponential Sobolev space W
p(·)
1, 0 (Ω) for the functions greater

than one on give set. We establish that the bounded Borelian measure MB (Ω) does

not charge zero capacity sets if and only if µ ∈ L1 (Ω) +W
q(·)
−1 (Ω), namely if there

are two elements F ∈ L1 (Ω) Θ ∈
(
Lq(·) (Ω)

)n
such that µ = f − div (Θ). This

paper’s main result is the existence and uniqueness of the renormalized solution to
a boundary problem for a nonlinear elliptic partial differential equation with the
variable exponential operator with general integrable data.

2. Some preliminary information

We assume Ω ⊂ Rn is a bounded domain, p ∈ P log (Ω), and denote pm =
infx∈Ωp (x) and pS = supx∈Ωp (x). We define a modular function by

(2.1) ρp(·) (u) =

∫
Ω
|u (x)|p(x) dx.

The norm ‖·‖Lp(·)(Ω) of variable exponent Lebesgue space Lp(·) (Ω) is given by

(2.2) ‖u‖Lp(·)(Ω) = inf
λ>0

{
ρp(·)

(u
λ

)
≤ 1
}
.

Definition 2.1. A Banach space W
p(·)
1 (Ω) consists of all elements u of Lp(·) (Q)

such that |∇u| ∈ Lp(·) (Ω) and is equipped with the norm

(2.3) ‖u‖
W

p(·)
1 (Ω)

= ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω) .

The Sobolev space W
p(·)
1,0 (Ω) is the closure of C∞

0 (Ω) in the norm of W
p(·)
1 (Ω)

such that embedding W
p(·)
1 (Ω) → Lp(·) (Ω) is continuous. The dual Sobolev space
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(W
p(·)
1 (Ω))∗ is W

q(·)
−1 (Ω) equipped with the norm

(2.4) ‖f‖
W

q(·)
−1 (Ω)

= sup

u ∈W
p(·)
1 (Ω) ,

u 6= 0

|〈f, u〉|
‖u‖

W
p(·)
1 (Ω)

where q(x) = p(x)
p(x)−1 for all x ∈ Ω.

For pS <∞, we have inequalities

(2.5) min {‖u‖Lp(·)
pm , ‖u‖Lp(·)

pS} ≤ ρp(·) (u) ≤ max {‖u‖Lp(·)
pm , ‖u‖Lp(·)

pS}

for all u ∈ Lp(·) (Ω).

Theorem 2.2 (Poincare inequality). Let variable exponent p belong to P log (Ω).
Then, the inequality

(2.6) ‖u‖Lp(·) ≤ const (n, p) diam (Ω) ‖∇u‖Lp(·)

holds for all elements u ∈W
p(·)
1, 0 (Ω).

To deal with renormalized solutions to elliptic partial differential equations, we
introduce some formal definitions, which are similar to J. Heinonen, T. Kilpelainen,
and O. Martio.

Definition 2.3. An elliptic variable exponential capacity of a compact subset K
of Ω is defined by

(2.7) Capp(·) (K) = inf
{
ρp(·) (∇u) : u ∈ C∞

0 (Ω) , u ≥ 1K
}

and an elliptic variable exponential capacity of a Borelian subset B of Ω is defined
by

(2.8) Capp(·) (B) = sup
{
Capp(·) (K) , K is compact in Ω, K ⊂ B

}
.

The elliptic variable exponential capacity of a Borelian subset B of Ω can be
calculated as

(2.9) Capp(·) (B) = inf

{
ρp(·) (∇u) , u ∈W

p(·)
1,0 (Ω) : u

Cap
= 1 on B, u

Cap
≥ 0 on Ω

}
,

where =Cap means equality Capp(·)-quasi everywhere.

Proposition 2.4. The elliptic variable exponential capacity set function E 7→
Capp(·) (E) for all Borelian subsets E ⊂ Ω has the properties:

1) assume E1 ⊂ E2 then Capp(·) (E1) ≤ Capp(·) (E2);
2) assume sets K1 and K2 are compact then the

(2.10) Capp(·) (K1 ∪K2) + Capp(·) (K1 ∩K2) ≤ Capp(·) (K1) + Capp(·) (K2) ;

3) assume E =
⋃
j=1, ....Ej then

(2.11) Capp(·) (E) ≤
∑

j=1, ....

Capp(·) (Ej) .

