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0, then A0 ⊂ ∂A and B0 ⊂ ∂B, where ∂A denotes the boundary of A (see, [36]).
We note that the best proximity point reduces to a fixed point of T if T is a self
mapping.

Let T : A → A be a mapping with the following property:

||T (u)− T (v)|| ≤ 1

2

(
||Tu− u||+ ||Tv − v||) for all u, v ∈ A.(1.1)

A mapping satisfying (1.1) is known as Kannan nonexpansive mapping and need
not be continuous (see, [16, 17]). We note that the class of nonexpansive mappings
and the class of mappings satisfying (1.1) are independent (see, [26]). In 1980,
Greguš [12] considered these two classes of mappings and studied the following
class of mappings:

||Tu− Tv|| ≤ a||u− v||+ b||Tu− u||+ c||Tv − v|| for all u, v ∈ A,(1.2)

where a, b, c ≥ 0 such that a + b + c = 1. If a + b + c < 1, then the mapping T
satisfying (1.2) is known as Reich contraction (see, [25,33–35]). It can be easily seen
that if the mapping satisfies (1.2), then it satisfies the following condition:

||Tx− Ty|| ≤ a||x− y||+ α(||Tx− x||+ ||Ty − y||) for all x, y ∈ A,(1.3)

where a, α ≥ 0 such that a + 2α = 1 and α = b+c
2 . If α ∈ [0, 1), then a = 1 − 2α

and (1.3) becomes

||Tu− Tv|| ≤ α||Tu− u||+ α||Tv − v||+ (1− 2α)||u− v|| for all u, v ∈ A.(1.4)

These class of mappings was initially studied in 2019, by Pandey et al. [26]. If
α = 1

2 , then (1.4) becomes the class of mappings satisfying (1.1) and if α = 0, then
(1.4) reduces to nonexpansive mapping.

In 2020, Pant et al. [27] extended the mapping satisfying (1.4) to non-self cases
as follows:

Definition 1.1. A mapping T : A → B is called Reich type non-self nonexpansive
if there exists an α ∈ [0, 1) such that for all u, v ∈ A

||Tu− Tv|| ≤ α||u− PA(Tu)||+ α||v − PA(Tv)||+ (1− 2α)||u− v||.(1.5)

We observe that, every non-self nonexpansive mapping is Reich type non-self
nonexpansive mapping but the converse need not be true (see, [26]).

Definition 1.2. Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
and T : A → B be a mapping. Then the sequence {un} inA is said to be approximate
best proximity point sequence for T if

lim
n→∞

d(un, Tun) = d(A,B).

Definition 1.3. Let H be a real Hilbert space and (A,B) be a pair of nonempty
subsets of H. A mapping T : A → B is said to satisfy proximal point property if for
every sequence {un} in A such that un ⇀ x ∈ A and {un} is an approximate best
proximity point sequence for T , we have ||u− Tu|| = d(A,B) or u ∈ BestA(T ).
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Several authors (see, e.g., [1, 2, 4, 9–11, 13, 15, 20, 21, 23, 24, 31, 32, 37, 42]) studied
convergence results of fixed points and common fixed points using some well known
iterative processes. Thus, it is natural to consider the problem of best proximity and
common best proximity points of non-self mappings. In line with this, a number of
best proximity point results have been obtained by many mathematicians [11, 15,
20–22] and the references therein.

More recently, Pant et al. [27] studied the method of approximation of best prox-
imity points of a Reich type non-self nonexpansive mapping T using the following
Krasnosel’skíı -Mann type algorithm:

u1 ∈ A0,

un+1 = PA(βnPBun + (1− βn)Tun),(1.6)

where βn ∈ [a, b] ⊂ (0, 1). They proved that the sequence {un} weakly converges to
a best proximity point of T in A under mild assumptions on T . In addition, they
employed hybrid algorithm to obtain strong convergence theorem of best proximity
point for a Reich type non-self nonexpansive mapping T , in Hilbert spaces. In fact,
they proved the following theorem.

Theorem P ([27]). Let H be a Hilbert space and (A,B) be a pair of nonempty
closed convex subsets of H. Let T : A → B be a Reich type non-self nonexpansive
mapping such that T (A0) ⊂ B0 and satisfy the proximal property. Let βn ∈ [0, β]
for each n ∈ N, β ∈ (0, 1), BestA(T ) ̸= ∅, x ∈ H and C1 = A0. Given u1 = PC1(x),
define a sequence {un} as follows:

(1.7)

 vn = βnun + (1− βn)PA(T (un)),
Cn+1 := {w ∈ Cn : ||vn − w|| ≤ ||un − wn||},
un+1 = PCn+1(x).

