


2746 J. SUN, D. JIA, L. WANG, H. ZHUANG, AND J.-S. CHEN

where m1,m2, . . . ,mp ≥ 1, m1 + m2 + · · · + mp = m, and each Kmi represents a
second-order cone given by

Kmi :=
{
(xi1, xi2, . . . , ximi)

T ∈ IRmi
∣∣ ∥(xi2, . . . , ximi)∥ ≤ xi1

}
.

In recent years, the utilization of differential equations to solve constrained opti-
mization problems has attracted much attention. The earliest work was by Arrow
and Hurwicz [2], and Fiacco and McCormick used differential equations to study
the constrained norm problem in optimality conditions. Since 1980, a series of ar-
tificial network methods based on differential equation systems have been proposed
by Hopfield and Tank [9], and employed to tackle complementarity problems and
variational inequality. In 2000, Antipin [1] investigated the problem of variational
inequality with coupling constraints, introduced symmetric functions, and proposed
a globally convergent approach to differential equations. He and Yang [8] proposed
a differential equation system for nonsymmetric linear VI problems based on pro-
jection operators and contraction methods. In 2005, Gao, Liao and Qi [7] studied
a differential equation model for solving VI with linear and nonlinear constraints
based on projection operator theory. In [10–13], there were various neural net-
work methods investigated for the SOCCVI. All of them belong to the first-order
differential equation (1-ODE) method.

Inspired by the aforementioned works and the idea by Attouch et al [3–5] which
tackles convex optimization problems by using damped inertial gradient dynami-
cal systems, we construct the second-order differential equation system involving
two time-dependent parameters to solve the SOCCVI (1.1). In particular, we first
adopt the smoothed complementary function to transform the KKT conditions of
the SOCCVI (1.1) into a smoothing equation system problem, and introduce the
merit function to transform it into an unconstrained optimization problem. In Sec-
tion 3, a system of second-order differential equations associated with the above
unconstrained problem is established to solve the SOCCVI (1.1). Moreover, the
differential equation system involves two time-dependent parameters, which are a
positive viscous damping coefficient γ(t) and a time scale coefficient β(t). Then, in
Section 4, we consider a perturbed term g(t) of the second-order differential equa-
tion system. In Section 5, we compare the second-order differential equation method
with the first-order differential equation method for handling the SOCCVI theoret-
ically. At last, two numerical experiments are reported to verify the effectiveness of
the second-order differential equation method for solving the SOCCVI.

2. Preliminaries

For subsequent analysis, we write down the KKT conditions of the SOCCVI (1.1),

(2.1)
L (x, µ, λ) = F (x) + Jh(x)Tµ+ Jg(x)Tλ = 0,

h (x) = 0,
⟨g(x), λ⟩ = 0,−g(x) ∈ K, λ ∈ K,

where L (x, µ, λ) is called the VI Lagrangian function, and µ ∈ IRl, λ ∈ IRm. In
order to convert the KKT conditions of the SOCCVI (1.1) to an unconstrained



2ND-ORDER DIFFERENTIAL EQUATION METHOD FOR SOCCVI 2747

optimization problem, we shall employ the second-order cone (SOC) complemen-
tarity function, φ : IRm × IRm → IRm, which satisfies φ (x, y) = 0 if and only if
x ∈ Km, y ∈ Km and ⟨x, y⟩ = 0.

In order to tackle with optimization problems involving second-order cones, it
usually need a special decomposition. For any x = (x1, x2) ∈ IR × IRm−1, there
holds a spectral decomposition:

(2.2) x = ρ1(x)u1(x) + ρ2(x)u2(x),

where ρ1(x) and ρ2(x) are called the spectral values of x, given by

ρi(x) = x1 + (−1)i ∥x2∥ .

In addition, u1(x) and u2(x) are the spectral vectors of x, given by

ui(x) =


1
2

(
1, (−1)i x2

∥x2∥

)
if x2 ̸= 0,

1
2

(
1, (−1)i ω

)
if x2 = 0,

where ω is an arbitrary unit vector in IRm−1. A popular SOC-complementarity
function is the natural residual (NR) function, which is semismooth and defined as
(see [6, 11] for more details)

φNR (x, y) = x−ΠKm (x− y) .

In light of the spectral decomposition (2.2) of x, the projection ΠKm of x onto Km

is described by

ΠKm (x) = max {0, ρ1 (x)}u1 (x) + max {0, ρ2 (x)}u2 (x) .

