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THE SECOND-ORDER DIFFERENTIAL EQUATION METHOD
FOR SOLVING SOCCVI PROBLEM

JUHE SUN, DANNA JIA, LT WANG, HUITING ZHUANG, AND JEIN-SHAN CHEN*

ABSTRACT. In this paper, we explore the second-order differential equation (2-
ODE) method to solve the second-order cone constrained variational inequal-
ity (SOCCVI). Its convergence and comparison with the first-order differential
equation (1-ODE) method are reported. The main idea is employing the com-
plementary function to reformulate the Karush-Kuhn-Tucker (KKT) conditions
of the SOCCVI into a smooth system of equations, and then transform into an
unconstrained optimization problem. In addition, we do numerical experiments
to demonstrate the effectiveness of the approach.

1. INTRODUCTION

As an effective mathematical tool for describing general system equilibrium phe-
nomena, variational inequalities (VI) have been widely used in problems such as
equilibrium problems in economics, transport equivalence and modelling of urban
transport networks. There are also many approaches for solving VI problems, in-
cluding projection method, interior point method, nonsmooth equation method,
smoothing method and so on.

At the same time, as an important branch of mathematical planning, the second-
order cone program (SOCP) also possesses a very broad background and practical
significance, and its research directions involve combinatorial optimization, engi-
neering technology, control, machine learning, neural networks, finance and many
other fields. However, as a promotion of SOCP, research on the problem of the
second-order cone constrained variational inequality (SOCCVI) is still preliminary.

In this paper, we target on the below SOCCVI, which is find «* € C' such that
(1.1) (F ("), y—a%) =20, yeC,
where
C={zeR"|h(x)=0,—g(z) € L}.
Here (-,-) is the Euclidean inner product; F : R® — R", h : R™ — IR} (I > 0) and
g : IR" — IR™ are continuously differentiable; and IR™ denotes n dimensional real

column vector space. In particular, K is the Cartesian product of p second-order
cones. In other words,

K=K™ x K™ x ... x K",
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where my,ma,...,m, > 1, mi + ma + --- + my, = m, and each K™ represents a
second-order cone given by

K= {(:L’il, Ti2y ... ,J}imi)T e R™ ”(:I;Z‘Q, . 7ximi)” < xil} .

In recent years, the utilization of differential equations to solve constrained opti-
mization problems has attracted much attention. The earliest work was by Arrow
and Hurwicz [2], and Fiacco and McCormick used differential equations to study
the constrained norm problem in optimality conditions. Since 1980, a series of ar-
tificial network methods based on differential equation systems have been proposed
by Hopfield and Tank [9], and employed to tackle complementarity problems and
variational inequality. In 2000, Antipin [1] investigated the problem of variational
inequality with coupling constraints, introduced symmetric functions, and proposed
a globally convergent approach to differential equations. He and Yang [8] proposed
a differential equation system for nonsymmetric linear VI problems based on pro-
jection operators and contraction methods. In 2005, Gao, Liao and Qi [7] studied
a differential equation model for solving VI with linear and nonlinear constraints
based on projection operator theory. In [10-13], there were various neural net-
work methods investigated for the SOCCVI. All of them belong to the first-order
differential equation (1-ODE) method.

Inspired by the aforementioned works and the idea by Attouch et al [3-5] which
tackles convex optimization problems by using damped inertial gradient dynami-
cal systems, we construct the second-order differential equation system involving
two time-dependent parameters to solve the SOCCVI (1.1). In particular, we first
adopt the smoothed complementary function to transform the KKT conditions of
the SOCCVI (1.1) into a smoothing equation system problem, and introduce the
merit function to transform it into an unconstrained optimization problem. In Sec-
tion 3, a system of second-order differential equations associated with the above
unconstrained problem is established to solve the SOCCVI (1.1). Moreover, the
differential equation system involves two time-dependent parameters, which are a
positive viscous damping coefficient v(¢) and a time scale coefficient 5(¢). Then, in
Section 4, we consider a perturbed term ¢(t) of the second-order differential equa-
tion system. In Section 5, we compare the second-order differential equation method
with the first-order differential equation method for handling the SOCCVT theoret-
ically. At last, two numerical experiments are reported to verify the effectiveness of
the second-order differential equation method for solving the SOCCVI.