Then, the sequence {un} converges strongly to y = PBestA(T )(x).

We remark that the computation of un+1 in Algorithms (1.7) is not simple in
applications because of the involvement of computations of Cn for each n ≥ 1 and
the metric projection on Cn.

It is our purpose in this paper to introduce a pair of Reich type non-self non-
expansive mappings and study an Ishikawa type iterative process that converges
strongly to a common best proximity point of a pair of Reich type nonexpansive
non-self mappings. As a consequence, we obtain the Mann type iteration scheme
for approximating the best proximity point of Reich type nonexpansive non-self
mapping. Moreover, the assumption that T satisfies the proximity property is not
required. Our schemes do not involve computation of Cn to obtain un+1 for each
n ≥ 1. Our theorems extend and unify most of the results that have been proved
for this important class of nonlinear mappings.

2. Preliminaries

This section contains some basic definitions and results that will be used in our
subsequent analysis. Let A ⊂ H be a nonempty, closed, and convex subset of H.
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For any x ∈ H, the projection mapping PA : H → A is defined by

∥ PAx− x ∥= inf
y∈A

∥ x− y ∥ .

It is also known that PA satisfies

(2.1) ∥ PAx− PAy ∥2≤ ⟨PAx− PAy, x− y⟩, for all x, y ∈ H.

In particular, PA is nonexpansive.
We shall need the following definitions.

Definition 2.1 ([29,30]). Let (X, d) be a metric space and (A,B) a pair of nonempty
subsets ofX such that A0 ̸= ∅. Then, the pair (A,B) is said to satisfy the P-property
if,

d(u1, v1) = d(A,B) and d(u2, v2) = d(A,B) implies d(u1, u2) = d(v1, v2),

where u1, u2 ∈ A0 and v1, v2 ∈ B0.

It is shown in [30] that the pair (A,B) satisfies the P-property if (A,B) is a pair
of nonempty, closed and convex subsets of a Hilbert space H.

The following lemma will be used in our convergence analysis.

Lemma 2.2 ([39]). Let H be a Hilbert space and (A,B) be a pair of nonempty
subsets of H such that B is closed and convex. Then, ||u − PB(u)|| = d(A,B) for
all u ∈ A0.

Lemma 2.3 ([39]). Let H be a Hilbert space and (A,B) be a pair of nonempty
subsets of H such that A is closed and convex. Let T : A → B be a mapping such
that T (A0) ⊂ B0. Then, F (PA ◦ T |A0) = BestA(T ).

Lemma 2.4 ([40]). Let H be a Hilbert space and (A,B) be a pair of nonempty
subsets of H such that B is closed and convex. Let T : A → B be a mapping such
that T (A0) ⊂ B0. Then, PB(u) = T (u) for all u ∈ BestA(T ).

3. Main results

In this section, we introduce a pair of Reich type non-self nonexpansive mappings
and prove a strong convergence theorem for finding a common element of the set of
solutions for the pair of mappings.

Definition 3.1. Let A and B be subsets of a Hilbert space H and let T and S
be mappings from A into B. The pair T and S is said to be Reich type non-self
nonexpansive mappings if

||Tu− Sv|| ≤ α||u− PA(Tu)||+ α||v − PA(Sv)||+ (1− 2α)||u− v||,(3.1)

for all u, v ∈ A, α ∈ [0, 1).

Example of a pair of Reich type non-self nonexpansive mappings is given below.

Example 3.2 ([27]). Let A = [0, 4] and B = [5, 6] be subsets of R endowed with
the usual norm. Define a mapping T, S : A → B by:

Tx =

{
5 + x, if x ∈ [0, 1];
5, otherwise,

(3.2)
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and

Sx =

{
6, if x ∈ [0, 1];
5, otherwise.

