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the choice of step size depends on the operator norm, which is not always an easy
task.

In what follows, we define the convex objective function f by

(1.3) f(x) =
1

2
∥(I − PQ)Ax∥2, x ∈ H,

where I is the identity operator. Then f is differentiable and has a Lipschitz gradient
given by

(1.4) ∇f(x) = A∗(I − PQ)Ax, x ∈ H.

It turns out that the CQ algorithm (1.2) can be written in the form of a gradient
projection algorithm

xn+1 = PC(xn − λn∇f(xn)), n ≥ 0,

where λn ∈ (0, 2
L) and L = ∥A∥2 is the Lipschitz constant of ∇f .

Qu and Xiu [29] introduced Armijo-line searches in Euclidean spaces to solve SFP
(1.1) by modifying the relaxed CQ algorithm. Thereafter, Yang [19] extended it to
Hilbert spaces as follows{

yn = P
Ĉn

(xn − λn∇fn(xn)),
xn+1 = P

Ĉn
(xn − λn∇fn(yn)), ∀n ≥ 1,

(1.5)

where λn = γlmn , with γ > 0, l ∈ (0, 1), µ ∈ (0, 1), and mn being the smallest
nonnegative integer such that

λn∥∇fn(xn)−∇fn(yn)∥ ≤ µ∥xn − yn∥.(1.6)

Here Ĉn and Q̂n are defined by Ĉn = {x ∈ H | c(xn) + ⟨ξn, x − xn⟩ ≤ 0}, with
ξn ∈ ∂c(xn), and Q̂n = {y ∈ H | q(Axn) + ⟨ζn, y − Axn⟩ ≤ 0}, with ζn ∈ ∂q(Axn).
Moreover, fn(x) =

1
2∥(I − P

Q̂n
)Ax∥2 so that ∇fn(x) = A∗(I − P

Q̂n
)Ax for x ∈ H.

They proved that {xn} weakly converges to a solution of (SFP). Many authors
constructed variable step sizes without knowing the prior knowledge of operator
norm, see [21,22,26,30,38–40,42].

To improve the performance of the algorithm, Alvarez and Attouch [2] introduced
the inertial technique, which is also widely used as an accelerating method to solve
monotone inclusion problems, see [4,5,23–25,27,35,43]. Dang et al. [12] proposed an
inertial relaxed CQ algorithm. The iterative scheme is as follows: for any x0, x1 ∈ H,{

wn = xn + θn(xn − xn−1),

xn+1 = PCn
(wn − λn∇fn(wn)), ∀n ≥ 1,

(1.7)

where 0 ≤ θn < θ < 1, Cn = {x ∈ H | c(wn) + ⟨ξn, x − wn⟩ ≤ 0}, ξn ∈ ∂c(wn),
Qn = {y ∈ H | q(Awn) + ⟨ζn, y − Awn⟩ ≤ 0}, ζn ∈ ∂q(Awn) and, ∇fn(x) =
A∗(I − PQn

)Ax for x ∈ H. A relaxed projection algorithm with a line search

process was also constructed to solve (SFP), see [34]. The convergence result was
also obtained under some suitable assumptions.

Let T : H → H be a nonexpansive mapping. The fixed point problem (FPP) is
expressed as finding a point x ∈ H such that

Tx = x.(1.8)
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The set of fixed points of T is denoted by F (T ). It is known that Mann iterative
algorithm is more efficient among many iterative algorithms for solving fixed point
problems involving nonexpansive mappings in the form of

xn+1 = (1− λn)xn + λnTxn, n ≥ 0,(1.9)

where {λn} is a sequence of nonnegative real numbers in [0, 1]. If F (T ) ̸= ∅, then
it is known that the sequence {xn} generated by (1.9) converges weakly to a fixed
point of T under the divergence condition

∑∞
n=1 λn(1− λn) = ∞.

Inertial-type algorithms were originated from the heavy ball method (an implicit
discretization) of the second-order time dynamical system [1, 28], which has at-
tracted much attention, due to its acceleration of the speed of the convergence of
the original algorithms [15,17].

Tan and Cho [36] proposed an inertial Mann-like algorithm for fixed points of
nonexpansive mappings in Hilbert spaces. Their algorithm reads as follows

wn = xn + θn(xn − xn−1),

yn = (1− αn)wn,

xn+1 = (1− βn)yn + βnTyn, ∀n ≥ 1,

(1.10)

where T : H → H is a nonexpansive mapping such that F (T ) ̸= ∅. It is also proved
that the iterative sequence {xn} generated by (1.10) converges to a fixed point of
T in norm under some appropriate assumptions. We notice that inertial techniques
were used to construct a number of iterative algorithms [16,18,33,37].

Ceng et al. [8] introduced and analyzed an extragradient method for finding a
common element of the solution set S and the fixed point set F (T ) of a nonexpansive
mapping T in Hilbert spaces. The algorithm is formulated as follows:

x0 = x ∈ C,

yn = PC(I − λn∇fαn)xn,

xn+1 = βnxn + (1− βn)TPC(xn − λn∇fαnyn), ∀n ≥ 0,

(1.11)

where T : C → C is a nonexpansive mapping with F (T ) ∩ S ̸= ∅ and fαn(x) =
f(x) + (αn/2)∥x∥2 so that ∇fαn = ∇f + αnI = A∗(I − PQ)A + αnI. This al-
gorithm combined the extragradient algorithm with the regularization algorithm.
They proved that the sequence {xn} generated by (1.11) converges weakly to an
element of F (T ) ∩ S under mild conditions.