2. PRELIMINARIES
For subsequent analysis, we write down the KKT conditions of the SOCCVT (1.1),

L(z,pu,\) = F(2) + Jh(z) "y + Jg(z) "X =0,
0,

(2.1) h(x)=
(9(x), Ay =0,—g(z) e K, A€ K,

where L (x, 1, )) is called the VI Lagrangian function, and p € IRY, A € IR™. In
order to convert the KKT conditions of the SOCCVI (1.1) to an unconstrained
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optimization problem, we shall employ the second-order cone (SOC) complemen-
tarity function, ¢ : R™ x R™ — IR™, which satisfies ¢ (z,y) = 0 if and only if
x e K™ ye K™ and (z,y) = 0.

In order to tackle with optimization problems involving second-order cones, it
usually need a special decomposition. For any = = (x1,22) € IR x IR™™!, there
holds a spectral decomposition:

(2.2) z = p1(z)ui(x) + pa(z)uz(w),

where p1(z) and pa(x) are called the spectral values of x, given by
pix) = w1+ (=1)" [|lz2] -

In addition, u;(z) and ug(z) are the spectral vectors of x, given by

L (-1) ”g”> if 29 #£0,

1, (—1)%0) if 25 =0,

ui(z) =

NI—= NI

where w is an arbitrary unit vector in IR™~!. A popular SOC-complementarity
function is the natural residual (NR) function, which is semismooth and defined as
(see [6,11] for more details)

Oxg (@) =2 —Tem (. —y).

In light of the spectral decomposition (2.2) of x, the projection IIxm of x onto K™
is described by

Ixm (z) = max {0, p1 (z)} ug (z) + max {0, p2 ()} us (x).

In this paper, we consider a smoothing metric projector function ¢ : IRy x R —
IR™ satisfying

(2.3) ¢(e,c) = % (c—i— e2e + 02> V(e,c) e Ry x R™.

Notice that ¢ (0,¢) = m (¢). Moreover, ¢ is continuously differentiable on any
neighborhood of (g,¢) € IRy x IR™ provided that (626 —1—02)0 + H62€ +02H. For
(526+02)0 = Hs2e+02 , it is known that ¢ is nonsmooth at (e,¢), but its B-
subdifferential can nevertheless be computed. For more details regarding the func-
tion ¢(0, ¢), please refer to reference [11]. Now, Based on ¢(0, ¢) given in (2.3), we
define the smoothing NR function given as

(24) SDER (xvy) :I—qb(é‘,ﬂ?—y).

In view of the function ¢ defined in (2.4), the KKT conditions (2.1) of the
SOCCVI (1.1) are recast as

e

(2.5) Seaopn=| T (}f’(f;;” ~0,

Prr (=9 (@), A)
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where
906 —9m z 7)\m
P (g (@), )= 7 T ’
(P;R, (_gmp () 7)‘mp)
with —gm, (), Am, € K™i. Moreover, the merit function ® for the SOCCVI (1.1)
is as below:

1
(26) min@(gaxvuv )\) = 5 HS(&%MJ\)HQ :

It is clear to see that z* is the solution to the unconstrained optimization problem
(2.6) meaning that z* is the solution to the SOCCVI (1.1). For notational simplicity,
we denote z = (g, z, i1, \) € RxIR® xIR! xIR™, then the unconstrained optimization
problem (2.6) can be expressed as

(2.7) min @(2) := % 1S ()12

With (2.7), the differential equation approach to solving the SOCCVI (1.1) has been
proposed and investigated, see [10-12]. Although there are some variants, mostly
the dynamical model possesses the format of

dz(t) p
(2.8) { it zom( ()
V.5(2)1S (2)
T
where V@ (z (t)) = gzgng Ei; and p > 0 is a scaling factor.
VaS(2)1S (2)

3. THE SECOND-ORDER DIFFERENTIAL EQUATION SYSTEM

In this section, we explore the second-order differential equation method for solv-
ing the SOCCVI (1.1), which is different from the model (2.8). Indeed, inspired
by Attouch [5], the second-order differential equation system involves two time-
dependent parameters, which are a positive viscous damping coefficient y(¢) and a
time scale coefficient 5(t). More specifically, the dynamical model is established as
below:

£ (t) g (t) VES(z)zS (2)

i(b) i (1) V.S(2)'S(z) |
(3.1) ji (t) + v (t) i (t) +B8(1) VMS(Z)TS ) |~ 0,

A1) A(t) VaS(2)S (2)

where S(-) is defined as in (2.5) and 7, € [tg,+00) are nonnegative continuous
functions. For convenience, we take for granted the existence of a solution to this
system, and hence the corresponding equilibrium point of the system becomes the
solution of the SOCCVI (1.1). According to the parameter tuning of the positive
viscous damping coefficient (¢) and the time scaling parameter 3(¢), we will analyze
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the global convergence of the solution trajectory of the second-order differential
equation system (3.1).

For the special case, ® (e, z, u, \) = 0, by direct integration of a system of second-
order differential equations, we obtain

p(t) = el 0™

Here, it is assumed that the following conditions are satisfied:

T du
(32) Ho : / — < H-00.
to p(u)
Under this assumption, we can define the function I' on [tg, +00) by
T du
3.3 L) :=p(t / —.
(33) 0= [ T
By differentiating the above (3.3), we obtain the relation
(3.4) r t)=~v@)I () —1.

Then, let us further respectively define the global energy function W (t) as

2

£ (t)
1 x(t) .
(3.5) WO =31 e +B(1)[@ (e (1), 2(t), u(t), A(t)) — min P]
A(t)
and the anchor function h (t) as
e (t) e* 2
1 x(t) x*
3.6 h(t) = = — . 7
30 D=3l we || w
A(t) A*
8*
where 2* € argmin ® # () is given in advance. These pave the basic constitu-
)\*
tive blocks of the function ¢ : [tg, +00) — R4, which is defined by
(3.7) E(t) =T (£ W(t) + h(t) + T (t) h(t).

Indeed, it is equivalent to

£(t) = T()?B()[@(=(t), 2(t), u(t), A(t)) — min ]
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Theorem 3.1. Let ® : IR — IR be a convex function such that argmin® # ().
Suppose that [ : [tog,+00) is a continuous positive function and 7y : [tg, +00) is
a continuous function satisfying the assumptions Hy given as in (3.2). We also
assume that the following growth condition H., g is satisfied linking v(t) and B(t):

Hyg: T@)BQE) <B@)[B—2v()T(¢)].

Then, for every solution trajectory (e,x,p,\) : [to, +00) — IR x IR™® x IR! x R™
of the second-order differential equation system (3.1), the convergence rate of the
values satisfies

@ (=(t), 2(t), 1(t), A1) ~ min® = O (@)

as t — +o00. In addition, the trajectory of the solution is bounded on [tg, +00).

Proof. For simplicity, we denote m := min ® and compute the derivative of £(t) as
below:

E(t) = 20D ()W (t) + T(1)2W (1) + h(t) + T()h(t) + D (t)h(t).

Then, we calculate the derivatives of the principal components, including the deriva-
tives of the global energy function W (¢) and the anchor function h(t), which is
defined as in (3.5) and (3.6), respectively . First, we have

) () o ) (205
. z(t z(t z(t =29(2 z
W) =< i) || >+5<t>< i) || ViSe)Ts() >
A(t) A(t) A(t) VaS(2)1S(2)
LA [@ (=), 2(8), 5l6), A(B)) — m]
¢ ((t; g ((t% VaS(z)zS (2)
B & (¢ #(t v,5(2)T5 (=)
- < ) | i) +A) V,.5(2)TS (2) >
A(t) A(t) VaS(2)'S (2)
LA [@ (=), 2(8), 5l6), A(B)) — m]
(1) 30
=< AT IO >+ﬁ'<t>[¢><a<t>,x<t>,u<t>,x<t>>—m]
A (t) A (t)
JORY N
- ) (MEB AW (1), 2 (6), 1 (1), A (1) — m]
A ()
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On the other hand, the derivative for the anchor function h(t) gives

and

Thus, we obtain that

— — — —

— — — —

—~N N N
S
NaSANEANE N

N——

AN NN N

w 8 I <
(g > P P

+ wer R .