Proof. Statement 1) is obvious. □
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Let K1 and K2 be compact sets. We denote a functional set

W (K) = {u ∈ C∞
0 (Ω) : u ≥ 1K} ,

and assume u ∈W (K1) and v ∈W (K1) then we have

ρp(·) (∇max {u, v}) + ρp(·) (∇min {u, v}) = ρp(·) (u) + ρp(·) (v) .

The functions min {u, v} and max {u, v} are admissible for condensers K1 ∪ K2

and K1 ∩K2 so we obtain

Capp(·) (K1 ∪K2) + Capp(·) (K1 ∩K2) ≤ ρp(·) (u) + ρp(·) (v)

and

Capp(·) (K1 ∪K2) + Capp(·) (K1 ∩K2) ≤ inf
u

(
ρp(·) (u)

)
+ inf

v

(
ρp(·) (v)

)
= Capp(·) (K1) + Capp(·) (K2) .

Let K, D and F be a compact subsets of Ω such that K ⊂ D then

Capp(·) (D ∪ F ) + Capp(·) (K) ≤ Capp(·) (D ∪ (K ∪ F )) + Capp(·) (D ∩ (K ∪ F ))
≤ Capp(·) (D) + Capp(·) (K ∪ F )

so

Capp(·) (D ∪ F )− Capp(·) (K ∪ F ) ≤ Capp(·) (D)− Capp(·) (K) .

By induction, we have

Capp(·)

( ⋃
j=1,...,m

Dj

)
−Capp(·)

( ⋃
j=1,...,m

Kj

)
≤

∑
j=1,...,m

(
Capp(·) (Dj)− Capp(·) (Kj)

)
.

Assume Ej and Fj are open sets. Assume
⋃
j=1,...,mEj ⊃ D and Fj ⊃ Kj are com-

pact sets such that
⋃
j=1,...,mKj⊃D, then compact setDj=D\

⋃
k = 1, ...,m
k 6= j

Kk⊂

Ej contains Kj and D =
⋃
k=1,...,mDk. Therefore, for open sets Ej , we have

Capp(·)

( ⋃
j=1,...,m

Ej

)
− Capp(·)

( ⋃
j=1,...,m

Fj

)
≤

∑
j=1,...,m

(
Capp(·) (Ej)− Capp(·) (Fj)

)
where Fj ⊂ Ej , j = 1, ...,m and Capp(·)

(⋃
j=1,...,m Fj

)
< ∞. Thus, for sets Ej

such that Fj ⊂ Ej , j = 1, ...,m and Capp(·)
(⋃

j=1,...,m Fj
)
<∞, we conclude

Capp(·)

( ⋃
j=1,...,m

Ej

)
−Capp(·)

( ⋃
j=1,...,m

Fj

)
≤

∑
j=1,...,m

(
Capp(·) (Ej)− Capp(·) (Fj)

)
.

So, we have

Capp(·)

( ⋃
j=1,...,m

Ej

)
≤

∑
j=1,...,m

Capp(·) (Ej) .

Proceeding as above, we can pass to the limit as m approaches infinity and obtain

Capp(·) (E) ≤
∑

j=1, ....

Capp(·) (Ej) .

Let MB (Ω) be the space of all bounded measures on the Borelian σ-algebra of
subsets of Ω and M+

B (Ω) be the subset of all non-negative measures of MB (Ω).
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Definition 2.5. A set M0 (Ω) consists of all measures µ ∈ MB (Ω) such that µ (E) =
0 for all subsets E ⊂ Ω such that Capp(·) (E) = 0. Non-negative measures of M0 (Ω)

is denoted by M+
0 (Ω).

Proposition 2.6. Let Capp(·) (E) = 0 then mes (E) = 0.

Proof. Assume Capp(·) (E) = 0 then for each ε > 0 there is an open neighborhood
O of E such that Capp(·) (O) < ε. We find a compact set K and a function ψ ∈
W (K) = {u ∈ C∞

0 (Ω) : u ≥ 1K} such that

ρp(·) (∇u) ≤ Capp(·) (K) + ε < 2ε.

Since p ∈ P log (Ω) we can employ the Poincare inequality and obtain

mes (K) ≤ ρp(·) (u) ≤ clog (p) diam (Ω) ρp(·) (∇u) < clog (p) diam (Ω) ε

since mes (O) ≤ clog (p) diam (Ω) ε, we conclude mes (E) = 0, which proves the
proposition. □

Remark. Some demands of the general variable exponential regularity are neces-
sary. For general variable exponential functions, the statement of Proposition 2.6
does not hold hence the Poincare inequality fails.