Dong et al. [14] introduced a general inertial Mann algorithm and proved the
weak convergence of proposed algorithm under some conditions. The scheme is
given by: 

yn = xn + αn(xn − xn−1),

zn = xn + βn(xn − xn−1),

xn+1 = (1− λn)yn + λnTzn

(1.12)

for all n ≥ 1, where T : H → H is a nonexpansive mapping. It is easy to show
that the general inertial Mann algorithm includes other algorithms as special cases.
They [14] proved that the sequence {xn} generated by (1.12) converges weakly to
a point of F (T ).



2796 Y. WU, H. LI, AND H. K. XU

In this paper, motivated and inspired by the above-mentioned work, we provide
weakly or strongly convergent algorithms for solving split feasibility problem and
fixed point problem of a κ-strictly pseudocontractive mapping. In Section 2, we
recall some basic definitions and existing lemmas to be used in our proofs. In Section
3, the weak and strong convergence of the proposed algorithms are analyzed. We
present in Section 4 some numerical experiments to compare our methods with other
methods in the existing literature. A conclusion is also included in Section 5.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, respectively.
Given a sequence {xn} in H and a point x ∈ H. We use the standard notation:
xn → x means that {xn} converges in norm to x, and respectively, xn ⇀ x means
that {xn} converges weakly to x. Also given a nonempty closed convex subset C of
H. The normal cone to C at a point z ∈ H is defined as

NCz :=

{
{x ∈ H : ⟨x, y − z⟩ ≤ 0 ∀y ∈ C}, if z ∈ C,

∅, if z /∈ C.

A set-valued mapping T : H → 2H is said to be monotone if, for all x, y ∈ H,
f ∈ Tx and g ∈ Ty, one has ⟨x− y, f − g⟩ ≥ 0. A monotone mapping T is maximal
if its graph G(T ) is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if, for
(x, f) ∈ H × H, ⟨x − y, f − g⟩ ≥ 0 for every (y, g) ∈ G(T ) implies (x, f) ∈ G(T ),
i.e., f ∈ Tx.

Lemma 2.1. (i) For any x, y ∈ H, we have

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

(ii) For x, y ∈ H, t ∈ R, we have

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2.

Definition 2.2. Let C be a nonempty closed convex subset of H. For every x ∈ H,
there exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ = min{∥x− y∥ | y ∈ C}.

The operator PC is called the metric projection from H onto C.

Definition 2.3. Given a mapping T : H → H is a mapping.

(1) T is said to be L-Lipschitz if there exists a nonnegative constant L such that

∥Tx− Ty∥ ≤ L∥x− y∥ ∀x, y ∈ H.

If L = 1, then T is said to be nonexpansive. If L < 1, then T is said to be
contractive. It is known that PC is nonexpansive.

(2) T is said to be firmly nonexpansive if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2 ∀x, y ∈ H.
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(3) T is called co-coercive (or inverse strongly monotone, ISM for short) on H
with a modulus α > 0 if

⟨Tx− Ty, x− y⟩ ≥ α∥Tx− Ty∥2 ∀x, y ∈ H.

In this case, we say that T is α-co-coercive, or α-ISM. We know that I−PC

is 1-co-coercive (i.e., firmly nonexpansive).
(4) T is said to be κ-strictly pseudocontractive if there exists 0 ≤ κ < 1 such

that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + κ∥(I − T )x− (I − T )y∥2 ∀x, y ∈ H.

Every nonexpansive mapping is clearly 0-strictly pseudocontractive.

Lemma 2.4 ([20]). Let C be a nonempty closed and convex subset of a real Hilbert
space H and PC be the metric projection from H onto C. Then, for all x, y ∈ H
and z ∈ C, we have

(i) ⟨x− PCx, z − PCx⟩ ≤ 0;
(ii) ∥PCx− PCy∥ ≤ ∥x− y∥;
(iii) ∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩;
(iv) ∥PCx− z∥2 ≤ ∥x− z∥2 − ∥(I − PC)x∥2.

Lemma 2.5 ([3]). If T : H → H is a κ-strictly pseudocontractive mapping for some
0 ≤ κ < 1, then T satisfies the following properties:

(1) T is Lipschitz continuous with Lipschitz constant L = (1 + κ)/(1− κ).
(2) F (T ) is closed and convex.
(3) I−T is demiclosed at 0, that is, if {xn} is a sequence in H such that xn ⇀ x̄

and (I − T )xn → 0, then x̄ ∈ F (T ).

Lemma 2.6 ([8]). Let a point x∗ ∈ C be given. Then the following statements are
equivalent.

(a) x∗ solves SFP (1.1).
(b) x∗ solves the fixed point equation (for each λ > 0):

x∗ = PC(x
∗ − λ∇f(x∗)) = PC(x

∗ − λA∗(I − PQ)Ax
∗).

(c) x∗ solves the variational inequality (VI) with respect to the gradient of f ,
that is,

(2.1) ⟨∇f(x∗), x− x∗⟩ ≥ 0, x ∈ C.

We will use V I(C,∇f) to denote the solution set of VI (2.1).

Lemma 2.7 ([1]). Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that

ψn+1 ≤ ψn + αn(ψn − ψn−1) + δn

for each n ≥ 1. Suppose
∑∞

n=1 δn < +∞ and there exists a real number α with
0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:

(i)
∑∞

n=1

[
ψn − ψn−1

]
+
< +∞, where [t]+ = max{t, 0};

(ii) there exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.
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Lemma 2.8 ([44]). Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C → H be a κ-strict pseudocontraction with a fixed point. Define
S : C → H by Sx = αx + (1 − α)Tx for each x ∈ C. Then, for α ∈ [κ, 1), S is
nonexpansive and F (S) = F (T ).