<

—B(t)

where the above inequality holds due to the convexity of ®(e,z, u, ). With this,

we can compute the derivative of £(t) as

E(t) = 2D ()T (&)W (t) + T()*W (t) + h(t) + T (t) h(t) + T (t) h(t)

= 2 WTOW @) +TO*W () +T (1) (v h(t) +h ()

+5() (‘P(E(t),w(t),u(t)a)\(t))m))

2

)
)
)
)

)
_— — — —

Wy 2

|

NOING (;

VI
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2

JORY N
< roll| 39 || (rro-roro)
A (t)
(@ (= (1), 2 (), 1 (1), A (0) = m) T (&) (D) B (6) +20 () B (1) - B (1))

This together with equation (3.4) yields

E0) <@ (1), x(1),n®) A 0) ~m)T @) (TWAE)+20 1) B - 8()).
which implies
(3.8)

€) < (@ (2(0), (1), w(t), (1) = m)T (1) (T () B (1) + B 27 (OT (1) = 3))

Therefore, from the assumed growth conditions H,, g, it can be inferred that £(t)
0. In other words, the function £(t) is decreasing on [ty, +00), which says &(t)
&(tp). Then, according to the formulation (3.7) of £(¢), we can deduce that, for all
t > to,

<
<

D(e(t),z(t),pn(t),A(t)) —min® <

that is,

Next, let us show that the trajectory is bounded. First, using the formulation and
the decreasing of £(t) leads to

ait)) e* é((t))
x (t x* T (t
w(ty | 7| e [ TT0 fu (t)

A(t) A* A(t)

which indicates
e(t
x(t
+ 2T (¢
A(t

2

(3.9)

|

2
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Setting ¢ (t) := ;roo % and considering the assumptions Hy : t;roo ﬁ;‘) <400, we
achieve that the function ¢(t) := ;roo % is bounded as t > tg. Moreover, we can
deduce the following equivalence relation:
I (t) . 1
qt) = —=, qt)=——x-
T ATy
Dividing (3.9) by p (¢) and applying the above equivalence relation, we establish
1 . C
—h(t)+ q()h (t) < ——, Vit E [ty,+0).
Ch) +a®h () < T Ve lto,o0)

where C = {(tp). This is equivalent to
g (t) h(t) = 4(t)(h (t) = C) <0, Vt € [to, +00)
where h (t) is the anchor function. Now, dividing by ¢(t)* yields

1 . ) d (h(t)—Cy
— t)h(t) — ¢(t) (h(t) = C ) = — | —
o (a0 = a0y () - o) = 5 (M

Doing integration on this inequality gives h(t) < Cj (14 ¢(t)) for some C; > 0.
Therefore, the solution trajectory is bounded and the proof is complete. O

> <0, Vtety,+0).

In order to speed up the convergence of the solution, we introduce p and construct
a stronger assumptions Hj s ont>ty, which is

HY o T0)A0) <603 p— 200 (1)].
with p > 0 and t; > tg.

Corollary 3.2. Let ® : IR — IR be a convex function such that argmin ® # (. For
solutions of the second order differential equation satisfying the assumptions Hjﬁ,
the following integral energy estimates hold:

+oo
/ D)W (£)dt < +oo,

where 0
JORY(N
Wiy =5 | 30 || +50@ 0,20, 40, 70) ~ mina].
A (t)
Equivalently,
(¢ 2
+oo ;((t))
/t I'(t) A1) dt < +oo,
’ A)

+oo
/ T(H)B(1) [ (e(t), 2(t), u(t), A(t)) — min B]dt < +o0.

to
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Proof. For simplicity, denote m := min ®. From the proof of Theorem 3.1, we know
the derivation for the global energy function W (t) is

TORYE
i (¢)
fu(t)
A(t)

Multiplying both sides by F(t)2 on this leads to
2

W (t) = —(t) +B(8) [ (e(t), 2(t), u(t), A(t)) — m].

()W (1) + (60 (1)*

£ (s)
nw%vuyruw%vuw—glIwﬂreawwﬁm+17ﬂﬂf@f (ﬁﬁi) o
’ ' A(s)

= B(s)T(s)* (@ (= (5) (), 1 (s), A (s)) —m) ds.