(3.3)

We note that PA(Sx) = 4 = PA(Tx) for all x ∈ [0, 4]. Moreover, we consider the
following cases to show that T and S form a pair of Reich type non-self nonexpansive
mappings for α ∈ [14 ,

1
2 ].

a) If x ∈ [0, 1] and y ∈ (1, 4], then we have

||Tx− Sy|| = |x| ≤ α||x− PATx||+ α||y − PASy||+ (1− 2α)|x− y|.
b) If x ∈ [0, 1] and y ∈ [0, 1], then one can show that

||Tx− Sy|| = 1− x ≤ α||x− PATx||+ α||y − PASy||+ (1− 2α)|x− y|.
c) If y ∈ [0, 1] and x ∈ (1, 4], then we obtain

||Tx− Sy|| = 1 ≤ α||x− PATx||+ α||y − PASy||+ (1− 2α)|x− y|.
d) If y ∈ (1, 4] and y ∈ (1, 4], then we get

||Tx− Sy|| = 0 ≤ α||x− PATx||+ α||y − PASy||+ (1− 2α)|x− y|.
Therefore, we conclude that T and S form a pair of Reich type non-self nonexpansive
mappings with constant α ∈ [14 ,

1
2 ] and the common best proximity point x = 4.

By observing the construction of Ishikawa’s iteration [14], we construct the follow-
ing Ishikawa’s type scheme for a pair of Reich type non-self nonexpansive mappings
T, S : A → B, where A and B are closed and convex subsets of a Hilbert space H.
Assume that T (A0) ⊂ B0 and S(A0) ⊂ B0. Let x0 ∈ A0. Since Tx0 ∈ B0 there
exists u0 ∈ A0 such that ||u0−Tx0|| = d(A,B). Define y0 = (1− δ0)x0+ δ0u0 ∈ A0.
This yields that Sy0 ∈ B0 and there exists v0 ∈ A0 such that ||v0−Sy0|| = d(A,B).
Next, we define x1 = (1− η0)x0 + η0v0. Thus, by continuing this process, we derive
that {

yn = (1− δn)xn + δnun,
xn+1 = (1− ηn)xn + ηnvn,

(3.4)

where un ∈ A0 such that ||un−Txn|| = d(A,B) and vn ∈ A0 such that ||vn−Syn|| =
d(A,B), for ηn, δn ∈ [0, 1], ∀n ∈ N.

We now prove our main theorem for a common best proximity point of a pair of
Reich type non-self nonexpansive mappings.

Theorem 3.3. Let H be a real Hilbert space and let A,B be closed and con-
vex subsets of H. Assume that T, S : A → B are a pair of Reich type non-self
nonexpansive mappings with constant α ∈ [0, 1). Suppose the common best prox-
imity point set is nonempty. Then, the sequence {xn} generated by (3.4), where
α ∈ [0, 1), 0 < η ≤ ηn < 1 and 0 ≤ δn ≤ δ < 1, converges strongly to a common
best proximity point of T and S.

Proof. Now, we divide the proof into five steps.

Step 1. We prove that the sequence {xn} is bounded. Let p be a common best
proximity point of T and S. So, ||p−Tp|| = d(A,B), ||p−Sp|| = d(A,B). Thus, by
P -property, we have Tp = Sp. Moreover, we note that p = PATp and since T and
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S form a pair of Reich type non-self nonexpansive mappings, for w ∈ A, we obtain
that

||Sw − Sp|| = ||Sw − Tp||
≤ α

[
||w − PASw||+ ||p− PATp||

]
+ (1− 2α)||w − p||

≤ α
[
||p− PASw||+ ||p− w||

]
+ (1− 2α)||w − p||

≤ α
[
||PASw − PASp||+ ||p− w||

]
+ (1− 2α)||w − p||

≤ α
[
||Sw − Sp||+ ||p− w||

]
+ (1− 2α)||w − p||.

Therefore,

||Sw − Sp|| ≤ ||w − p||.(3.5)

Similarly, ||Tw − Tp|| ≤ ||w − p||. Now, from (3.4) and P -property we get

||xn+1 − p|| = ||(1− ηn)xn + ηnvn − p||
≤ (1− ηn)||xn − p||+ ηn||vn − p||
≤ (1− ηn)||xn − p||+ ηn||Syn − Sp||
≤ (1− ηn)||xn − p||+ ηn||yn − p||
≤ (1− ηn)||xn − p||+ ηn||(1− δn)xn + δnun − p||
≤ (1− ηn)||xn − p||+ ηn(1− δn)||xn − p||+ ηnδn||un − p||
≤ (1− ηn)||xn − p||+ ηn(1− δn)||xn − p||+ ηnδn||Txn − Tp||
≤ (1− ηn)||xn − p||+ ηn(1− δn)||xn − p||+ ηnδn||xn − p||
≤ ||xn − p||.