Lemma 2.9 ([3]). Let K be a nonempty subset of H and {xn} be a sequence in H.
Suppose that the following two conditions are satisfied:

(i) for each x ∈ K, limn→∞ ∥xn − x∥ exists;
(ii) every sequential weak cluster point of {xn} lies in K.

Then the sequence {xn} converges weakly to a point in K.

Lemma 2.10 ([32]). Assume that {sn} is a sequence of nonnegative real numbers
such that

sn+1 ≤ (1− γn)sn + γnδn, n ≥ 0,

where {γn} is a sequence in [0, 1] and {δn} is a sequence in R. Suppose the conditions
below are satisfied:

(i)
∑∞

n=1 γn = ∞,
(ii) lim supk→∞ δnk

≤ 0 whenever {nk} is a subsequence of positive integers such
that lim infk→∞(snk+1 − snk

) ≥ 0.

Then limn→∞ sn = 0.

3. Algorithms and convergence analysis

In this section we introduce two two-step inertial iterative algorithms for finding
a point in the set S ∩ F (T ), that is, a common solution to SFP (1.1) and FPP
(1.8). We shall prove the weak convergence of the first algorithm, and the strong
convergence of the second algorithm.

3.1. Algorithm 1. Let x0, x1 be arbitrarily chosen in H. Given constants γ > 0,
l ∈ (0, 1) and µ ∈ (0, 13). Our algorithm generates a sequence {xn} by the following
iteration process: 

un = xn + an(xn − xn−1),

wn = xn + bn(xn − xn−1),

yn = PC

(
wn − λn∇f(wn)

)
,

zn = PC

(
wn − λn∇f(yn)

)
,

xn+1 = (1− βn)un + βnTnzn,

(3.1)

where λn = γlmn and mn is the smallest nonnegative integer such that

λnmax
{
∥∇f(zn)−∇f(yn)∥, ∥∇f(yn)−∇f(wn)∥

}
≤ µ

(
∥zn − yn∥+ ∥yn − wn∥

)
.(3.2)

Moreover, Tn = γnI+(1−γn)T , {γn} ⊂ (0, 1) fulfils the condition lim infn→∞(γn−
κ) > 0, and T : C → H is a κ-strictly pseudocontraction for some κ ∈ [0, 1).

To analyze the convergence of Algorithm 1, we assume the following two condi-
tions:
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C1) {an} ⊂ [0, a] and {bn} ⊂ [0, b] are nondecreasing with a1 = b1 = 0, bn−an ≤
bn+1 − an+1 ≤ 0 and a, b ∈ [0, 1);

(C2) β, σ, δ > 0, {βn} is nonincreasing, and

δ >
aξ(1 + ξ) + aσ

1− a2
, 0 < β ≤ βn ≤ δ − a[ξ(1 + ξ) + aδ + σ]

δ[1 + ξ(1 + ξ) + aδ + σ]
,(3.3)

where ξ = max{a, b}.

Lemma 3.1. Let γ > 0, l ∈ (0, 1) and µ ∈ (0, 13). Then the line search rule (3.2)
is well defined and

µl

L
< λn ≤ γ,

where L = ∥A∥2.

Proof. From (1.3) and (1.4), we have f(x) = 1
2∥(I −PQ)Ax∥2 and ∇f(x) = A∗(I −

PQ)Ax. Noting the fact that I −PQ is (firmly) nonexpansive, we obtain that ∇f is

L-Lipschtiz and moreover, 1
L -co-coercive. So, we get

∥∇f(zn)−∇f(yn)∥ ≤ L∥zn − yn∥, ∥∇f(yn)−∇f(wn)∥ ≤ L∥yn − wn∥.
It turns out that

max
{
∥∇f(zn)−∇f(yn)∥, ∥∇f(yn)−∇f(wn)∥

}
≤ L

(
∥zn − yn∥+ ∥yn − wn∥

)
.

By definition, λn = γlmn and since l ∈ (0, 1), we trivially see that λn ≤ γ. However,
since λn is the largest value that satisfies (3.2), we get

λn
l
max

{∥∥∥∇f(PC

(
wn − λn

l
∇f(yn)

))
−∇f

(
PC

(
wn − λn

l
∇f(wn)

))∥∥∥,∥∥∥∇f(PC

(
wn − λn

l
∇f(wn)

))
−∇f(wn)

∥∥∥}
> µ

(∥∥∥PC

(
wn − λn

l
∇f(yn)

)
− PC

(
wn − λn

l
∇f(wn)

)∥∥∥
+
∥∥∥PC

(
wn − λn

l
∇f(wn)

)
− wn

∥∥∥).
Consequently, we have λn

l · L > µ, that is, λn >
µl
L . The proof is complete. □

Theorem 3.2. Assume that {λn} satisfies the line search condition (3.2). Assume
also S ∩ F (T ) ̸= ∅. Then the sequence {xn} generated by the Algorithm (3.1)
converges weakly to a point of S ∩ F (T ).