Simplifying the above equation gives

(3.10)
dote(s)
fi(s)
Als)

From (3.4), we have ~(t)I'(t)? = T(t)['(t) =
H, 5 implies T'(t)24(t) + 26(t)[(#)['(t) < B(t)T(t). Then, the equation (3.10) is
equivalent to

2

(7(9)0()? = D()1(s) ) ds = T (t0)* W (to)

Applying the assumption Hjﬁ, we know that the equation (3.8) can be converted
to

E(t) + pL()B(6) [@ ((t), (), u(t), A1) —m] < 0.
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Integrating the above inequality over the interval (g, +00), we have

+o0o
—£(to) +p/ L(st)B(s)[® (e(5), 2 (s), pu(5), As)) —m] < 0.

to
It is known that & (¢) is non-negative; and hence there holds

+oo
(3.12) / I'(5) B () (®(e(s),2(s),p(s),A(s)) =m) <

to

A

Combining the inequality (3.11), we achieve the following inequality:
2

£(s)
T(t)?W (¢) +/t ZE‘Z; T (s)ds < D(to)*W (to) + “;0).
NARYD
that is,
2
e ;ES)) 2 € (to)
(3.13) /t o || T as < T o) + £
’ A (s)

According to the definition of the global energy function W(-), by adding the in-
equalities (3.12) and (3.13), we obtain

2

+oo 6 (8) +oo
J F) M m(syds+ [ B6ITEs) (@ (e(5), 2(5), 1(s), A () — m) ds
to 2 M(S) to
A
” < 3800 | L vy (4
=3, 5+ (fo 0)-
Then, we eventually establish
/m [(s)W(s)ds < 3&(to) + 1r(to)?W (to) < +o0.
to 2 p 2
which is the desired result. |

4. THE SECOND-ORDER DIFFERENTIAL EQUATION SYSTEM WITH PERTURBATIONS

In this section, we consider a perturbed situation of the second-order differential
equation system. The specific dynamical model is

g ((t% é ((t; VES(Z)ES (2)

i (t i (t V.S(2)'S(z) |
(4.1) ji (t) + () fi (t) + B (1) VMS(Z)TS =) |~ g(t)

A(t) A1) VS (2)TS (2)

where g(+) is regard as an external effect on the system, a perturbation or a control
term. As will be asserted, the perturbation term does not affect the existence and
uniqueness of the solution when it is small enough.
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Theorem 4.1. Let ® : IR — IR is a convexr function with argmin® # (). Suppose
that B : [to ,+00) is a continuous positive function, 7 : [ty ,+00) is a continuous
function satisfying the assumption Hy given as in (3.2). In addition, we assume
that the function g : [tg, +00) is locally integrable and satisfies

—+o00
H,: / (8 [|g(8)]| dt < +oo.
to

Then, for every solution trajectory (e, x, u,\) : [to, +00) — IR x IR™ x IR! x R™ of
the second-order differential equation system (4.1) with perturbations,

(a): Under the assumption H. 3, we deduce that the trajectory of solution

(T T
1w (t) and T (t) i (1) are bounded, and as t — 400, the conver-
A(t) (t)

gence rate of the values is satisfied
1
B (1), (1), (1) A () - min® =0 (T ).
B(1)T(t)°
(b): Under the assumption Hjﬁ, we also have

(4.2) o BE)L () (P(e(t),x(t),n(t), () —m)dt < +oo.

to
Proof. For the proof, we employ the same energy function £(¢) defined as in (3.7),
) = T BO)[®(e(t), (), ult), A(t)) — min D]

2

e(t) e* E(t)
1 x(t) x* x(t)
Tl we | T e | TR )
A(t) A A(t)
(a) To proceed, we compute the derivative of £(t) as follows.
(0 = (XOTOBO+TO ) @ (@2 1), 1) A(E)—m)
VES(Z)ZS (z é(t)
V.S(z)" S (z x (t)
+I(1)?8 (1) V,S(2)TS (= ( 0 >
V,\S(z)TS (z A (t)

é(t)
i (t)
I ) |/
t A* A(t)
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Based on (3.4) and the second-order differential equation system (4.1) with the
perturbation term, we deduce that

. E((t)) e* é((t))
x(t x* z(t

ai || oo |7 e TR a0
A(t) A" A(t)

V:S(2) S (2)
V.S(2)1S (2)
V,.8(2)"S (2)
VaS(2)'S (2)

Applying the Cauchy-Schwarz inequality and convexity of ® yields the following
inequality conditions:

£(1)

IN
—
—~
~
S—
Q
—~
~
=

20

i (t)

1 (1)

\(1) )
< V2 @) llg (Ol VE .