In this paper, we consider a smoothing metric projector function ϕ : IR+×IRm →
IRm satisfying

(2.3) ϕ (ε, c) =
1

2

(
c+

√
ε2e+ c2

)
∀ (ε, c) ∈ IR+ × IRm.

Notice that ϕ (0, c) = ΠKm (c). Moreover, ϕ is continuously differentiable on any
neighborhood of (ε, c) ∈ IR+ × IRm provided that

(
ε2e+ c2

)
0
̸=

∥∥ε2e+ c2
∥∥. For(

ε2e+ c2
)
0
=

∥∥ε2e+ c2
∥∥, it is known that ϕ is nonsmooth at (ε, c), but its B-

subdifferential can nevertheless be computed. For more details regarding the func-
tion ϕ(0, c), please refer to reference [11]. Now, Based on ϕ(0, c) given in (2.3), we
define the smoothing NR function given as

(2.4) φε
NR

(x, y) = x− ϕ (ε, x− y) .

In view of the function φε
NR

defined in (2.4), the KKT conditions (2.1) of the
SOCCVI (1.1) are recast as

(2.5) S (ε, x, µ, λ) =


ε

L (x, µ, λ)
h (x)

φε
NR

(−g (x) , λ)

 = 0,
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where

φε
NR

(−g (x) , λ) =


φε

NR
(−gm1 (x) , λm1)

φε
NR

(−gm2 (x) , λm2)
...

φε
NR

(
−gmp (x) , λmp

)
 .

with −gmi (x) , λmi ∈ Kmi . Moreover, the merit function Φ for the SOCCVI (1.1)
is as below:

(2.6) minΦ (ε, x, µ, λ) :=
1

2
∥S (ε, x, µ, λ)∥2 .

It is clear to see that x∗ is the solution to the unconstrained optimization problem
(2.6) meaning that x∗ is the solution to the SOCCVI (1.1). For notational simplicity,
we denote z = (ε, x, µ, λ) ∈ IR×IRn×IRl×IRm, then the unconstrained optimization
problem (2.6) can be expressed as

(2.7) minΦ(z) :=
1

2
∥S (z)∥2 .

With (2.7), the differential equation approach to solving the SOCCVI (1.1) has been
proposed and investigated, see [10–12]. Although there are some variants, mostly
the dynamical model possesses the format of

(2.8)

{
dz(t)
dt = −ρ∇Φ(z (t))

z (t0) = z0

where ∇Φ(z (t)) =


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 and ρ > 0 is a scaling factor.

3. The second-order differential equation system

In this section, we explore the second-order differential equation method for solv-
ing the SOCCVI (1.1), which is different from the model (2.8). Indeed, inspired
by Attouch [5], the second-order differential equation system involves two time-
dependent parameters, which are a positive viscous damping coefficient γ(t) and a
time scale coefficient β(t). More specifically, the dynamical model is established as
below:

(3.1)


ε̈ (t)
ẍ (t)
µ̈ (t)

λ̈ (t)

+ γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

+ β (t)


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 = 0,

where S(·) is defined as in (2.5) and γ, β ∈ [t0,+∞) are nonnegative continuous
functions. For convenience, we take for granted the existence of a solution to this
system, and hence the corresponding equilibrium point of the system becomes the
solution of the SOCCVI (1.1). According to the parameter tuning of the positive
viscous damping coefficient γ(t) and the time scaling parameter β(t), we will analyze
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the global convergence of the solution trajectory of the second-order differential
equation system (3.1).

For the special case, Φ (ε, x, µ, λ) ≡ 0, by direct integration of a system of second-
order differential equations, we obtain

p (t) = e
∫ t
t0

γ(u)du
.

Here, it is assumed that the following conditions are satisfied:

(3.2) H0 :

∫ +∞

t0

du

p(u)
< +∞.

Under this assumption, we can define the function Γ on [t0,+∞) by

(3.3) Γ (t) := p (t)

∫ +∞

t

du

p (u)
.

By differentiating the above (3.3), we obtain the relation

(3.4) Γ̇ (t) = γ (t) Γ (t)− 1.

Then, let us further respectively define the global energy function W (t) as

(3.5) W (t) =
1

2

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β(t)
[
Φ(ε (t) , x(t), µ(t), λ(t))−minΦ

]
and the anchor function h (t) as

(3.6) h(t) =
1

2

∥∥∥∥∥∥∥∥


ε (t)
x(t)
µ(t)
λ(t)

−


ε∗

x∗

µ∗

λ∗


∥∥∥∥∥∥∥∥
2

,

where


ε∗

x∗

µ∗

λ∗

 ∈ argminΦ ̸= ∅ is given in advance. These pave the basic constitu-

tive blocks of the function ξ : [t0,+∞) → IR+, which is defined by

(3.7) ξ(t) = Γ (t)2W (t) + h(t) + Γ (t) ḣ(t).