Proof. Let p ∈ S ∩ F (T ); thus p ∈ C, Ap ∈ Q, and Tp = p. Using Lemma 2.4, we
obtain

∥zn − p∥2 = ∥PC(wn − λn∇f(yn))− p∥2

≤ ∥wn − λn∇f(yn)− p∥2 − ∥wn − λn∇f(yn)− zn∥2

= ∥wn − p∥2 − ∥wn − zn∥2 + 2λn⟨∇f(yn), p− zn⟩
= ∥wn − p∥2 − ∥wn − zn∥2 + 2λn⟨∇f(yn), p− yn⟩+ 2λn⟨∇f(yn), yn − zn⟩.(3.4)

According to the fact that I − PC is firmly nonexpansve and ∇f(z) = 0, we derive

⟨∇f(yn), yn − p⟩ = ⟨∇f(yn)−∇f(p), yn − p⟩
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= ⟨(I − PQ)Ayn − (I − PQ)Ap,Ayn −Ap⟩
≥ ∥(I − PQ)Ayn∥2.(3.5)

Combining (3.4) and (3.5) yields

∥zn − p∥2 ≤ ∥wn − p∥2 − ∥wn − zn∥2 − 2λn∥(I − PQ)Ayn∥2 + 2λn⟨∇f(yn), yn − zn⟩
= ∥wn − p∥2 − [∥wn − yn∥2 + ∥yn − zn∥2 + 2⟨wn − yn, yn − zn⟩]
− 2λn∥(I − PQ)Ayn∥2 + 2λn⟨∇f(yn), yn − zn⟩

= ∥wn − p∥2 − ∥wn − yn∥2 − ∥yn − zn∥2 − 2λn∥(I − PQ)Ayn∥2

+ 2⟨wn − λn∇f(yn)− yn, zn − yn⟩
= ∥wn − p∥2 − ∥wn − yn∥2 − ∥yn − zn∥2 − 2λn∥(I − PQ)Ayn∥2

+ 2⟨wn − λn∇f(wn)− yn, zn − yn⟩+ 2λn⟨∇f(wn)−∇f(yn), zn − yn⟩.(3.6)

As yn = PC

(
wn − λn∇f(wn)

)
and zn ∈ C, it follows from Lemma 2.4 that

⟨wn − λn∇f(wn)− yn, zn − yn⟩ ≤ 0.(3.7)

Moreover, by virtue of (3.2),

2λn⟨∇f(wn)−∇f(yn), zn − yn⟩ ≤ 2λn∥∇f(wn)−∇f(yn)∥ · ∥zn − yn∥
≤ 2µ(∥zn − yn∥+ ∥yn − wn∥) · ∥zn − yn∥
≤ 3µ∥zn − yn∥2 + µ∥yn − wn∥2.(3.8)

Substituting (3.7) and (3.8) into (3.6) and keeping µ ∈ (0, 13) in mind, we get

∥zn − p∥2 ≤ ∥wn − p∥2 − ∥wn − yn∥2 − ∥yn − zn∥2 − 2λn∥(I − PQ)Ayn∥2

+ 3µ∥zn − yn∥2 + µ∥yn − wn∥2

= ∥wn − p∥2 − (1− µ)∥yn − wn∥2 − (1− 3µ)∥zn − yn∥2

− 2λn∥(I − PQ)Ayn∥2

≤ ∥wn − p∥2.(3.9)

Recalling that Tn is nonexpansive and F (Tn) = F (T ), we immediately have, for
p ∈ F (T ),

(3.10) ∥Tnzn − p∥2 ≤ ∥zn − p∥2.
From (3.1), we get

∥wn − p∥2 = ∥(1 + bn)(xn − p)− bn(xn−1 − p)∥2

= (1 + bn)∥xn − p∥2 − bn∥xn−1 − p∥2 + bn(1 + bn)∥xn − xn−1∥2

and

∥un − p∥2 = ∥(1 + an)(xn − p)− an(xn−1 − p)∥2

= (1 + an)∥xn − p∥2 − an∥xn−1 − p∥2 + an(1 + an)∥xn − xn−1∥2.
Then, from (3.9) and (3.10),

∥xn+1 − p∥2 = ∥(1− βn)(un − p) + βn(Tnzn − p)∥2

= (1− βn)∥un − p∥2 + βn∥Tnzn − p∥2 − βn(1− βn)∥Tnzn − un∥2
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≤ (1− βn)∥un − p∥2 + βn∥wn − p∥2 − βn(1− βn)∥Tnzn − un∥2

= (1− βn)[(1 + an)∥xn − p∥2 − an∥xn−1 − p∥2

+ an(1 + an)∥xn − xn−1∥2]
+ βn[(1 + bn)∥xn − p∥2 − bn∥xn−1 − p∥2

+ bn(1 + bn)∥xn − xn−1∥2]− βn(1− βn)∥Tnzn − un∥2

= [(1− βn)(1 + an) + βn(1 + bn)]∥xn − p∥2

− [(1− βn)an + βnbn

]
∥xn−1 − p∥2

+ [(1− βn)an(1 + an) + βnbn(1 + bn)]∥xn − xn−1∥2

− βn(1− βn)∥Tnzn − un∥2.(3.11)

Let θn = an(1 − βn) + bnβn. Then from (C1), (C2) and βn ∈ (0, 1), it follows that
θn ⊂ [0, ξ] is nondecreasing with θ1 = 0. Then (3.11) is reduced to

∥xn+1 − p∥2 ≤ (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 − βn(1− βn)∥Tnzn − un∥2

+
[
(1− βn)an(1 + an) + βnbn(1 + bn)

]
∥xn − xn−1∥2.(3.12)

On the other hand, by (3.1), we get

∥Tnzn − un∥2 =
∥∥∥ 1

βn
(xn+1 − xn) +

an
βn

(xn−1 − xn)
∥∥∥2

=
1

β2n
∥xn+1 − xn∥2 +

a2n
β2n

∥xn−1 − xn∥2 + 2
an
β2n

⟨xn+1 − xn, xn−1 − xn⟩

≥ 1

β2n
∥xn+1 − xn∥2 +

a2n
β2n

∥xn−1 − xn∥2

+
an
β2n

(
−ρn∥xn+1 − xn∥2 −

1

ρn
∥xn−1 − xn∥2

)
,(3.13)

where ρn = 1
an+δβn

. Substituting (3.13) into (3.12) yields

∥xn+1 − p∥2−(1 + θn)∥xn − p∥2 + θn∥xn−1 − p∥2

≤ (1− βn)(anρn − 1)