By integrating the above inequalities and combining the assumption (H)

+oo
VE(t) < VE(to) + / s)|lg (s)||ds = Cte < +oo.

g0 We have
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This indicates that £ (¢) is bounded and &(t) < £(tp). According to the formulation
of £(t), we can obtain that

mawwm4mxmm—mm@gm§gﬁ,
that is,

@(E(t),x(t),u(t),/\(t))—min(I>:O(W).

(b) Returning to the boundedness of & (t), with the definition of £ (t) we also deduce
e (t) e* e (t) ’
that zgg - 2* +1' (%) Zg; is bounded, which gives
A(t) A* A(t)
e (t) &\ |7 e (t) e* é(t)
x (t) x* x(t) x* & (t)
. o0 (t N <cC.
(1) M <>< (t) p o (1)
A(t) A* A(t) ¥ A(t)
Taking the same anchor function A (¢) defined as in (3.6), we know
e (t) e* 2
t) x*
ney =3[ =@ 2]
=201 ) M
A(t) A*
e (t) e* g (t)
 (t) z* & (t)
h(t) = B
€ < (1) RN
A(t) ¥ A(t)
With this, we see that the inequality (4.2) is equivalent to
1
h(t)+T(t)h(t) < 50'
Consequently,
1
o) -0 (n) - 5¢) <0
where ¢(t) = g((:)) and ¢(t) = —p(lt). Now, mimicking the same arguments as in

Section 3. After dividing the above inequality by ¢(t)2, it gives

1 ; . d (h(t)—C
iz (a0 = () - ) = 5 (M5 ) <o



2ND-ORDER DIFFERENTIAL EQUATION METHOD FOR SOCCVI 2759

Integration of this inequality yields h(t) < Cy (1 + ¢(t)) for some Cy > 0, which says
that h (t) is bounded. Thus, the solution trajectory x(-) is also bounded. Combining

e (t) e* ) \|I?
t) x* x (t)
the boundedness of 2 — . |+ (t . , we conclude that
p(t) I W ) "
A(t) ¥ A(t)
E(t)
I'(t) zgg is bounded. In addition, we deduce that the inequality (4.3) is
A(t)
equivalent to

&) < (@P@BE) +T(A0) [® (<), 2(0), n(t), A) — m]
+CT @) lg)]

for some C' > 0. Then, integrating this inequality on [tp, +0c0) and combining the
assumption Hj , yields

+oo
t BOT()[® (e(t), 2(t), ult), (1)) — m]dt
< ; (5 (to) + C t:oo F(t)g(t)dt> < 400,
which shows the proof of part(b). O

To sum up, we conclude that the convergence rate of the solutions is not affected
when the perturbation term g satisfies the assumption H, : ftjoo L'(t) ||lg(t)]| dt <
400, which means the perturbation term g disappears fast enough.

5. THEORETICAL AND NUMERICAL COMPARISONS OF 1-ODE AND 2-ODE

In this section, we demonstrate theoretical and numerical comparisons for the 1-
ODE system (2.8) and the 2-ODE system (3.1). First, we summarize the theoretical
comparison of the 1-ODE system (2.8) and the 2-ODE system (3.1), shown as in
Table 5.1.

TABLE 1. Table 5.1 The comparison of theories with the 1-ODE
system (2.8) and the 2-ODE system (3.1).

Condition 1-ODE 2-ODE
the convexity of ® v
the nonsingularity of V& v
argmin ® # () v v
the compact of arg min ¢ v
the positive semidefinite of JF (z*) v
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Next, we elaborate two examples of the SOCCVI and use a system of second-
order differential equations without a perturbation term and a system of second-
order differential equations with a perturbation term g¢(t) to verify the validity of the
solutions. The numerical implementation is coded by Matlab 9.0 and the ordinary
differential equation solver adopted is ode45. In the following tests, the parameter
v (t) = ¢ with o =25, B(t) = 1 and [g(¢)| < 0.02 is a bounded perturbation.