Therefore, by induction we derive that {xn} is bounded.

Step 2. We show that limn→∞ ||xn−vn|| = 0. Suppose that limn→∞ ||xn−vn|| ̸= 0,
then there exists a subsequence {xnk

} of {xn} and a real number ϵ0 > 0, such that
||xnk

− vnk
|| ≥ ϵ0, for every k ≥ 1. Moreover, for p ∈ BestA(T ) and the P -property,

we obtain

||xnk
− vnk

|| ≤ ||xnk
− p||+ ||p− vnk

||
= ||xnk

− p||+ ||Sp− Synk
||

≤ ||xnk
− p||+ ||p− ynk

||
= ||xnk

− p||+ ||(1− δnk
)(xnk

− p) + δnk
(unk

− p)||
≤ ||xnk

− p||+ (1− δnk
)||xnk

− p||+ δnk
||unk

− p||
≤ ||xnk

− p||+ (1− δnk
)||xnk

− p||+ δnk
||Txnk

− Tp||
≤ ||xnk

− p||+ (1− δnk
)||xnk

− p||+ δnk
||xnk

− p||
= 2||xnk

− p||.
(3.6)

This implies that

||xnk
− p|| ≥ 1

2
||xnk

− vnk
|| ≥ ϵ0

2
= ϵ1 > 0.(3.7)

In addition, by P -property and (3.5), we have

||vn − p|| = ||Syn − Sp|| ≤ ||yn − p||
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= ||(1− δn)(xn − p) + δn(un − p)||
≤ (1− δn)||xn − p||+ δn||un − p||
≤ (1− δn)||xn − p||+ δn||Txn − Tp||
≤ (1− δn)||xn − p||+ δn||xn − p||
≤ ||xn − p||.

Since {xn} is bounded, there exists L > 0 such that ||xn − x∗|| ≤ L and hence∥∥∥ xnk
− p

||xnk
− p||

− vnk
− p

||xnk
− p||

∥∥∥ =
∥∥∥ xnk

− vnk

||xnk
− p||

∥∥∥ ≥ ϵ0
L

> 0,(3.8)

and ∥∥∥ xnk
− p

||xnk
− p||

∥∥∥ = 1,
∥∥∥ vnk

− p

||xnk
− p||

∥∥∥ ≤ 1.(3.9)

Thus, the fact that H is uniformly convex implies that there exists γ > 0 such that∥∥∥ xnk
− p

||xnk
− p||

+
vnk

− p

||xnk
− p||

∥∥∥ ≤ 2− γ.(3.10)

Now, from (3.4) and the inequality in (3.10), we have

||xnk+1 − p|| = ||(1− ηnk
)xnk

+ ηnk
vnk

− p||
≤ (1− 2ηnk

)||xnk
− p||+ ||ηnk

(xnk
− p) + ηnk

(vnk
− p)||

= (1− 2ηnk
)||xnk

− p||+ ηnk
||xnk

− p||
∥∥∥ xnk

− p

||xnk
− p||

+
vnk

− p

||xnk
− p||

∥∥∥
≤ (1− 2ηnk

)||xnk
− p||+ (2− γ)ηnk

||xnk
− p||

= (1− γηnk
)||xnk

− p||
≤ ||xnk

− p|| − γηnk
ϵ1

≤ ||xnk
− p|| − γηϵ1,

and this implies that ||xnk+1 − p|| ≤ ||xnk
− p||. Furthermore, we derive that

||xnk+1 − p|| ≤ ||xnk
− p|| − γηϵ1

≤ ||xnk−1 − p|| − γηϵ1

≤ . . .

≤ ||xnk−1
− p|| − γηϵ1,

and

||xnk
− p|| ≤ ||xnk−1

− p|| − γηϵ1

≤ ||xnk−2
− p|| − 2γηϵ1

≤ . . .