βn
∥xn+1 − xn∥2 + µn∥xn − xn−1∥2,(3.14)

where

µn = (1− βn)an(1 + an) + βnbn(1 + bn)

+ an(1− βn)
1− anρn
ρnβn

≥ 0.(3.15)

By the definition of ρn, we get δ = 1−anρn
ρnβn

. From (3.15),

µn = (1− βn)an(1 + an) + βnbn(1 + bn) + an(1− βn)δ

≤ ξ(1 + ξ) + aδ.(3.16)
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Let ϕn = ∥xn − p∥2 and ψn = ϕn − θnϕn−1 + µn∥xn − xn−1∥2 for all n ∈ N. Since
{θn} is nondecreasing and ϕn ≥ 0, from (3.14), we get

ψn+1 − ψn ≤ ϕn+1 − (1 + θn)ϕn + θnϕn−1 + µn+1∥xn+1 − xn∥2 − µn∥xn − xn−1∥2

≤
[
(1− βn)(anρn − 1)

βn
+ µn+1

]
∥xn+1 − xn∥2.(3.17)

Next, we show that

(1− βn)(anρn − 1)

βn
+ µn+1 ≤ −σ.(3.18)

Since ρn = 1
an+δβn

, then,

(1− βn)(anρn − 1)

βn
+ µn+1 ≤ −σ

⇔ βn(µn+1 + σ) + (1− βn)(anρn − 1) ≤ 0

⇔ βn(µn+1 + σ)− δβn(1− βn)

an + δβn
≤ 0

⇔ (an + δβn)(µn+1 + σ) + δβn ≤ δ.

From (3.3) and (3.16), we have

(an + δβn)(µn+1 + σ) + δβn ≤ (a+ δβn)
[
ξ(1 + ξ) + aδ + σ

]
+ δβn ≤ δ.

Hence, (3.18) is verified. From (3.17) and (3.18)

ψn+1 − ψn ≤ −σ∥xn+1 − xn∥2,(3.19)

which implies that {ψn} is nonincreasing. Furthermore,

−ξϕn−1 ≤ ϕn − ξϕn−1 ≤ ψn ≤ ψ1.(3.20)

Since ψ1 = ϕ1 ≥ 0 (θ1 = a1 = b1 = 0), we get

ϕn ≤ ξϕn−1 + ψ1 ≤ · · · ≤ ξnϕ0 + ψ1

n−1∑
k=1

ξk ≤ ξnϕ0 +
ψ1

1− ξ
.(3.21)

From (3.19), (3.20) and (3.21), we have

σ
n∑

k=1

∥xk+1 − xk∥2 ≤ ψ1 − ψn+1 ≤ ψ1 + ξϕn ≤ ξn+1ϕ0 +
ψ1

1− ξ
,

which implies that
∞∑
n=1

∥xn+1 − xn∥2 < +∞.(3.22)

From (3.14), (3.22) and Lemma 2.7, we conclude that limn→∞ ∥xn − p∥ exists. We
also have limn→∞ ∥xn+1 − xn∥ = 0. From (3.1),

∥un − xn+1∥ ≤ ∥xn − xn+1∥+ an∥xn − xn−1∥
≤ ∥xn − xn+1∥+ a∥xn − xn−1∥
→ 0 (n→ ∞).(3.23)
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Similarly,

∥wn − xn+1∥ → 0 (n→ ∞).(3.24)

On the other hand, from (3.9), we get

∥xn+1 − p∥2 = ∥(1− βn)(un − p) + βn(Tnzn − p)∥2

= (1− βn)∥un − p∥2 + βn∥zn − p∥2 − βn(1− βn)∥Tnzn − un∥2

≤ (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 − βn(1− βn)∥Tnzn − un∥2

+
[
(1− βn)an(1 + an) + βnbn(1 + bn)

]
∥xn − xn−1∥2

− βn

[
(1− µ)∥wn − yn∥2+ (1− 3µ)∥zn − yn∥2+ 2λn∥(I − PQ)Ayn∥2

+ (1− γn)(γn − κ)∥Tzn − zn∥2
]
,

which implies that

βn(1− βn)∥Tnzn − un∥2 + βn

[
(1− µ)∥wn − yn∥2 + (1− 3µ)∥zn − yn∥2

+ 2λn∥(I − PQ)Ayn∥2 + (1− γn)(γn − κ)∥Tzn − zn∥2
]

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + θn

(
∥xn − p∥2 − ∥xn−1 − p∥2

)
+
[
(1− βn)an(1 + an) + βnbn(1 + bn)

]
∥xn − xn−1∥2 → 0 (n→ ∞).

So, as n→ ∞, we get

(3.25)
∥Tnzn − un∥ → 0, ∥wn − yn∥ → 0, ∥zn − yn∥ → 0,
∥(I − PQ)Ayn∥ → 0, ∥Tzn − zn∥ → 0.

Let x be a sequential weak cluster point of {xn}. There exists a subsequence {xnk
}

of {xn} such that xnk
⇀ x; thus, wnk

⇀ x, ynk
⇀ x, znk

⇀ x as k → ∞. Now, we
show that x ∈ F (T ). Since znk

⇀ x, ∥Tznk
− znk

∥ → 0 (n→ ∞), using Lemma 2.5
we obtain x ∈ F (T ).