Indeed, it is equivalent to

ξ(t) = Γ (t)2 β (t) [Φ (ε(t), x(t), µ(t), λ(t))−minΦ]

+
1

2

∥∥∥∥∥∥∥∥


ε(t)
x(t)
µ(t)
λ(t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

.
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Theorem 3.1. Let Φ : IR → IR be a convex function such that argminΦ ̸= ∅.
Suppose that β : [t0,+∞) is a continuous positive function and γ : [t0,+∞) is
a continuous function satisfying the assumptions H0 given as in (3.2). We also
assume that the following growth condition Hγ,β is satisfied linking γ(t) and β(t):

Hγ,β : Γ(t)β̇(t) ≤ β(t) [3− 2γ(t)Γ(t)] .

Then, for every solution trajectory (ε, x, µ, λ) : [t0,+∞) → IR × IRn × IRl × IRm

of the second-order differential equation system (3.1), the convergence rate of the
values satisfies

Φ(ε(t), x(t), µ(t), λ(t))−minΦ = O

(
1

β(t)Γ(t)2

)
as t → +∞. In addition, the trajectory of the solution is bounded on [t0,+∞).

Proof. For simplicity, we denote m := minΦ and compute the derivative of ξ(t) as
below:

ξ̇(t) = 2Γ(t)Γ̇(t)W (t) + Γ(t)2Ẇ (t) + ḣ(t) + Γ̇(t)ḣ(t) + Γ(t)ḧ(t).

Then, we calculate the derivatives of the principal components, including the deriva-
tives of the global energy function W (t) and the anchor function h(t), which is
defined as in (3.5) and (3.6), respectively . First, we have

Ẇ (t) =

〈
ε̇(t)
ẋ(t)
µ̇(t)

λ̇(t)

 ,


ε̈(t)
ẍ(t)
µ̈(t)

λ̈(t)


〉

+ β(t)

〈
ε̇(t)
ẋ(t)
µ̇(t)

λ̇(t)

 ,


∇εS(z)

TS(z)
∇xS(z)

TS(z)
∇µS(z)

TS(z)
∇λS(z)

TS(z)


〉

+β̇(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−m

]
=

〈
ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

 ,


ε̈ (t)
ẍ (t)
µ̈ (t)

λ̈ (t)

+ β(t)


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)


〉

+β̇(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−m

]
=

〈
ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

 ,−γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉

+ β̇(t)
[
Φ(ε (t) , x (t) , µ (t) , λ (t))−m

]

= −γ (t)

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β̇(t)
[
Φ(ε (t) , x (t) , µ (t) , λ (t))−m

]
.
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On the other hand, the derivative for the anchor function h(t) gives

ḣ (t) =

〈
ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

 ,


ε (t)− ε∗

x (t)− x∗

µ (t)− µ∗

λ (t)− λ∗


〉
,

and

ḧ (t) =

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+

〈
ε̈ (t)
ẍ (t)
µ̈ (t)

λ̈ (t)

 ,


ε (t)− ε∗

x (t)− x∗

µ (t)− µ∗

λ (t)− λ∗


〉
.

Thus, we obtain that

γ (t) ḣ (t) + ḧ (t)

=

〈
γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

+


ε̈ (t)
ẍ (t)
µ̈ (t)

λ̈ (t)

 ,


ε (t)− ε∗

x (t)− x∗

µ (t)− µ∗

λ (t)− λ∗


〉

+

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

= −β (t)

〈
∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 ,


ε (t)− ε∗

x (t)− x∗

µ (t)− µ∗

λ (t)− λ∗


〉

+

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

≤ −β (t) (Φ (ε (t) , x (t) , µ (t) , λ (t))−m) +

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

where the above inequality holds due to the convexity of Φ(ε, x, µ, λ). With this,
we can compute the derivative of ξ(t) as

ξ̇ (t) = 2Γ (t) Γ̇ (t)W (t) + Γ(t)2Ẇ (t) + ḣ (t) + Γ̇ (t) ḣ (t) + Γ (t) ḧ (t)

= 2Γ (t) Γ̇ (t)W (t) + Γ(t)2Ẇ (t) + Γ (t)
(
γ (t) ḣ (t) + ḧ (t)

)

≤ 2Γ (t) Γ̇ (t)

1

2

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β (t) (Φ (ε (t) , x (t) , µ (t) , λ (t))−m)


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+Γ(t)2

−γ (t)

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β̇ (t) (Φ (ε (t) , x (t) , µ (t) , λ (t))−m)



+Γ (t)

−β (t) (Φ (ε (t) , x (t) , µ (t) , λ (t))−m) +

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

≤ Γ (t)

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2 (

1 + Γ̇ (t)− γ (t) Γ (t)
)

+(Φ (ε (t) , x (t) , µ (t) , λ (t))−m) Γ (t)
(
Γ (t) β̇ (t) + 2Γ̇ (t)β (t)− β (t)

)
.