Theorem 2.7. Let µ ∈ MB (Ω) then for µ ∈ M0 (Ω) it necessary and sufficient that

µ ∈ L1 (Ω) +W
q(·)
−1 (Ω).

Proof. From µ ∈ L1 (Ω) +W
q(·)
−1 (Ω) straightforwardly follows µ ∈ M0 (Ω).

Applying arguments of the Hahn decomposition theorem, we can assume that
µ is a positive measure. Assume µ ∈ M0 (Ω) then there are a positive Borel mea-

surable function ψ ∈ L1 (Ω, η) and a positive measure η in W
q(·)
−1 (Ω). We take

a sequence {Kj} ⊂ 2Ω of compact sets Kj ⊂ Ω such that
⋃
j Kj = Ω, we de-

note µ̃j = Tj
(
ψ1Kj

)
η, where the truncation operator Tm : R → R given

Tj (s) = max {−j, min {j, s}} , j ≥ 0 and for all s ∈ R. We put µ0 = µ̃0 and
µj = µ̃j − µ̃j−1 so that µ =

∑
j∈N µj ∈ MB (Ω) since

∑
j∈N ‖µj‖MB(Ω) <∞.

We denote a sequence of mollifiers {θj} such that θj ∗ µm−→W
q(·)
−1 (Ω)

j→∞ µm. We

choose j a large enough so that θj∗µm ∈ C∞
0 (Ω) and ‖θj ∗ µm − µm‖W q(·)

−1 (Ω)
≤ 2−m.

So, we can write µm = (θj ∗ µm)+(µm − θj ∗ µm) = fm+gm so that g =
∑

j∈N gj ∈
W

q(·)
−1 (Ω). We have f =

∑
j∈N fj ∈ L1 (Ω) since ‖fm‖L1(Ω) = ‖θj ∗ µm‖L1(Ω) ≤

‖µj‖MB(Ω). Therefore, we obtain the decomposition µ = f + g, which proves the

theorem. □

Theorem 2.8. Let µ be a nonnegative Radon measure on Ω. Then, there ex-

ist elements µ0 ∈ W
q(·)
−1 (Ω) , F ∈ L1 (Ω) and a positive measure µ2 such that

µ2 (E) = µ (E ∩N) for all µ-measurable sets E and for some Borel sets N such
that Capp(·) (N) = 0.

Proof. Each σ -finite measure µ̃ can be presented in the form µ̃ = µ̃0 + µ̃1, where
µ̃0 ∈ M0 (Ω) and µ̃1 such that µ̃1 (E) = µ̃ (E ∩N) for all µ-measurable sets E and
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for some Borel sets N such that Capp(·) (N) = 0. Indeed, assuming that the measure
µ is finite, then we denote

α = sup
{
µ (N) : Capp(·) (N) = 0

}
<∞.

Let {Ej} be an increasing sequence of Borelian sets Ej such that Capp(·)(Ej)
= 0 and limj→∞µ̃(Ej) = α. We obtain

⋃
j∈N Ej is Borelian set such that

Capp(·)(
⋃
j∈N Ej) = 0 and µ̃(

⋃
j∈N Ej) = α. We have µ̃(E\

⋃
j∈N Ej) = 0 for

all Borelian sets E such that µ̃(E) = 0. We define measures µ̃0 = 1Ω\
∪

j∈N Ej
µ̃ and

µ̃1 = 1∪
j∈N Ej

µ̃, where we can assume N =
⋃
j∈N Ej . The application of Theorem

2.2 proves Theorem 2.7. □

3. Formalization of the boundary elliptic problem

We consider an elliptic partial differential equation with variable exponent in the
form

(3.1) −div (a (x, ∇u)) + b (x) |u|γ(x)−2 u = µ,

(3.2) u|∂Ω = 0,

where x ∈ Ω, Ω ⊆ Rn, n ≥ 3 is a smooth domain, and the measure µ does not
charge sets of null capacity, and 0 ≤ γ(x) ≤ p(x). Assume p ∈ P log (Ω), pS <∞.