Next, we show that x ∈ S. Let

T ′v :=

{
∇f(v) +NCv, if v ∈ C,

∅, if v /∈ C.

Then, T ′ is maximal monotone and 0 ∈ T ′v if and only if v ∈ V I(C,∇f) (see
[31] for more details). Let G(T ′) be the graph of T ′ and (v, w) ∈ G(T ′). Then
w ∈ T ′v = ∇f(v) + NCv for v ∈ C, and w − ∇f(v) ∈ NCv. By the definition of
NCv, we get

⟨v − u,w −∇f(v)⟩ ≥ 0, ∀u ∈ C.

Since zn = PC(wn − λn∇f(yn)) and v ∈ C, we have

⟨wn − λn∇f(yn)− zn, v − zn⟩ ≤ 0 =⇒
〈
v − zn,

zn − wn

λn
+∇f(yn)

〉
≥ 0.

From w −∇f(v) ∈ NCv and znk
∈ C, we get

⟨v − znk
, w⟩ ≥ ⟨v − znk

,∇f(v)⟩
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≥ ⟨v − znk
,∇f(v)⟩ −

〈
v − znk

,
znk

− wnk

λnk

+∇f(ynk
)

〉
= ⟨v − znk

,∇f(v)⟩ −
〈
v − znk

,
znk

− wnk

λnk

〉
− ⟨v − znk

,∇f(ynk
)⟩

= ⟨v − znk
,∇f(v)−∇f(znk

)⟩

+ ⟨v − znk
,∇f(znk

)−∇f(ynk
)⟩ −

〈
v − znk

,
znk

− wnk

λnk

〉
.

Hence, from (3.25) we have ⟨v − x,w⟩ ≥ 0. Since T ′ is maximal monotone, then
0 ∈ T ′x, and hence x ∈ V I(C,∇f). Thus it is clear that x ∈ S from Lemma 2.6,
that is, x ∈ S ∩ F (T ). From Lemma 2.9, it follows that {xn} converges weakly to
a point in S ∩ F (T ). This completes the proof. □

3.2. Algorithm 2. In order to introduce an algorithm that converges in norm, we
employ a viscosity approximation technique. Let x0, x1 be arbitrary in H, φ : H →
H be a contraction mapping with constant τ ∈ [0, 1). Assume that a, b ∈ [0, 1) and
{ϵn}, {ηn} are positive sequences such that

∑∞
n=1 ϵn < ∞,

∑∞
n=1 ηn < ∞. Given

constants γ > 0, l ∈ (0, 1) and µ ∈ (0, 13). Choose an and bn such that 0 < an < an
and 0 < bn < bn, respectively, where

an =

min

{
a,

ϵn
∥xn − xn−1∥

}
, xn ̸= xn−1

a, xn = xn−1

bn =

min

{
b,

ηn
∥xn − xn−1∥

}
, xn ̸= xn−1

b, xn = xn−1

Compute: 

un = xn + an(xn − xn−1),

wn = xn + bn(xn − xn−1),

yn = PC

(
wn − λn∇f(wn)

)
,

zn = PC

(
wn − λn∇f(yn)

)
,

xn+1 = βnφ(un) + (1− βn)Tnzn,

(3.26)

where λn is as defined in (3.2), Tn = γnI +(1− γn)T , γn ∈ [κ, 1), and T : C → H is
a κ-strict pseudocontraction with κ ∈ [0, 1). Suppose the following conditions are
satisfied:

(C3) limn→∞
ϵn
βn

= 0 and limn→∞
ηn
βn

= 0;

(C4) {an} ⊂ (0, 1), {bn} ⊂ (0, 1), {βn} ⊂ (0, 1), limn→∞ βn = 0,
∑∞

n=0 βn = ∞.

Theorem 3.3. Assume that {λn} satisfies the line search condition (3.2), the con-
ditions (C3)-(C4) hold, lim infn→∞(γn − κ) > 0, and S ∩ F (T ) ̸= ∅. Then, the
sequence {xn} generated by the Algorithm 2 converges strongly to p ∈ S ∩ F (T ),
where p = PS∩F (T )φ(p).
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Proof. First, we show that the sequence {xn} is bounded. Let p ∈ S ∩ F (T ). Since
φ is a contraction mapping, from (3.9), (3.10) and (3.26), it follows that

∥xn+1 − p∥ = ∥βn
(
φ(un)− p

)
+ (1− βn)

(
Tnzn − p

)
∥

≤ βn(∥φ(un)− φ(p)∥+ ∥φ(p)− p∥) + (1− βn)∥zn − p∥
≤ βnτ∥un − p∥+ βn∥φ(p)− p∥+ (1− βn)∥zn − p∥
≤ βnτ(∥xn − p∥+ an∥xn − xn−1∥) + βn∥φ(p)− p∥
+ (1− βn)(∥xn − p∥+ bn∥xn − xn−1∥)

≤ βnτ∥xn − p∥+ an∥xn − xn−1∥+ βn∥φ(p)− p∥
+ (1− βn)∥xn − p∥+ bn∥xn − xn−1∥

= [1− βn(1− τ)]∥xn − p∥

+ βn

(
∥φ(p)− p∥+ an

βn
∥xn − xn−1∥+

bn
βn

∥xn − xn−1∥
)
.(3.27)

According to (C3) and the definition of an, bn, we get

an
βn

∥xn − xn−1∥ ≤ ϵn
βn

→ 0 (n→ ∞),
bn
βn

∥xn − xn−1∥ ≤ ηn
βn

→ 0 (n→ ∞).