This together with equation (3.4) yields

ξ̇ (t) ≤ (Φ (ε (t) , x (t) , µ (t) , λ (t))−m) Γ (t)
(
Γ (t) β̇ (t) + 2Γ̇ (t)β (t)− β (t)

)
.

which implies
(3.8)

ξ̇(t) ≤ (Φ (ε(t), x(t), µ(t), λ(t))−m) Γ (t)
(
Γ (t) β̇ (t) + β(t) (2γ (t) Γ (t)− 3)

)
.

Therefore, from the assumed growth conditions Hγ,β , it can be inferred that ξ̇(t) ≤
0. In other words, the function ξ(t) is decreasing on [t0,+∞), which says ξ(t) ≤
ξ(t0). Then, according to the formulation (3.7) of ξ(t), we can deduce that, for all
t ≥ t0,

Φ (ε (t) , x (t) , µ (t) , λ (t))−minΦ ≤ ξ (t0)

β (t) Γ(t)2
,

that is,

Φ (ε (t) , x (t) , µ (t) , λ (t))−minΦ = O

(
1

β (t) Γ(t)2

)
.

Next, let us show that the trajectory is bounded. First, using the formulation and
the decreasing of ξ(t) leads to∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

≤ 2ξ (t) ≤ 2ξ (t0)

which indicates
(3.9)∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗


∥∥∥∥∥∥∥∥
2

+ 2Γ (t)

〈
ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

 ,


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉

≤ 2ξ (t0) .
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Setting q (t) :=
∫ +∞
t

ds
p(s) and considering the assumptions H0 :

∫ +∞
t0

du
p(u) <+∞, we

achieve that the function q(t) :=
∫ +∞
t

ds
p(s) is bounded as t ≥ t0. Moreover, we can

deduce the following equivalence relation:

q(t) =
Γ (t)

p (t)
, q̇(t) = − 1

p (t)
.

Dividing (3.9) by p (t) and applying the above equivalence relation, we establish

1

p (t)
h(t) + q(t)ḣ (t) ≤ C

p (t)
, ∀t ∈ [t0,+∞) .

where C = ξ(t0). This is equivalent to

q (t) ḣ(t)− q̇(t)(h (t)− C) ≤ 0, ∀t ∈ [t0,+∞)

where h (t) is the anchor function. Now, dividing by q(t)2 yields

1

q(t)2

(
q(t)ḣ(t)− q̇(t) (h(t)− C1)

)
=

d

dt

(
h(t)− C1

q(t)

)
≤ 0, ∀t ∈ [t0,+∞) .

Doing integration on this inequality gives h(t) ≤ C1 (1 + q(t)) for some C1 > 0.
Therefore, the solution trajectory is bounded and the proof is complete.

In order to speed up the convergence of the solution, we introduce ρ and construct
a stronger assumptions H+

γ,β
on t > t1, which is

H+
γ,β

: Γ (t) β̇(t) ≤ β(t)
[
3− ρ− 2γ(t)Γ (t)

]
.

with ρ > 0 and t1 > t0.

Corollary 3.2. Let Φ : IR → IR be a convex function such that argminΦ ̸= ∅. For
solutions of the second order differential equation satisfying the assumptions H+

γ,β
,

the following integral energy estimates hold:∫ +∞

t0

Γ(t)W (t)dt < +∞,

where

W (t) =
1

2

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−minΦ

]
.

Equivalently,

∫ +∞

t0

Γ (t)

∥∥∥∥∥∥∥∥


ε̇(t)
ẋ(t)
µ̇(t)

λ̇(t)


∥∥∥∥∥∥∥∥
2

dt < +∞,

∫ +∞

t0

Γ(t)β(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−minΦ

]
dt < +∞.
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Proof. For simplicity, denote m := minΦ. From the proof of Theorem 3.1, we know
the derivation for the global energy function W (t) is

Ẇ (t) = −γ(t)

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

+ β̇ (t)
[
Φ(ε(t), x(t), µ(t), λ(t))−m

]
.