We assume that the structural coefficients satisfy the Leray-Lions type conditions:

1) a function a : Ω×Rn → Rn such that a (·, ξ) is measurable in Ω for each
ξ ∈ Rn and a (x, ·) is continuous on Rn for almost every x in Ω;

2) a (x, ξ) ξ ≥ ν |ξ|p(x) for all ξ ∈ Rn with some constants ν > pm;

3) |a (x, ξ)| ≤ α |ξ|p(x)−1 + α1 (x) ;
4) (a (x, ξ1)− a (x, ξ2)) (ξ1 − ξ2) > 0

hold for almost all x ∈ Ω, and for all ξ1, ξ2 ∈ Rn, ξ1 6= ξ2, with some
constants ν > pm, α > 0, and positive function α1 ∈ Lq(·) (Ω).

4. Entropy and renormalized solutions

First, we generalized notions of the gradient and weak solutions to partial differ-
ential equations.

Definition 4.1. We assume Tj (u) ∈ W
p(·)
1, 0 (Ω) , j > 0 for an almost everywhere

finite measurable function u. Then, the gradient ∇u : Ω → Rn of u is defined by

(4.1) ∇Tj (u) = 1{|u|<j}∇u

almost everywhere in Ω and for each j > 0.

Such a gradient operator is uniquely defined if we presume the standard almost
everywhere equivalence argument.

Definition 4.2. Let µ ∈ MB (Ω). A function u is called an entropy solution to the
problem (2.1), (2.2) if

1) Tj (u) ∈W
p(·)
1, 0 (Ω) , j > 0 and |∇u|p(x)−1 ∈ Lq(·) (Ω) for q (x) = p(x)

p(x)−1 ;
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2) the identity

(4.2)

∫
Ω
a (x, ∇Tj (u))∇Tj (u− ϕ) dx+

∫
Ω
b |u|γ(x)−2 uTj (u− ϕ) dx

=

∫
Ω
FTj (u− ϕ) dx+

∫
Ω
Θ∇Tj (u− ϕ) dx

holds for all ϕ ∈ C∞
C (Ω), where the given measure µ ∈ MB (Ω) is presented

in the form µ = F − div (Θ) where F ∈ L1 (Ω) and Θ ∈
(
Lq(·) (Ω)

)n
.

Definition 4.3. Let µ ∈ MB (Ω). A function u is called a renormalized solution to
the problem (2.1), (2.2) if

1) Tj (u) ∈W
p(·)
1, 0 (Ω) , j > 0 and |∇u|p(x)−1 ∈ Lq(·) (Ω) for q (x) = p(x)

p(x)−1 ;

(4.3) lim
j→∞

∫
{j≤|u|≤j+1}

a (x, ∇u)∇udx = 0

and

(4.4)
∣∣∣b (·) |u|γ(·)−2 u

∣∣∣ ∈ L1
loc (Ω) ;

2) for all functions h ∈W 1,∞ (R) with compact supports, the identity∫
Ω
a (x, ∇u)h (u)∇ϕdx+

∫
Ω
a (x, ∇u)h′ (u)ϕdx

+

∫
Ω
b |u|γ(x)−2 uh (u)ϕdx(4.5)

=

∫
Ω
ϕh (u)Fdx+

∫
Ω
Θ∇ (ϕh (u)) dx

holds for all ϕ ∈ C∞
C (Ω).

5. Proof of existence and uniqueness of entropy and renormalized
solutions

We are going to show the existence and uniqueness of entropy and renormalized
solutions to the elliptic partial differential equations with a variable exponential
elliptic operator.

Theorem 5.1. Let variable exponent p belong to P log (Ω). Let measure µ ∈ MB (Ω)
does not charge sets of null capacity. Then, there exists a uniquely defined entropy
solution u to the problem (12), (13) under the conditions 1) – 4).

Proof. The existence of an entropy solution can be proven by considering the ap-
proximating problems and obtaining a solution to the problem (3.1), and (3.2) as
the limit of solutions of approximate problems, the existence of a solution to ap-
proximate Dirichlet problems follows from the variational method.

We consider the sequence of the approximations of (3.1), and (3.2) by problems

−div (a (x, ∇uk)) + b (x) |uk|γ(x)−2 uk = Fk − div (Θk) ,

uk|∂Ω = 0,
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where sequences {Fk} ⊂ C∞
C (Ω) and {Θk} ⊂ (C∞

C (Ω))n such that Fk−→
L1(Ω)
k→∞ F ,

Θk−→
(Lq(·)(Ω))

n

k→∞ Θ and ‖Fk‖L1(Ω) ≤ ‖F‖L1(Ω), ρq(·) (Θk) ≤ ρq(·) (Θ).

