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COMMON ATTRACTORS OF GENERALIZED ITERATED
FUNCTION SYSTEMS IN GENERALIZED METRIC SPACES

TALAT NAZIR*, MELUSI KHUMALO, AND VULEDZANI MAKHOSHI

ABSTRACT. In this paper, we establish a new common fractal with the assis-
tance of a finite family of generalized contractive mappings, which belong to a
special class of mappings defined on a generalized metric space. Consequently,
we acquire different results for G-iterated function systems satisfying a different
set of generalized contractive conditions. We present an example to reinforce the
results proved herein.

1. INTRODUCTION

Over the past decades, the study of metrical fixed point theory has attracted much
attention with a vast range of applications both within and beyond mathematics
[5,10,17,18,24,25]. There are several useful and important applications of this work
in the algorithm design for optimization based problems and inverse problems. Some
useful results related to application of inverse problem in elliptic partial differential
equations and iterative regularization methods for ill-posed inverse problems are
presented in [16,29].

Mustafa and Sims [23] generalized metric space by introducing the notion of a
G-metric space. Many authors obtained some fixed point theorems for mappings
satisfying a variety of contractive conditions in G-metric space [20-22,24]. Abbas
and Rhoades [3] motivated the study of a common fixed point theory in generalized
metric spaces.

In his 1981 seminal work, Hutchinson [11] laid the mathematical foundations for
iterated function systems (IFS). He proved that the Hutchinson operator defined
on R* has as its fixed point, a subset of R* which is closed and bounded, known as
an attractor of iterated function system [6,7]. Recently, Strobin [28] established the
results of contractive iterated function systems enriched with nonexpansive maps.
Miculescu and Mihail [19] studied some results related to the diameter diminish-
ing to zero iterated function system. Several useful results related to the iterated
function systems are established in [1,8,14,15,26,27].

Our primary objective in this paper is the construction of a fractal set of general-
ized iterated function system of generalized contractions in the setup of a G-metric
space. We observe that the Hutchinson operator defined on a finite family of con-
tractive mappings on a complete G-metric space is itself a generalized contractive
mapping on a family of compact subsets of Y. By successive application of a gen-
eralized Hutchinson operator, a final fractal is obtained, and a presentation of a
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nontrivial example shall follow in support of the proven result. We also apply
results to obtain the existence of solutions of functional equations arising in the
dynamic programming.

Throughout this paper, N will denote a set of natural numbers, R a set of real
numbers, R a set of nonnegative real numbers and R* a set of k-tuples of real
numbers. Consistent with Mustafa and Sims [23], we state the following preliminary
results.

Definition 1.1. Let Y be a non-empty set. A function G:Y XY xY — [0, 400)
is called a G-metric if the following conditions are satisfied:

(1) G(uy,v1,w1) =0 if u; = v1 = wy (coincidence),

(2) 0 < G(u1,u1,vy) for all uy,v1 €Y, with u; # vy,

(3) G(ur,ur,v1) < G(ur,v1,wr) for all uy, v, wy € Y, with vy # wy,

(4) G(ui,vi,w1) = G(p{ui,vi,w1}), where p is a permutation of wj,wvy,w;
(symmetry),

(5) G(ui,v1,w1) < G(ug,b,b) + G(b,v1,w;) for all ui,vy,wi,beY.

A G-metric is said to be symmetric if G(u1,v1,v1) = G(v1,u1,uy) for all uy,v; €
Y.
The pair (Y, G) is called a G-metric space if the function G is a G-metric on Y.

Let (Y,G) be a G-metric space and define the function dg : Y x Y — [0, +00),
by

dg(u1,v1) = G(ug,v1,v1) + G(v1,ur,up) for all uz,v1 €Y,

then (dg,Y) is a metric space.

Definition 1.2 ([4]). Let (Y, G) be a G-metric space and {y,} be a sequence in Y.
Then

a) {yn} C Y is a G-convergent sequence if, for any € > 0, there is a point y € Y’
and a natural number N such that for all n,m > N, G(y, Yn, ym) < €;

b) {y,} C Y is a G-Cauchy sequence if, for any £ > 0, there exist an N € N
such that for all n,m,l > N, G(yn, Ym, Y1) < &;

¢) (Y,G) is G-complete if every G-Cauchy sequence in a G-metric space is
convergent in Y. {y,} converges to y € Y if and only if G(Ym, yn,y) — 0 as
m,n — oo and {y,} is Cauchy if and only if G(ym,Yn, ;) — 0 as m,n,l —
0.

Definition 1.3 ([4]). Let (Y,G) and (Y',G’) be two G-metric spaces. Map h :
(Y,G) = (Y',@) is G-continuous at a point b € Y if and only if, given ¢ > 0, there
exists > 0 such that u,v € Y and G(b,u,v) < § implies G'(h(b), h(u), h(v)) < €.
A map h is G-continuous on Y if and only if it is G-continuous at any point b € Y.