Multiplying both sides by Γ(t)2 on this leads to

Γ(t)2Ẇ (t) + γ(t)Γ(t)2

∥∥∥∥∥∥∥∥


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

= β̇(t)Γ(t)2 (Φ (ε(t), x(t), µ(t), λ(t))−m) .

Now, integrating the above inequality over the interval (t, t0), we obtain

Γ(t)2W (t)−Γ(t0)
2W (t0)−2

∫ t

t0

Γ (s) Γ̇ (s)W (s)ds+

∫ t

t0

γ (s) Γ(s)2

∥∥∥∥∥∥∥∥


ε̇ (s)
ẋ (s)
µ̇ (s)

λ̇ (s)


∥∥∥∥∥∥∥∥
2

ds

=

∫ t

t0

β̇ (s) Γ(s)2 (Φ (ε (s) , x (s) , µ (s) , λ (s))−m) ds.

Simplifying the above equation gives

Γ(t)2W (t) +

∫ t

t0

∥∥∥∥∥∥∥∥


dotε(s)
ẋ(s)
µ̇(s)

λ̇(s)


∥∥∥∥∥∥∥∥
2 (

γ(s)Γ(s)2 − Γ(s)Γ̇(s)
)
ds = Γ (t0)

2W (t0)

+

∫ t

t0

(
2β(s)Γ(s)Γ̇(s) + β̇(s)Γ(s)2

)
(Φ (ε(s), x(s), µ(s), λ(s))−m) ds.

(3.10)

From (3.4), we have γ(t)Γ(t)2−Γ(t)Γ̇(t) = Γ(t). This together with the assumption

Hγ,β implies Γ(t)2β̇(t) + 2β(t)Γ̇(t)Γ(t) ≤ β(t)Γ(t). Then, the equation (3.10) is
equivalent to

Γ(t)2W (t) +

∫ t

t0

∥∥∥∥∥∥∥∥


ε̇(s)
ẋ(s)
µ̇(s)

λ̇(s)


∥∥∥∥∥∥∥∥
2

Γ(s)ds

≤ Γ (t0)
2W (t0) +

∫ t

t0

Γ(s)β(s)
[
Φ(ε(s), x(s), µ(s), λ(s))−m

]
ds.

(3.11)

Applying the assumption H+
γ,β

, we know that the equation (3.8) can be converted
to

ξ̇(t) + ρΓ(t)β(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−m

]
≤ 0.
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Integrating the above inequality over the interval (t0,+∞), we have

−ξ (t0) + ρ

∫ +∞

t0

Γ(st)β(s)
[
Φ(ε(s), x(s), µ(s), λ(s))−m

]
≤ 0.

It is known that ξ (t) is non-negative; and hence there holds

(3.12)

∫ +∞

t0

Γ (s)β (s) (Φ (ε (s) , x (s) , µ (s) , λ (s))−m) ≤ ξ (t0)

ρ
< +∞.

Combining the inequality (3.11), we achieve the following inequality:

Γ(t)2W (t) +

∫ t

t0

∥∥∥∥∥∥∥∥


ε̇ (s)
ẋ (s)
µ̇ (s)

λ̇ (s)


∥∥∥∥∥∥∥∥
2

Γ (s) ds ≤ Γ(t0)
2W (t0) +

ξ (t0)

ρ
.

that is,

(3.13)

∫ +∞

t0

∥∥∥∥∥∥∥∥


ε̇ (s)
ẋ (s)
µ̇ (s)

λ̇ (s)


∥∥∥∥∥∥∥∥
2

Γ (s) ds ≤ Γ(t0)
2W (t0) +

ξ (t0)

ρ
.

According to the definition of the global energy function W (·), by adding the in-
equalities (3.12) and (3.13), we obtain

∫ +∞

t0

1

2

∥∥∥∥∥∥∥∥


ε̇ (s)
ẋ (s)
µ̇ (s)

λ̇ (s)


∥∥∥∥∥∥∥∥
2

Γ (s) ds+

∫ +∞

t0

β(s)Γ(s) (Φ (ε(s), x(s), µ(s), λ (s))−m) ds

≤ 3

2

ξ (t0)

ρ
+

1

2
Γ(t0)

2W (t0) .

Then, we eventually establish∫ +∞

t0

Γ(s)W (s)ds ≤ 3

2

ξ(t0)

ρ
+

1

2
Γ(t0)

2W (t0) < +∞.

which is the desired result.