Applying variational methods, we establish the existence of a unique weak so-

lution uk ∈ W
p(·)
1, 0 (Ω) to each problem indexed by k ∈ N . All these solutions are

entropy solutions. We are going to show that a subsequence {uk} ⊂ W
p(·)
1, 0 (Ω)

converges to an entropy solution to the problem (3.1), (3.2).

For each fixed j, a sequence {Tj (uk) , k ∈ N} is bounded in W
p(·)
1, 0 (Ω)-norm

since we take the test function Tj (uk) and apply the definition of the gradient,
structural coefficients conditions, and Young’s inequality, we estimate

νρp(·) (∇Tj (uk)) ≤
∫
Ω
FkTj (uk) dx+

∫
Ω
Θk∇Tj (uk) dx

≤ j ‖Fk‖L1(Ω) + ρp(·)

(
∇Tj (uk)
p (·)

)
+ ρq(·)

(
Θk

q (·)

)
since ν > pm we obtain

ρp(·) (∇Tj (uk)) ≤
(
ν − pm

−1
)−1

(
j ‖Fk‖L1(Ω) + ρq(·)

(
Θk

q (·)

))
.

So, there exists a subsequence
{
uk

j
}

of
{
uk

j−1
}

and a sequence of functions

{wj} ⊂ Lq(·) (Ω) such that |wj | ≤ j and Tj
(
uk

j
)
−→Lq(·)(Ω)

k→∞ wj . We can reindex the

subsequence {uk} as uk = uk
k for all k ∈ N . Thus, we obtain Tj (uk)−→

Lq(·)(Ω)
k→∞ wj

for all indices j. Since for all indices m, j such that j < m we have Tj (Tmuk) =
Tjuk, we deduce

lim
k→∞

Tj (Tm (uk)) = Tj (wm) = lim
k→∞

Tj (uk) = wj .

We define a function u by u (x) = wj (x) for all x ∈ {j − 1 ≤ |wj (x)| < j, j ∈ N}
and u (x) = 0 on a negligible set. For this function u, the identity Tj (u) = wj holds
for all j ∈ N .

In the definition of an entropy solution, we take a test function ϕ equal 0 and
obtain∫

Ω
a (x, ∇Tj (u))∇Tj (u) dx+

∫
Ω
b |u|γ(x)−2 uTj (u) dx

=

∫
Ω
FTj (u) dx+

∫
Ω
Θ∇Tj (u) dx,

applying the Young inequality, we obtain

ρp(·) (∇Tj (u)) ≤
(
ν − pm

−1
)−1

(
j ‖F‖L1(Ω) + ρq(·)

(
Θ

q (·)

))
= c (F, Θ) .

Employing Sobolev’s embedding lemma and set equality {j ≤ |u|} = {j ≤ |Tj (u)|},
we conclude the following estimate

mes {x ∈ Ω : j ≤ |u (x)|} ≤ const (p, F, Θ) jp
∗
m(p

−1
m −1).
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Since Tj (uk) ∈ Lq(·) (Ω) , k ∈ N the estimate

lim su
i, l→∞

pmes {x ∈ Ω : |ui (x)− ul (x)| > ε} ≤ const (p, F, Θ) jp
∗
m(p

−1
m −1)

holds for all j ∈ N thus passing to the limit as j → ∞ we deduce

lim su
i, l→∞

pmes {x ∈ Ω : |ui (x)− ul (x)| > ε} = 0.

Therefore, we can choose a convergent subsequence {uk} such that uk−→a.e. in Ω
k→∞ u.

We define

vk = T2j (uk − Tm (uk) + Tj (uk)− Tj (u))

for all j ∈ N and for all m > j. Then, we choose d = 4j +m and obtain ∇vk = 0
for |uk| > j, we take a test function vk and have∫

Ω
a (x, ∇Td (uk))∇vkdx+

∫
Ω
b |uk|γ(x)−2 ukvkdx =

∫
Ω
Fkvkdx+

∫
Ω
Θk∇vkdx.