Example 5.1 Consider the problem
1
<2Dx,y —3:> >0 Yyed,

where C = {z € R"|[Az —a=0,Bx —b=<0}. with A € R>*", B € R™" and
D € R™™ being a symmetric matrix. Here a € R!, b € R™ with [ +m < n. Like
what was done [10,11], we denote

2, 1=j,
where D;jj=<¢ 1, [i—j|=1,
0, otherwise,

D = (D)

nxn’

A= [lelaolx(nfl)] B= [Omx(nfm)ajmxm]

Ixn’

where e, = (1,...,0)7 € R™.

xcn’ a=0;x1 and b= (eml,...,emp),

The CPU-time (seconds) to reach termination condition with the 1-ODE system
(2.8) and the 2-ODE system (3.1) for Example 5.1 are shown in Table 5.2. Numerical
results of Example 5.1 by the 1-ODE system (2.8) and the 2-ODE system (3.1), 2-
ODE system(4.1) are summarized in Table 5.3. The solution trajectories x(t) of
the 2-ODE system (3.1) from the given initial random points for Example 5.1 are
depicted in Figure 1. The comparison of error rates of ||x(t) — «*||, for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.1 are presented in Figure 2.

TABLE 2. The CPU-time to reach termination condition (seconds)
with the 1-ODE system (2.8) and the 2-ODE system (3.1) for Ex-
ample 5.1.

1-ODE 2-0DE
CPU-time(s) 0.012012 0.337710
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TABLE 3. Numerical results summary of Example 5.1 by the 1-ODE
system (2.8) and the 2-ODE system (3.1), (4.1).

z* with the x* with the z* with the
mn K 1-ODE system 2-ODE system 2-ODE system
(2.8) (3.1) (4.1)
1.1111e — 06 5.4773e — 05 —1.0000e — 04
—4.0027e — 06 —6.9542¢ — 05 —1.0000e — 04
2 2
2| 4| K5 x K 2.7126e — 05 1.9268¢ — 04 9.9942¢ — 04
—2.5912¢ — 05 —1.8164e — 04 —9.5387¢ — 04
5.3051e — 07 5.4031e — 05 4.3752¢ — 04
9.4351e — 07 4.6095e¢ — 05 6.2845¢ — 04
1.2045¢ — 07 1.6225e — 05 9.5689¢ — 05
3 3
36| K7 x K 9.9093e — 07 2.1543e — 05 3.5876e — 04
2.6553¢e — 07 5.4784e — 05 4.6213e — 04
1.3725e¢ — 07 4.7972e¢ — 05 4.7210e — 05
1.0993e — 07 1.0651e — 05 —9.8912¢ — 04
1.9390e — 07 1.2191e — 05 —2.0000e — 04
1.2045¢ — 07 1.3912¢ — 05 —1.8000e — 04
2.0947¢ — 07 —4.5016e — 04 —1.6000e — 03
4 4
4 8| KEx K 2.6684e — 07 6.2000e — 04 6.3000e — 04
—3.9048¢e — 08 —6.4000e — 04 —7.2000e — 04
5.8089¢ — 08 —3.7177e — 05 —3.0000e — 03
1.4516e — 08 —1.9000e — 04 —3.9000e — 04
08
06
04l
= 0.2r
"; ol x1,x2,x3,x4
g 02t
£ 04t
06
08t
1 L L ! L L
5 10 15 20 25 30
Time(s)

FIGURE 1. Trajectories of z(t) of the 2-ODE system (3.1) for Ex-
ample 5.1 from four random initial points about x with [ = m = 2

and n = 4.