4. The second-order differential equation system with perturbations

In this section, we consider a perturbed situation of the second-order differential
equation system. The specific dynamical model is

(4.1)


ε̈ (t)
ẍ (t)
µ̈ (t)

λ̈ (t)

+ γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

+ β (t)


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 = g(t)

where g(·) is regard as an external effect on the system, a perturbation or a control
term. As will be asserted, the perturbation term does not affect the existence and
uniqueness of the solution when it is small enough.



2756 J. SUN, D. JIA, L. WANG, H. ZHUANG, AND J.-S. CHEN

Theorem 4.1. Let Φ : IR → IR is a convex function with argminΦ ̸= ∅. Suppose
that β : [t0 ,+∞) is a continuous positive function, γ : [t0 ,+∞) is a continuous
function satisfying the assumption H0 given as in (3.2). In addition, we assume
that the function g : [t0,+∞) is locally integrable and satisfies

Hg :

∫ +∞

t0

Γ(t) ∥g(t)∥ dt < +∞.

Then, for every solution trajectory (ε, x, µ, λ) : [t0,+∞) → IR× IRn × IRl × IRm of
the second-order differential equation system (4.1) with perturbations,

(a): Under the assumption Hγ,β, we deduce that the trajectory of solution
ε (t)
x (t)
µ (t)
λ (t)

 and Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)

 are bounded, and as t → +∞, the conver-

gence rate of the values is satisfied

Φ(ε (t) , x (t) , µ (t) , λ (t))−minΦ = O

(
1

β (t) Γ(t)2

)
.

(b): Under the assumption H+
γ,β

, we also have

(4.2)

∫ +∞

t0

β (t) Γ (t) (Φ (ε (t) , x (t) , µ (t) , λ (t))−m) dt < +∞.

Proof. For the proof, we employ the same energy function ξ(t) defined as in (3.7),

ξ(t) = Γ (t)2 β(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−minΦ

]
+
1

2

∥∥∥∥∥∥∥∥


ε(t)
x(t)
µ(t)
λ(t)

−


ε∗

x∗

µ∗

λ∗

+ Γ(t)


ε̇(t)
ẋ(t)
µ̇(t)

λ̇(t)


∥∥∥∥∥∥∥∥
2

.

(a) To proceed, we compute the derivative of ξ(t) as follows.

ξ̇ (t) =
(
2Γ (t) Γ̇ (t)β (t) + Γ(t)2β̇ (t)

)
(Φ (ε (t) , x (t) , µ (t) , λ (t))−m)

+Γ(t)2β (t)

〈
∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 ,


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉

+

〈
d
dt




ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


 ,


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉
.



2ND-ORDER DIFFERENTIAL EQUATION METHOD FOR SOCCVI 2757

Based on (3.4) and the second-order differential equation system (4.1) with the
perturbation term, we deduce that

d

dt




ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)




= Γ (t)

g (t)− β (t)


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)




which says

ξ̇ (t) =
(
2Γ (t) Γ̇ (t)β (t) + Γ(t)2β̇ (t)

)
(Φ (ε (t) , x (t) , µ (t) , λ (t))−m)

+

〈
Γ (t) g (t) ,


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉

−

〈
Γ (t)β (t)


∇εS(z)

TS (z)

∇xS(z)
TS (z)

∇µS(z)
TS (z)

∇λS(z)
TS (z)

 ,


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗


〉
.

Applying the Cauchy-Schwarz inequality and convexity of Φ yields the following
inequality conditions:

ξ̇ (t) ≤
(
2Γ (t) Γ̇ (t)β (t) + Γ(t)2β̇ (t)

)
(Φ (ε (t) , x (t) , µ (t) , λ (t))−m)

+ Γ (t) ∥g (t)∥

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥ .

(4.3)

Then, we obtain that

ξ̇ (t) ≤ Γ (t) ∥g (t)∥

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥

≤
√
2Γ (t) ∥g (t)∥

√
ξ (t).

By integrating the above inequalities and combining the assumption (H)g, we have

√
ξ (t) ≤

√
ξ (t0) +

1√
2

∫ +∞

t0

Γ (s) ∥g (s)∥ds = Cte < +∞.
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This indicates that ξ (t) is bounded and ξ(t) ≤ ξ(t0). According to the formulation
of ξ (t), we can obtain that

Φ (ε (t) , x (t) , µ (t) , λ (t))−minΦ ≤ ξ (t0)

β (t) Γ(t)2
,

that is,

Φ (ε (t) , x (t) , µ (t) , λ (t))−minΦ = O

(
1

β (t) Γ(t)2

)
.