We split the integral on the left-hand side into two∫
Ω
a (x, ∇Td (uk))∇ (T2j (uk − Tm (uk) + Tj (uk)− Tj (u))) dx

≥
∫
Ω
a (x, ∇Tj (uk))∇ (Tj (uk)− Tj (u)) dx

−
∫
{|uk|>j}

|a (x, ∇Td (uk))| |∇Tj (u)| dx

so that we obtain∫
Ω
(a (x, ∇Tj (uk))− a (x, ∇Tj (u)))∇ (Tj (uk)− Tj (u)) dx

≤
∫
{|uk|>j}

|a (x, ∇Td (uk))| |∇Tj (u)| dx

−
∫
Ω
a (x, ∇Tj (uk))∇ (Tj (uk)− Tj (u)) dx

+

∫
Ω
FkT2j (uk − Tm (uk) + Tj (uk)− Tj (u)) dx

+

∫
Ω
Θk∇T2j (uk − Tm (uk) + Tj (uk)− Tj (u)) dx

−
∫
Ω
b |uk|γ(x)−2 ukT2j (uk − Tm (uk) + Tj (uk)− Tj (u)) dx.

We take m = m (ε) sufficiently large, since |a (x, ∇Tm (uk))| ∈ Lq(·) (Ω) and

1{|uk|>j} |∇Tj (u)| −→
Lp(·)(Ω)
k→∞ 0 ∀j ∈ N we obtain

lim
k→∞

∫
{|uk|>j}

|a (x, ∇Td (uk))| |∇Tj (u)| dx = 0.
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Next, we put vk = T2j (uk − Tm (uk)) and obtain∫
Ω
a (x, ∇Td (uk))∇ (T2j (uk − Tm (uk))) dx

+

∫
Ω
b |uk|γ(x)−2 ukT2j (uk − Tm (uk)) dx

=

∫
Ω
FkT2j (uk − Tm (uk)) dx+

∫
Ω
Θk∇ (T2j (uk − Tm (uk))) dx

repeating the previous calculation, we deduce∫
Ω
|∇ (T2j (uk − Tm (uk)))|p(x) dx ≤ c1 (2j + 1)

with positive constant c1 independent on m. Since

T2j (uk − Tm (uk))
weakly W

p(·)
1,0 (Ω)

−→
k→∞

T2j (u− Tm (u))

we have ∫
Ω
|∇ (T2j (u− Tm (u)))|p(x) dx ≤ c1 (2j + 1)

so ∫
Ω
|Θ| |∇ (T2j (u− Tm (u)))| dx ≤ c3 (j)

∫
{|u|≥m}

|Θ|q(x) dx,

therefore,

lim
m→∞

∫
Ω
Θ∇ (T2j (u− Tm (u))) dx = 0.

By the Lebesgue theorem, we get

lim
m→∞

∫
Ω
FT2j (u− Tm (u)) dx = 0

and the inequality∫
Ω
FT2j (u− Tm (u)) dx+

∫
Ω
Θ∇ (T2j (u− Tm (u))) dx ≤ ε

holds for all large enough m = m (ε).
Since

T2j (uk − Tm (uk) + Tj (uk)− Tj (u))
weakly W

p(·)
1,0 (Ω)

−→
k→∞

T2j (u− Tm (u))

we conclude∫
Ω
(a (x, ∇Tj (uk))− a (x, ∇Tj (u)))∇ (Tj (uk)− Tj (u)) dx

≤
∫
Ω
FT2j (u− Tm (u)) dx+

∫
Ω
Θ∇T2j (u− Tm (u)) dx ≤ ε

for all large enough k thus

lim
k→∞

∫
Ω
(a (x, ∇Tj (uk))− a (x, ∇Tj (u)))∇ (Tj (uk)− Tj (u)) dx = 0.



SOFT MEASURES AND THE EXISTENCE OF RENORMALIZED SOLUTIONS 2823

By the Vitali theorem, we conclude ∇uk−→
(Lp(·)(Ω))

n

k→∞ ∇u, thus the limit

Tj (uk)−→
W

p(·)
1,0 (Ω)

k→∞ Tj (u) holds for each j ∈ N .
Thus, we have obtained

uk
a.e. in Ω−→

k→∞
u,

Tj (uk)
W

p(·)
1,0 (Ω)
−→
k→∞

Tj (u) .