≤ ||xn1 − p|| − (k − 1)γηϵ1.(3.11)

Letting k → ∞, to both sides of (3.11) we obtain that limk→∞ ||xnk
−p|| ≤ 0, which

is a contradiction to (3.7). Therefore, limk→∞ ||xn − vn|| = 0.
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Step 3. We show that limn→∞ ||xn − un|| = 0. Note that, since ||un − Txn|| =
d(A,B) = ||vn−Syn|| we have ||un−PATxn|| = 0 and ||vn−PASyn|| = 0. Moreover,
by P -property we get ||un − vn|| = ||Txn − Syn|| and hence

||xn − un|| ≤ ||xn − vn||+ ||vn − un||
= ||xn − vn||+ ||Txn − Syn||
≤ ||xn − vn||+ α[||xn − PATxn||+ ||yn − PASyn||

]
+(1− 2α)||xn − yn||

≤ ||xn − vn||+ α[||xn − un||+ ||un − PATxn||+ ||yn − vn||
+||vn − PASyn||

]
+ (1− 2α)||xn − yn||

≤ ||xn − vn||+ α[||xn − un||+ ||yn − vn||
]
+ (1− 2α)||xn − yn||,

≤ ||xn − vn||+ α||xn − un||+ (1− 2α)||xn − yn||,
+α[||(1− δn)xn + δnun − vn||]

≤ ||xn − vn||+ α||xn − un||+ (1− 2α)||xn − yn||
+α(1− δn)||xn − vn||+ αδn||un − vn||

≤ ||xn − vn||+ α||xn − un||+ (1− 2α)||xn − yn||
+α(1− δn)||xn − vn||+ αδn[||un − xn||+ ||xn − vn||]

≤ (1 + α)||xn − vn||+
[
(α(1 + δn) + (1− 2α)δn

]
|xn − un||,

which implies that

||xn − un|| ≤ 1 + α

D
||xn − vn|| → 0,(3.12)

as n → ∞, where D = (1− α(1− δn)− δn > 0, and hence

||yn − un|| = (1− δn)||xn − un|| → 0 as n → ∞.(3.13)

Step 4: We show that if the sequence {xn} converges to x, then x is the common
best proximity point of T and S.

The fact that ||un − Txn|| = d(A,B) = ||vn − Syn|| and P -property imply that
||un − vn|| = ||Txn − Syn||. Thus, we obtain

||un − vn|| = ||Txn − Syn||
≤ α

[
|xn − PATxn||+ ||yn − PASyn||

]
+ (1− 2α)||xn − yn|

≤ α
[
||xn − un||+ ||un − PATxn||

]
+ (1− 2α)||xn − yn||

+α
[
||yn − vn||+ ||vn − PASyn||

]
≤ α

[
||xn − un||+ ||yn − vn||

]
+ (1− 2α)||xn − yn||

≤ α
[
||xn − vn||+ ||vn − un||+ (1− δn)||xn − vn||+ δn||un − vn||

]
+(1− 2α)δn[||un − vn||+ ||xn − vn||]

≤ (2α+ δn(1− 3α))||xn − vn||+ (α+ δn(1− α))||vn − un||,

which implies that

||un − vn|| ≤
2α+ δn(1− 3α)

1− (α+ δn(1− α))
||xn − vn|| → 0, as n → ∞.(3.14)
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Furthermore, from (3.4), (3.12) and (3.14) we get ||xn − yn|| = δn||un − xn|| → 0
and ||yn − vn|| ≤ (1− δn)||xn − vn||+ δn||vn − un|| → 0 as n → ∞. By assumption
xn → x implies that vn → x and un → x and hence from (3.12) we get yn → x.
Thus, we get

||un − Sx|| − d(A,B) ≤ ||un − Txn||+ ||Txn − Sx|| − d(A,B)

= ||Txn − Sx||
≤ α||xn − PA(Txn))||+ α||x− PA(Sx)||+ (1− 2α)||xn − x||

≤ α
[
||xn − un||+ ||un − PA(Txn)||

]
+ α

[
||x− Sx||+ ||Sx− PA(Sx)||

]
+ (1− 2α)||xn − x||,(3.15)

and taking the limit both sides as n → ∞ we obtain that (1 − α)
[
||x − Sx|| −

d(A,B)
]
≤ 0 and hence the fact that α < 1 implies that ||x − Sx|| = d(A,B).

Similarly, we obtain that ||x− Tx|| = d(A,B).