(b) Returning to the boundedness of ξ (t), with the definition of ξ (t) we also deduce

that

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

is bounded, which gives

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗


∥∥∥∥∥∥∥∥
2

+ 2Γ (t)

〈
ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

 ,


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉

≤ C.

Taking the same anchor function h (t) defined as in (3.6), we know

h (t) := 1
2

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗


∥∥∥∥∥∥∥∥
2

,

ḣ (t) :=

〈
ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

 ,


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


〉
.

With this, we see that the inequality (4.2) is equivalent to

h (t) + Γ (t) ḣ (t) ≤ 1

2
C.

Consequently,

q (t) ḣ (t)− q̇ (t)

(
h (t)− 1

2
C

)
≤ 0.

where q(t) = Γ(t)
p(t) and q̇(t) = − 1

p(t) . Now, mimicking the same arguments as in

Section 3. After dividing the above inequality by q(t)2, it gives

1

q(t)2

(
q(t)ḣ(t)− q̇(t) (h(t)− C1)

)
=

d

dt

(
h(t)− C1

q(t)

)
≤ 0.
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Integration of this inequality yields h(t) ≤ C1 (1 + q(t)) for some C1 > 0, which says
that h (t) is bounded. Thus, the solution trajectory x(·) is also bounded. Combining

the boundedness of

∥∥∥∥∥∥∥∥


ε (t)
x (t)
µ (t)
λ (t)

−


ε∗

x∗

µ∗

λ∗

+ Γ (t)


ε̇ (t)
ẋ (t)
µ̇ (t)

λ̇ (t)


∥∥∥∥∥∥∥∥
2

, we conclude that

Γ (t)


ε̇(t)
ẋ(t)
µ̇(t)

λ̇(t)

 is bounded. In addition, we deduce that the inequality (4.3) is

equivalent to

ξ̇(t) ≤
(
2Γ(t)Γ̇(t)β(t) + Γ(t)2β̇(t)

) [
Φ(ε(t), x(t), µ(t), λ(t))−m

]
+C Γ (t) ∥g(t)∥

for some C > 0. Then, integrating this inequality on [t0,+∞) and combining the
assumption H+

γ,β
yields∫ +∞

t0

β(t)Γ(t)
[
Φ(ε(t), x(t), µ(t), λ(t))−m

]
dt

≤ 1

ρ

(
ξ (t0) + C

∫ +∞

t0

Γ(t)g(t)dt

)
< +∞.

which shows the proof of part(b).

To sum up, we conclude that the convergence rate of the solutions is not affected
when the perturbation term g satisfies the assumption Hg :

∫ +∞
t0

Γ(t) ∥g(t)∥ dt <
+∞, which means the perturbation term g disappears fast enough.

5. Theoretical and numerical comparisons of 1-ODE and 2-ODE

In this section, we demonstrate theoretical and numerical comparisons for the 1-
ODE system (2.8) and the 2-ODE system (3.1). First, we summarize the theoretical
comparison of the 1-ODE system (2.8) and the 2-ODE system (3.1), shown as in
Table 5.1.

Table 1. Table 5.1 The comparison of theories with the 1-ODE
system (2.8) and the 2-ODE system (3.1).

Condition 1-ODE 2-ODE
the convexity of Φ ✓

the nonsingularity of ∇Φ ✓
argminΦ ̸= ∅ ✓ ✓

the compact of argminΦ ✓
the positive semidefinite of JF (x∗) ✓
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Next, we elaborate two examples of the SOCCVI and use a system of second-
order differential equations without a perturbation term and a system of second-
order differential equations with a perturbation term g(t) to verify the validity of the
solutions. The numerical implementation is coded by Matlab 9.0 and the ordinary
differential equation solver adopted is ode45. In the following tests, the parameter
γ (t) = α

t with α = 25, β(t) ≡ 1 and |g(t)| ≤ 0.02 is a bounded perturbation.

Example 5.1 Consider the problem〈
1

2
Dx, y − x

〉
≥ 0 ∀y ∈ C,

where C = {x ∈ IRn |Ax− a = 0, Bx− b ⪯ 0} . with A ∈ IRl×n, B ∈ IRm×n and
D ∈ IRn×n being a symmetric matrix. Here a ∈ IRl, b ∈ IRm with l +m ≤ n. Like
what was done [10,11], we denote

D = (Dij)n×n, where Dij =

 2, i = j,
1, |i− j| = 1,
0, otherwise,

A=
[
Il×l, 0l×(n−l)

]
l×n

, B=
[
0m×(n−m), Im×m

]
m×n

, a=0l×1 and b=
(
em1 , . . . , emp

)
,

where emi = (1, . . . , 0)T ∈ IRmi .