Finally, in

−div (a (x, ∇uk)) + b (x) |uk|γ(x)−2 uk = Fk − div (Θk)

we take a test function wk = Tj (uk − ϕ) for j ∈ N with ϕ ∈ W
p(·)
1,0 (Ω) ∩ L∞ (Ω)

then we can choose s = j + ‖ϕ‖L∞(Ω) , k > s and obtain∫
Ω
a (x, ∇uk)∇Tj (uk − ϕ) dx =

∫
Ω
a (x, ∇Ts (uk))∇Tj (uk − ϕ) dx

so that∫
Ω
a (x, ∇Ts (uk))∇ (Tj (uk − ϕ)) dx+

∫
Ω
b |uk|γ(x)−2 ukTj (uk − ϕ) dx

=

∫
Ω
FkTj (uk − ϕ) dx+

∫
Ω
Θk∇ (Tj (uk − ϕ)) dx

passing to the limit as k goes to infinity, we deduce∫
Ω
a (x, ∇u)∇ (Tj (u− ϕ)) dx+

∫
Ω
b |u|γ(x)−2 uTj (u− ϕ) dx

=

∫
Ω
FTj (u− ϕ) dx+

∫
Ω
Θ∇ (Tj (u− ϕ)) dx

for all ϕ ∈W
p(·)
1,0 (Ω) ∩ L∞ (Ω) and all j ∈ N . □

The uniqueness can be shown from the definition of the entropy solution. Let
us assume that there are two entropy solutions u and w then we take test functions
Tm (w) and Tm (u), respectively, and obtain∫

{|u−Tm(w)|≤j}
a (x, ∇u)∇Tj (u− Tm (w)) dx

+

∫
{|w−Tm(u)|≤j}

a (x, ∇w)∇Tj (w − Tm (u)) dx

+

∫
Ω

(
b |u|γ(x)−2 u− F

)
Tj (u− Tm (w)) dx

+

∫
Ω

(
b |w|γ(x)−2w − F

)
Tj (w − Tm (u)) dx

=

∫
Ω
Θ∇Tj (u− Tm (w)) dx+

∫
Ω
Θ∇Tj (w − Tm (u)) dx
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We have ∫
{|u−Tm(w)|≤j}

a (x, ∇u)∇Tj (u− Tm (w)) dx

=

∫
{|u|≤m}∩{|u−w|≤j, |w|≤m}

a (x, ∇u)∇ (u− w) dx

−
∫
{|u|>m}∩{|u−w|≤j, |w|≤m}

a (x, ∇u)∇wdx

and ∫
{|w−Tm(u)|≤j}

a (x, ∇w)∇Tj (w − Tm (u)) dx

=

∫
{|w|≤m}∩{|u−w|≤j, |u|≤m}

a (x, ∇w)∇ (w − u) dx

−
∫
{|w|>m}∩{|u−w|≤j, |u|≤m}

a (x, ∇w)∇udx.

By the Holder inequality, we estimate∣∣∣∣∣
∫
{|u|>m}∩{|u−w|≤j, |w|≤m}

a (x, ∇u)∇wdx

∣∣∣∣∣
≤
∫
{|u|>m}∩{|u−w|≤j, |w|≤m}

∣∣∣α |∇u|p(x)−1 + α1 (x)
∣∣∣ |∇w| dx

≤ kHol

(
‖α1‖Lq(·)(Ω) +

∥∥∥|∇u|p(x)−1
∥∥∥
Lq(·)({m<|u|≤m+j})

)
‖∇w‖Lp(·)({m−j<|w|≤m})

and∣∣∣∣∣
∫
{|w|>m}∩{|u−w|≤j, |u|≤m}

a (x, ∇w)∇udx

∣∣∣∣∣
≤
∫
{|w|>m}∩{|u−w|≤j, |u|≤m}

∣∣∣α |∇w|p(x)−1 + α1 (x)
∣∣∣ |∇u| dx

≤ kHol

(
‖α1‖Lq(·)(Ω) +

∥∥∥|∇w|p(x)−1
∥∥∥
Lq(·)({m<|w|≤m+j})

)
‖∇u‖Lp(·)({m−j<|u|≤m}) .

We have∫
{m<|ψ|≤m+j}

|∇ψ|p(x) dx ≤
(
ν − pm

−1
)−1

(
j ‖Fk‖L1(Ω) + ρq(·)

(
Θk

q (·)

))
for each entropy solution ψ.

Thus, we obtain

lim
m→∞

∫
{|u−Tm(w)|≤j}

a (x, ∇u)∇ (u− Tm (w)) dx

=

∫
{|u−w|≤j}

a (x, ∇u)∇ (u− w) dx
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and

lim
m→∞

∫
{|w−Tm(u)|≤j}

a (x, ∇w)∇Tj (w − Tm (u)) dx

−
∫
{|u−w|≤j}

a (x, ∇w)∇Tj (u− w) dx.