Step 5. Next, we show that {un} is Cauchy. Note that

||un − un+m|| ≤ ||un − vn+m||+ ||vn+m − un+m||.(3.16)

From ||un − Txn|| = d(A,B) = ||vn+m − Syn+m|| and P -property, we have ||un −
vn+m|| = ||Txn − Syn+m||. Therefore,
||un − un+m|| ≤ ||Txn − Syn+m||+ ||un+m − vn+m||

≤ α||xn − PATxn||+ α||yn+m − PASyn+m||+ (1− 2α)||xn − yn+m||
+ ||un+m − vn+m||

≤ α
[
||xn − un||+ ||un − PATxn||

]
+ α

[
||yn+m − vn+m||+ ||vn+m − PASyn+m||

]
+ (1− 2α)

[
||xn − un||+ ||un − un+m||+ ||un+m − yn+m||

]
+ ||un+m − vn+m||

≤ α
[
||xn − un||+ ||yn+m − vn+m||

]
+ (1− 2α)

[
||xn − un||+ ||un − un+m||+ ||un+m − yn+m||

]
+ ||un+m − vn+m||.

Thus, we get

||un − un+m|| ≤ (1− α)

2α
||xn − un||+

1

2
||yn+m − vn+m||

+
(1− 2α)

2α
||un+m − yn+m||+ 1

2α
||un+m − vn+m||.(3.17)

Therefore,

||un − un+m|| → 0 as n → m,n → ∞.,

This shows that {un} is Cauchy. Thus, there exists q ∈ A0 such that limn→∞ un = q
and hence limn→∞ xn = q. Therefore, by Step 4, q is the common best proximity
point of T and S. This completes the proof. □
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If in Theorem 3.3, we assume that T = S, we obtain the following corollary.

Corollary 3.4. Let H be a real Hilbert space and A,B be closed and convex subsets
of H. Assume that T : A → B is a Reich type non-self nonexpansive mappings
with constant α ∈ [0, 1). Suppose best proximity point set BestA(T ) ̸= ∅. Then, the
sequence {xn} generated by (3.4) with T = S, where α ∈ [0, 1), 0 < η ≤ ηn < 1 and
0 ≤ δn ≤ δ < 1, converges strongly to a common best proximity point of T .

If in Theorem 3.3, we assume that T = S and δn = 0, then we obtain the following
scheme called Mann’s type iteration scheme:

xn+1 = (1− ηn)xn + ηnvn,(3.18)

where vn ∈ A0 such that ||vn − Txn|| = d(A,B), and ηn ∈ [0, 1], ∀n ∈ N.
Next, we establish a convergence of Mann’s type scheme (3.5) for a best proximity

point of a single Reich type non-self nonexpansive mapping.

Theorem 3.5. Let A,B be closed and convex subsets of a real Hilbert space H.
Assume that T : A → B is Reich type non-self nonexpansive mapping with constant
α ∈ [0, 1). Suppose best proximity point set BestA(T ) ̸= ∅. For arbitrary v0 ∈ A0,
the sequence generated by (3.18), where 0 < η ≤ ηn < 1, converges strongly to the
best proximity point of T .

Proof. Taking T = S and δn = 0, in the proof of Theorem 3.3 we obtain the required
assertion. □

Corollary 3.6. Let A,B be closed and convex subsets of a real Hilbert space H.
Assume that T : A → B is Kannan nonexpansive mapping. Suppose best proximity
point set BestA(T ) ̸= ∅. For arbitrary v0 ∈ A0, the sequence generated by (3.18),
where 0 < η ≤ ηn < 1, converges strongly to the best proximity point of T .

Proof. The proof follows from Theorem 3.5 with α = 1
2 . □

Corollary 3.7. Let A,B be closed and convex subsets of a real Hilbert space H.
Assume that T : A → B is non-self nonexpansive mapping. Suppose best proximity
point set BestA(T ) ̸= ∅. For arbitrary v0 ∈ A0, the sequence generated by (3.18),
where 0 < η ≤ ηn < 1, converges strongly to the best proximity point of T .

Proof. The proof follows from Theorem 3.5 with α = 0. □

Remark 3.8. In this paper, we have proposed an algorithm for approximating a
common best proximity point of a pair of Reich type non-self nonexpansive map-
pings in real Hilbert spaces. The main result in this paper extends the results of
Pant et al. [27] to a common best proximity point of a pair of Reich type non-self
nonexpansive mappings. Our scheme does not involve computation of Cn to obtain
un+1 for each n ≥ 1. Our scheme does not involve computation of Cn to obtain
un+1 for each n ≥ 1.
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