The CPU-time (seconds) to reach termination condition with the 1-ODE system
(2.8) and the 2-ODE system (3.1) for Example 5.1 are shown in Table 5.2. Numerical
results of Example 5.1 by the 1-ODE system (2.8) and the 2-ODE system (3.1), 2-
ODE system(4.1) are summarized in Table 5.3. The solution trajectories x(t) of
the 2-ODE system (3.1) from the given initial random points for Example 5.1 are
depicted in Figure 1. The comparison of error rates of ∥x(t)− x∗∥2 for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.1 are presented in Figure 2.

Table 2. The CPU-time to reach termination condition (seconds)
with the 1-ODE system (2.8) and the 2-ODE system (3.1) for Ex-
ample 5.1.

1-ODE 2-ODE
CPU-time(s) 0.012012 0.337710
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Table 3. Numerical results summary of Example 5.1 by the 1-ODE
system (2.8) and the 2-ODE system (3.1), (4.1).

Figure 1. Trajectories of x(t) of the 2-ODE system (3.1) for Ex-
ample 5.1 from four random initial points about x with l = m = 2
and n = 4.

Example 5.2 Consider the SOCCVI problem

⟨F (x∗), y − x∗⟩ ≥ 0 y ∈ C,
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(a) 1-ODE (b) 2-ODE

Figure 2. Comparison of error rates of ∥x(t)− x∗∥2 for the 1-ODE
system (2.8) and 2-ODE system (3.1) for Example 5.1.

where
C =

{
x ∈ IR8

∣∣−g (x) = x ∈ K3 ×K3 ×K2
}
.

and

F (x) =



2x1 + x2 + 1
x1 + 6x2 − x3 − 2
−x2 + 3x3 − 6

5x4 + 3
−6

5x3 + 2x4 +
1
2 sinx4 cosx5 sinx6 + 6

1
2 cosx4 sinx5 sinx6 + 2x5 − 5

2
−1

2 cosx4 cosx5 cosx6 + 2x6 +
1
4 cosx6 sinx7 cosx8 + 1

1
4 sinx6 cosx7 cosx8 + 4x7 − 2
−1

4 sinx6 sinx7 sinx8 + 2x8 +
1
2


Here, we point out that x∗ = (0, 0.3333, 0, 0, 1.2500, 0, 0.5000, 0) is one of the optimal
solutions.

The CPU-time to reach termination condition (seconds) with the 1-ODE system
(2.8) and the 2-ODE system (3.1) for Example 5.2 are shown in Table 5.4. Numerical
results of Example 5.2 by the 1-ODE system (2.8), the 2-ODE system (3.1), and
the 2-ODE system(4.1) are summarized in Table 5.5. The solution trajectories x (t)
of the 2-ODE system (3.1) from the given initial random points for Example 5.2 are
shown in Figure 3. The comparison of error rates of ∥x(t)− x∗∥2 for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.2 are presented in Figure
4.

6. Conclusions

In this paper, we establish the second-order differential equation system (3.1)
involving a positive viscous damping coefficient γ(t) and a time scale coefficient
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Table 4. Table 5.4 The CPU-time to reach termination condition
(seconds) with the 1-ODE system (2.8) and the 2-ODE system (3.1)
for Example 5.2.

1-ODE 2-ODE
CPU-time(s) 0.062887 1.698720

Table 5. Numerical results summary of Example 5.2 by the 1-ODE
system (2.8) and the 2-ODE system (3.1), (4.1).

Figure 3. Trajectories of x(t) of the 2-ODE system (3.1) for Ex-
ample 5.2 from eight random initial points about x.

β(t) inspired by Attouch et. al [5] to solve the SOCCVI (1.1). We study the
asymptotic behavior and convergence rate of the trajectory of the second-order
differential equation system (3.1). In addition, the system (4.1) is also used to solve
the SOCCVI (1.1) by adding an external perturbation term g(t) to the original
system of second-order differential equation (3.1). By comparing the theory and
numerical results of the 1-ODE and 2-ODE methods, we find that the constraints
of the 2-ODE method are looser than that of the 1-ODE method, but the accuracy of
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(a) 1-ODE (b) 2-ODE

Figure 4. Comparison of error rates of ∥x(t)− x∗∥2 for the 1-ODE
system (2.8) and the 2-ODE system (3.1) for Example 5.2.

the numerical results of the 2-ODE method is less than that of the 1-ODE method.
As far as we know, the study towards the 2-ODE approach for solving the SOCCVI
is still very preliminary, it needs to be further investigated and improved.
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