Since

Tj (u− Tm (w)) + Tj (w − Tm (u)) = 0

in {|u| ≤ m, |w| ≤ m} we get∣∣∣∣∫
Ω
F (x) (Tj (u− Tm (w)) + Tj (w − Tm (u))) dx

∣∣∣∣
≤ kHolj

(∫
{|u|>m}

|F (x)| dx+

∫
{|w|>m}

|F (x)| dx

)
.

The measures mes {|u| > m} and mes {|w| > m} approach zero as m approaches
infinity so that ∫

{|u−w|≤j}
a (x, ∇u)− a (x, ∇w)∇ (u− w) dx = 0

for all j ∈ N , therefore, we deduce ∇u=a.e. in Ω∇w.
Since p ∈ P log (Ω) we employ the Poincare inequality and conclude

‖Tj (u− w)‖Lp(·)(Ω) ≤ const ‖∇Tj (u− w)‖Lp(·)(Ω) = 0

for all j ∈ N , therefore, we deduce u=a.e. in Ωw thus the entropy solutions u
and w coincide.

Theorem 5.2. Let variable exponent p belong to P log (Ω). Let measure µ ∈ MB (Ω)
does not charge sets of null capacity. Then, there exists a unique renormalized
solution u to the problem (3.1), (3.2) under the conditions 1) – 4), which coincides
with the entropy solution.

Proof. Let a function u be an entropy solution to (3.1), (3.2) then Tj (u) ∈W
p(·)
1, 0 (Ω)

for all j ∈ N and

lim
j→∞

∫
{j≤|u|≤j+1}

|∇u|p(x) dx = 0

since

ν

∫
{j≤|u|≤j+1}

|∇u|p(x) dx

≤
∫
{j<|u|}

Fdx+

∫
{j≤|u|≤j+1}

|∇u|p(x)

p (·)
dx+

∫
{j≤|u|≤j+1}

|Θ|q(x)

q (·)
dx

for q (x) = p(x)
p(x)−1 .
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Let {uk} ⊂ W
p(·)
1, 0 (Ω) be a proximation sequence as in the proving of Theorem

5.1 then Tj (uk)−→
W

p(·)
1,0 (Ω)

k→∞ Tj (u) for all j ∈ N . Let h ∈ W 1,∞ (R) with compact
support on [−M, M ] for some positive number M . For all ϕ ∈ C∞

C (Ω), we write∫
Ω
a (x, ∇uk)h (uk)∇ϕdx

+

∫
Ω
a (x, ∇uk)h′ (uk)ϕdx+

∫
Ω
b |uk|γ(x)−2 ukh (uk)ϕdx

=

∫
Ω
ϕh (uk)Fkdx+

∫
Ω
Θk∇ (ϕh (uk)) dx.

Since

h (uk) a (x, ∇uk) = h (uk) a (x, ∇TM (uk)) ,

h (u) a (x, ∇TM (u)) = h (u) a (x, ∇u) ,
h′ (uk) a (x, ∇uk) = h′ (uk) a (x, ∇TM (uk)) ,

h′ (u) a (x, ∇TM (u)) = h′ (u) a (x, ∇u)

and

uk
a.e. in Ω−→

k→∞
u,

Tj (uk)
W

p(·)
1,0 (Ω)
−→
k→∞

Tj (u) ,

|∇Tj (uk)|p(x)−2∇Tj (uk)
(Lq(·)(Ω))

n

−→
k→∞

|∇Tj (u)|p(x)−2∇Tj (u) ,

we conclude

h (uk) a (x, ∇TM (uk))
(Lq(·)(Ω))

n

−→
k→∞

h (u) a (x, ∇TM (u)) ,

h′ (uk) a (x, ∇TM (uk))
L1(Ω)−→
k→∞

h′ (u) a (x, ∇TM (u))

and

h (uk) a (x, ∇uk)
(Lq(·)(Ω))

n

−→
k→∞

h (u) a (x, ∇u) ,

h′ (uk) a (x, ∇uk)
L1(Ω)−→
k→∞

h′ (u) a (x, ∇u) .

Therefore, we deduce∫
Ω
a (x, ∇u)h (u)∇ϕdx+

∫
Ω
a (x, ∇u)h′ (u)ϕdx+

∫
Ω
b |u|γ(x)−2 uh (u)ϕdx

=

∫
Ω
ϕh (u)Fdx+

∫
Ω
Θ∇ (ϕh (u)) dx.

The uniqueness can be proven similar to the previous theorem. Theorem 5.2 is
proven. □
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