Let constants M1,M2 > 0 satisfy an
βn

∥xn−xn−1∥ ≤M1,
bn
βn

∥xn−xn−1∥ ≤M2. From

(3.27), we find that

∥xn+1 − p∥ ≤ [1− βn(1− τ)]∥xn − p∥+ βn(1− τ)
∥φ(p)− p∥+M1 +M2

1− τ

≤ max

{
∥xn − p∥, ∥φ(p)− p∥+M1 +M2

1− τ

}
≤ · · ·

≤ max

{
∥x0 − p∥, ∥φ(p)− p∥+M1 +M2

1− τ

}
.

This sufficiently implies the boundedness of {xn}, and so are {wn}, {zn}, {un} and
{φ(un)}.

Next, we show that

∥xn+1 − p∥2 ≤ [1− βn(1− τ)]∥xn − p∥2 + βn(1− τ) · 1

1− τ

·
[
an
βn

∥xn − xn−1∥ ·M3 +
bn
βn

∥xn − xn−1∥ ·M4 + 2⟨φ(p)− p, xn+1 − p⟩
]

(3.28)

where M3,M4 > 0 are constants (which will be made clear later on). As a matter
of fact, using Lemma 2.1 and (3.10), we obtain

∥xn+1 − p∥2 = ∥βn(φ(un)− p) + (1− βn)(Tnzn − p)∥2

= βn∥φ(un)− φ(p) + φ(p)− p∥2

+ (1− βn)∥Tnzn − p∥2 − βn(1− βn)∥Tnzn − φ(un)∥2

≤ βn
(
∥φ(un)− φ(p)∥2 + 2⟨φ(p)− p, φ(un)− p⟩

)
+ (1− βn)

(
∥zn − p∥2 − (1− γn)(γn − κ)∥Tzn − zn∥2

)
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− βn(1− βn)∥Tnzn − φ(un)∥2

≤ βn
(
τ2∥un − p∥2 + 2∥φ(p)− p∥ · ∥φ(un)− p∥

)
+ (1− βn)∥zn − p∥2

− (1− βn)(1− γn)(γn − κ)∥Tzn − zn∥2

− βn(1− βn)∥Tnzn − φ(un)∥2.(3.29)

Set M5 := (2∥φ(p)− p∥) supn≥1 ∥φ(un)− p∥. From the definitions of un and wn, we
get

∥un − p∥2 ≤
(
∥xn − p∥+ βnM1

)2
= ∥xn − p∥2 + 2∥xn − p∥ · βnM1 + β2nM

2
1

≤ ∥xn − p∥2 + βnM6,

where M6 = supn≥1

(
2∥xn − p∥ ·M1 + βnM

2
1

)
. Similarly,

∥wn − p∥2 ≤ ∥xn − p∥2 + βnM7,

where M7 = supn≥1(2∥xn − p∥ ·M2 + βnM
2
2 ). From (3.9) and (3.29), it follows that

∥xn+1 − p∥2 ≤ βn(∥xn − p∥2 + βnM6 +M5) + (1− βn)(∥xn − p∥2 + βnM7)

− (1− βn)(1− µ)∥yn − wn∥2 − (1− βn)(1− 3µ)∥zn − yn∥2

− (1− βn)2λn∥(I − PQ)Ayn∥2

− (1− βn)(1− γn)(γn − κ)∥Tzn − zn∥2

− βn(1− βn)∥Tnzn − φ(un)∥2

≤ ∥xn − p∥2 + βnM8 − (1− βn)(1− µ)∥yn − wn∥2

− (1− βn)(1− 3µ)∥zn − yn∥2 − 2(1− βn)λn∥(I − PQ)Ayn∥2

− (1− βn)(1− γn)(γn − κ)∥Tzn − zn∥2

− βn(1− βn)∥Tnzn − φ(un)∥2,(3.30)

where M8 = supn≥1(βnM6 +M5 + (1− βn)M7). On the other hand,

∥un − p∥2 ≤
(
∥xn − p∥+ an∥xn − xn−1∥

)2
≤ ∥xn − p∥2 + an∥xn − xn−1∥ ·M3,

where M3 = supn≥1(2∥xn − p∥+ an∥xn − xn−1∥) > 0. Similarly,

∥wn − p∥2 ≤ ∥xn − p∥2 + bn∥xn − xn−1∥ ·M4,

where M4 = supn≥1(2∥xn − p∥+ bn∥xn − xn−1∥) > 0. Using Lemma 2.1, (3.9) and
(3.10), we get

∥xn+1 − p∥2 = ∥βn
(
φ(un)− φ(p)

)
+ (1− βn)(Tnzn − p) + βn

(
φ(p)− p

)
∥2

≤ ∥βn
(
φ(un)− φ(p)

)
+ (1− βn)(Tnzn − p)∥2 + 2βn⟨φ(p)− p, xn+1 − p⟩

≤ βn∥φ(un)− φ(p)∥2 + (1− βn)∥Tnzn − p∥2 + 2βn⟨φ(p)− p, xn+1 − p⟩
≤ βnτ∥un − p∥2 + (1− βn)∥wn − p∥2 + 2βn⟨φ(p)− p, xn+1 − p⟩
≤ βnτ∥xn − p∥2 + an∥xn − xn−1∥ ·M3 + (1− βn)∥xn − p∥2
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+ bn∥xn − xn−1∥ ·M4 + 2βn⟨φ(p)− p, xn+1 − p⟩
= (1− (1− τ)βn) ∥xn − p∥2 +M3an∥xn − xn−1∥+M4bn∥xn − xn−1∥
+ 2βn⟨φ(p)− p, xn+1 − p⟩.