Proposition 1.4 ([4]). Let (Y,G) be a G-metric space. Then:

(1) G(u,v,w) is simultaneously continuous in all three of its variables,
(2) G(u,v,v) <2G(v,u,u).
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Consider next the following families of subsets of a G-metric space (Y, G).
N(Y)={W : W is a non-empty subset of Y}.
CB(Y) ={W : W is a non-empty closed and bounded subset of Y'}.
CY(Y) = {W : W is a non-empty compact subset of Y'}.

Definition 1.5 ([12]). Let (Y,G) be a G-metric space. A mapping Hg : CB(Y) x
CB(Y) x CB(Y) — [0,400) defined as

Hg(D, E,F) = max {sup G(u, E, F),sup G(v, F, D), sup G(w, D, E)}
ueD veE weF

for all D,E,F € CB(Y), where G(u, E, F) = inf{G(u,v,w) : v € E,w € F} is
called a Hausdorff G-metric on CB(Y).

If (Y,G) is a G-complete metric space, then the pair (CB(Y), Hg) is also an
Hg-complete metric space.

Lemma 1.6. Let (Y,G) be a G- metric space. Then for all P,Q,R,S, U,V €
CY(Y), the following conditions are true:

(a’) If Q g R7 then SupkE'P G(kv Ra R) S Supk‘E'P G(ka Qa Q)a
(b) sup,epuo G(2, R, R) = max{supycp G(k, R, R),supyco G(£
(¢) He(PUQ,RUS,UUV) <max{Hg(P,R,U),Hs(Q,S,V)

Proof. (a) Since @ C R, for all k € P, we have
Gk, R, R) = inf{G(k, jt, 11) : p € R} < inf{G(k,,0): 0 € Q} = G (k, O, Q),
this implies that

R, R}
.

sup G(k,R,R) <supG(k, Q, Q).
kepP kepP
(b) Note that

sup G(z,R,R) = max{sup{G (z,R,R) : z € P},sup{G (z, R, R) : x € Q}}
xePUQ

= max { supG (k,R,R),supG (¢, R, R) }
keP leQ

(c) We note that

sup G(z,RU S, UUYV)
x€PUQ

< max {sup Gk, RUS,UUYV),supG({,QUS,UU V)} (from (b))
keP leQ

< max {sup G(k,R,U),supG({,S, V)} (from (a))
keP e

< max {max { zugG(k‘,R, U, Su%G(u,P,Z/I)},
€ ne

LeQ nes
= max {Hg (P,R,U),Hg (Q,S,V)}.

max { supG(¢,S,V),supG(n, Q, V)}}
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Similarly,

sup G(v, QUP,UUYV) <max{Hg(P,R,U),Hs(Q,S, V)}.
vERUS

Hence
Hg(PUQ,RUS,UUYV)

:max{ sup G(v,RUS,UUYV), sup G(t,PUQJ/{UV)}
vEPU Q teRUS

<max{Hg(P,R,U),Hs (Q,S5,V)}.
Il
Theorem 1.7 ([23]). In a complete G-metric space (Y,G) consider a self-map
h:Y =Y. Then h is a G-contraction on'Y, i.e. for all ui,vi, w1 €Y,
G (huy, hvy, hwy) < kG (u1,v1, w1)
holds, where r € [0,1).

Mustafa et al. [21] obtained the following useful result of a unique fixed point of
generalized G-contraction on Y in G-metric space (Y, G).

Theorem 1.8 ([21]). In a complete G-metric space (Y,G), let h :' Y — Y be a
generalized G-contraction on Y, that is, for all uy,vi,wy € Y, either
G (hul, h’Ul, hwl) < K,lG (ul, U1, U}l) + IQQG (ul, hul, hul)
+ k3G (v1, hvy, hoy) + £4G (w1, hwy, hw)

or
G (hul, h’Ul, hwl) < lilG (ul,vl,wl) =+ RQG (ul,ul, hul)

+ k3G (’Ul,’Ul, h’Ul) + ks G (wl,wl, hwl) ,

where k; > 0 for j € {1,2,3,4} with 0 < K1+ ko +k3+re < 1. Then h has a unique
fized point, say u* in'Y. Moreover, for any choice vy € Y, the sequence of iterates
{wo, hvg, h2vg, h3vy, ...} converges to u*. Furthermore, h is G-continuous.

Theorem 1.9. In a G-metric space (Y,G) consider a G-contraction map, h:Y —
Y. Then
a) h maps elements in C%(Y) to elements in C%(Y).
b) If for any R € CE(Y),
h(R) ={h(uy) : u1 € R},
then h: CE(Y) — CY(Y) is a G-contraction on (C%(Y), Hg).
Proof. (a) We observe that every generalized contraction mapping is continuous.

Moreover, under every continuous map h : Y — Y, the image of a compact set is
also compact, that is, if

R € CY(Y), then h(R) € CE(Y).