Example 5.2 Consider the SOCCVI problem

(F(z"),y —a*

)20 yed,




2762 J. SUN, D. JIA, L. WANG, H. ZHUANG, AND J.-S. CHEN

1-ODE 2-ODE
S E
k] G
8 3
S s
o |53
= 2 05
= =
0 . . ! 0 . .
0 001 002 003 004 005 006 007 008 009 0.1 0 5 10 15 20 25 30
Time(s) Time(s)
(a) 1-ODE (b) 2-ODE
(a) 1-ODE (b) 2-ODE

FI1GURE 2. Comparison of error rates of ||z(t) — 2*||, for the 1-ODE
system (2.8) and 2-ODE system (3.1) for Example 5.1.

where
C={reR’|—g(x)=zek®x K’ xK?}.
and
21 + 10 + 1
T, + 610 —x3 — 2
—x2 + 3x3 — gﬂf4 +3
F(z) = —g$3 + 224 + %smu cos x5 sinxe + 6

% COS X4 Sin x5 sin xg + 225 — %

—1 cosxy cos T5 Ccos Tg + 2x¢ + % cos rgsinxycoszg + 1
i sin xg cos x7 cos xg + 4x7 — 2

— 1L sin g sin 7 sin g + 2z + %

Here, we point out that x* = (0,0.3333, 0,0, 1.2500, 0, 0.5000, 0) is one of the optimal
solutions.

The CPU-time to reach termination condition (seconds) with the 1-ODE system
(2.8) and the 2-ODE system (3.1) for Example 5.2 are shown in Table 5.4. Numerical
results of Example 5.2 by the 1-ODE system (2.8), the 2-ODE system (3.1), and
the 2-ODE system(4.1) are summarized in Table 5.5. The solution trajectories x ()
of the 2-ODE system (3.1) from the given initial random points for Example 5.2 are
shown in Figure 3. The comparison of error rates of ||z(t) — z*||, for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.2 are presented in Figure
4.

6. CONCLUSIONS

In this paper, we establish the second-order differential equation system (3.1)
involving a positive viscous damping coefficient y(t) and a time scale coefficient
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TABLE 4. Table 5.4 The CPU-time to reach termination condition
(seconds) with the 1-ODE system (2.8) and the 2-ODE system (3.1)
for Example 5.2.

1-ODE 2-ODE
CPU-time(s) 0.062887 1.698720

TABLE 5. Numerical results summary of Example 5.2 by the 1-ODE
system (2.8) and the 2-ODE system (3.1), (4.1).

x* with the x* with the z*with the
1-ODE system (2.8) 2-ODE system (3.1) 2-ODE system (4.1)
1.7059¢e — 06, 1.9250e — 06, 5.6330e — 04,

0.3333, 0.3333, 0.3334,
—2.1409¢e — 05, —3.4583e — 06, 5.9365e — 04,
—1.5039¢ — 05, 1.2699¢e — 05, 3.4706e — 04,
1.2500, 1.2500, 1.2501,
4.1031e — 11, 6.4008e — 07, 5.1410e — 04,
0.5000, 0.5000, 0.5001,
—4.6562e — 13 7.7376e — 06 6.0210e — 04

x5

X7
X2

x1,x3.x4.x6.x8

Trajectories of x(t)

0 5 10 15 20 25 30 35 40 45 50
Time(s)

FIGURE 3. Trajectories of z(t) of the 2-ODE system (3.1) for Ex-
ample 5.2 from eight random initial points about z.

B(t) inspired by Attouch et. al [5] to solve the SOCCVI (1.1). We study the
asymptotic behavior and convergence rate of the trajectory of the second-order
differential equation system (3.1). In addition, the system (4.1) is also used to solve
the SOCCVI (1.1) by adding an external perturbation term g(¢) to the original
system of second-order differential equation (3.1). By comparing the theory and
numerical results of the 1-ODE and 2-ODE methods, we find that the constraints
of the 2-ODE method are looser than that of the 1-ODE method, but the accuracy of
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Trajectories of ||><(t)-><'||2

the

: 3.5 T T T T T
h
1
0.8 ‘f
0.6 g
041 %
02
00 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 00 5‘ 1‘0 1‘5 20 25 30
Time(s) Time(s)
(a) 1-ODE (b) 2-ODE
(a) 1-ODE (b) 2-ODE
FIGURE 4. Comparison of error rates of ||z(t) — z*||, for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.2.
numerical results of the 2-ODE method is less than that of the 1-ODE method.

As far as we know, the study towards the 2-ODE approach for solving the SOCCVI
is still very preliminary, it needs to be further investigated and improved.
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