This is obviously equivalent to (3.28).
Now let p be the unique fixed point of the contraction PS∩F (T )φ; thus p =

PS∩F (T )φ(p), or the unique solution to the variational inequality:

(3.31) ⟨φ(p)− p, q − p⟩ ≤ 0, q ∈ S ∩ F (T ).
Setting sn = ∥xn − p∥2, γn = (1− τ)βn, and

δn =
1

1− τ

{
anM3

βn
∥xn − xn−1∥+

bnM4

βn
∥xn − xn−1∥+ 2⟨φ(p)− p, xn+1 − p⟩

}
,

we then rewrite (3.28) in the form

(3.32) sn+1 ≤ (1− γn)sn + γnδn.

In order to use Lemma 2.10 to prove that sn → 0, we take a subsequence {snk
} of

{sn} such that lim infk→∞(snk+1−snk
) ≥ 0. In order to verify that lim supk→∞ δnk

≤
0, we observe that

an
βn

∥xn − xn−1∥ ≤ εn
βn

→ 0 (n→ ∞),
bn
βn

∥xn − xn−1∥ ≤ ηn
βn

→ 0 (n→ ∞).

It turns out that

(3.33) lim sup
k→∞

δnk
=

2

1− τ
· lim sup

k→∞
⟨φ(p)− p, xnk+1 − p⟩.

In the meanwhile, an easy observation of (3.30) is snk+1−snk
≤M8βnk

→ 0. Hence,
we must have limk→∞(snk+1 − snk

) = 0. Then again from (3.30) we obtain

(i) ∥ynk
− wnk

∥ → 0,
(ii) ∥znk

− ynk
∥ → 0,

(iii) ∥(I − PQ)Aynk
∥ → 0,

(iv) ∥Tznk
− znk

∥ → 0,
(v) ∥Tnk

znk
− φ(unk

)∥ → 0.

With no loss of generality, we may assume xnk
⇀ x∗. We shall show that x∗ ∈

S ∩ F (T ). Since Tnzn = γnzn + (1− γn)Tzn for all n, we derive that

∥Tnk
znk

− znk
∥ = (1− γnk

)∥Tznk
− znk

∥ ≤ ∥Tznk
− znk

∥ → 0,

∥xnk+1 − Tnk
znk

∥ = βnk
∥φ(unk

)− Tnk
znk

∥ → 0,

∥xnk+1 − xnk
∥ ≤ ∥xnk+1 − Tnk

znk
∥+ ∥Tnk

znk
− znk

∥
+ ∥znk

− ynk
∥+ ∥ynk

− wnk
∥+ ∥wnk

− xnk
∥ → 0.

Consequently, it follows that xnk+1 ⇀ x∗, wnk
⇀ x∗, ynk

⇀ x∗ (thus Aynk
⇀ Ax∗),

and znk
⇀ x∗. Furthermore, by (iii) and (iv) together with the demiclosedness

principle of nonexpansive mappings, we arrive at (I − PQ)Ax
∗ = 0 and Tx∗ = x∗.

This yields that x∗ ∈ S ∩ F (T ) and (3.34) is then reduced to

(3.34) lim sup
k→∞

δnk
=

2

1− τ
⟨φ(p)− p, x∗ − p⟩ ≤ 0
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due to VI (3.31) with q = x∗.
Therefore, Lemma 2.10 is applicable to (3.32) to get sn → 0 as n → ∞; namely,

xn → p in norm. The proof is complete. □

4. Numerical experiments

In this section, we provide some numerical experiments in signal recovery to
compare our algorithm with those of Suantai [34] and Gibali [19]. Our numerical
experiments have been performed in Windows 10 using MATLAB R2016b. Let
H = R2, C = {x ∈ H | ∥x∥ ≤ 1}, Q = {x ∈ H | x = 0} and the matrix
A be randomly generated by a standardized normal distribution. Suppose that
f : H → R is defined by

f(x) =
1

2
∥x∥2, x ∈ H.

We define T by Tx := x − 1
2 sinx for all x ∈ C. (Note that sin x is defined com-

ponentwise for x ∈ H.) Then T is a 0.8-strictly pseudocontractive mapping. It is
readily seen that (0, 0)⊤ is the unique common solution of problems (1.1) and (1.8).
The nearest point projection onto C is

PC(x) =


x, if x ∈ C,
x

∥x∥
, otherwise.

To show the efficiency of our algorithm, we compare it with the algorithms pro-
posed in Suantai [34] and Gibali [19]. For the sake of convenience, we denote
Algorithm 1 by Algo I, the algorithm in [34] by Algo II, and the algorithm in [19]
by Algo III, respectively. Furthermore, we use ∥xn∥ < 10−5 as a stopping criterion.

It is easy to see that our proposed algorithm Algo I converges faster than both
Algo II and Algo III, which indicates that our algorithm can indeed accelerate the
convergence of some existing algorithms.

Figure 1. The number of
iterations for an = 0.5,
bn = 0.5, βn = 0.5

Figure 2. The number of
iterations for an = 0.4,
bn = 0.0, βn = 0.5
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5. Conclusion

In this paper, we proposed and studied the convergence of the general inertial
algorithms with Armijo type step sizes in real Hilbert spaces to solve the split
feasibility and fixed point problems for κ-strictly pseudocontractive mappings. In
addition, we also established the weak and strong convergence theorems of these al-
gorithms under mild conditions. Finally, we presented some numerical experiments
on our methods in comparison with other existing methods. The results showed
that our methods improve and extend the corresponding results in Suantai [34] and
Gibali [19] to a certain extent.
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