(b) Let Q,R,S € CY(Y) and h : Y — Y be a generalized contraction mapping,
then

G (hui, h (R),h(S)) = inf{G (huy, hvi, hwy) : v1 € R,w; € S}
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< inf{kG (u1,v1,w1) : v1 € R,w; € S}
= rkinf{G (u1,v1,w1) : v1 € R,w; € S}

= kG (u1, R,S).
Also
G (hwi,h (R),h(Q)) = inf{G (hw1, hvi, huy) : v1 € R,u; € Q}
< inf{kG (wy,v1,u1) : v1 € R,w1 € Q}
= kinf{G (w1,v1,u1) : v1 € R,w € Q}
= kG (w1, R, Q).
And
G (hvi, h (Q),h(S)) = inf{G (hv1, hur, hwi) 1 u; € Q,wy € S}
< inf{xkG (vi,u1,w1) : u; € Q,w; € S}
= kinf{G (vi,u1,w1) : u; € Q,w; € S}
= kG (v1, Q,S).
Now
Hg (h(R),h(S),h(Q))
— max { sup G (hui, h (R), h(S)), sup G (hwy,h (R),h(Q)),
u€Q w1 €S
sup G (hv, 1 (Q), h (S)) }
vIER
< max{ sup kG (u1, R,S), sup kG (w1, R, Q) , sup kG (v1, Q,S) }
u1€Q w1€S nER
= /imax{ sup G (u1, R, S), sup G (w1, R, Q), sup G (v1, Q,S) }
u1€Q w1 €S v1ER
=rHg (R,S,9).
Thus & : CE(Y) — C%(Y) is a G-contraction. O

Theorem 1.10. Consider a G-metric space (Y,G). Let {hy : k = 1,2,...,q} be a
finite family of G-contractions on'Y with contraction constants K1, Ka, ..., Kq, Tespec-
tively. Define W : C¢(Y) — CY(Y) by

U(R) =Ul_ he(R),
for every R € CG(Y). Then WV is also a G-contraction mapping on CG(Y) with
contraction constant k = max{k1, K2, ..., Kq}-

Proof. We demonstrate the assertion for ¢ = 2. Let hy,hy : Y — Y be two contrac-
tions. Take R,S,Q € C%(Y). From Lemma 1.6. (c), we have

Ha(¥(R),¥(S),¥(Q)) = Ha(h1(R) Uha(R), hi(S) U he(S), hi(Q) U ha(Q))
< max{Hg(h1(R), h1(S), h1(Q)), Ha(h2(R), ha(S), h2(Q)) }
<max{k1Hg(R,S, Q),keHz(R,S,Q)}
< HHG('R,S, Q),
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where kK = max{k1, ka}. O
Theorem 1.11. In a complete G-metric space (Y, G), let {hy : k =1,2,...,q} be a
finite family of G-contraction mappings on Y. Define a mapping U on C(Y) by
U(R) = Uj_ hi(R),

for each R € CY(Y). Then

(i) U:CE(Y) — CE(Y).

(i) ¥ has a distinct fived point Uy € CY(Y), that is, Uy = W (Uy) = Ul_, hy(Uh).

(iii) for any set Ro € CE(Y), the sequence

{Ro, ¥ (Ro), ¥?* (Ro), ...}
converges to Uj.

Proof. (i) Since each hy is a G-contraction mapping, the conclusion follows, from
the definition of ¥ and Theorem 1.9.

(ii) Using Theorem 1.11 we note that ¥ : C%(Y) — C%(Y) is also a G-contraction
mapping. Thus if (Y, G) is a complete G-metric space, then (C%(Y), Hg) is com-
plete. Consequently, we deduce (ii) and (iii) from Theorem 1.8. O

Now we define G-iterated function system in the setup of G-metric space.

Definition 1.12. Let (Y,G) be a G-metric space. If hy : Y - Y, k= 1,2,...,q
are G-contraction mappings, then {Y;hg, k = 1,2,...,¢q} is a G-iterated function
system (G-IFS).

It follows that the G-iterated function system is composed of a G-metric space
and a finite family of G-contractions on Y.

The next definition is about the attractor of a G-iterated function system.
Definition 1.13. Let (Y, G) be a G-metric space with R € C%(Y), then R is called
an attractor of the G-iterated function system if

(i) ¥(R) =R and
(ii) there exists an open set Vi C Y such that R C V; and limj_,o T*(S) = R

for any compact set S C Vi, where the limit is taken with respect to the
G-Hausdorff metric.

The maximal open set V; such that (ii) is satisfied is known as a basin of attrac-
tion.

2. GENERALIZED ITERATED FUNCTION SYSTEM IN (G-METRIC SPACES

Recently, some results on generalized iterated function system for multi-valued
mapping in a metric space are appeared in [9]. We discuss a generalized iterated
function system in the setup of G-metric spaces. To begin with, we define a gener-
alized contraction self-mapping which some preliminary results will follow.

Definition 2.1. In a G-metric space (Y,G), let f,g,h : Y — Y be three self-
mappings. A triplet (f,g,h) is called a generalized G-contraction mappings if

G (fur, gvr, hw) < AG (ug,v1,wr)
for all uy, vy, w; € Y, where A € [0,1).
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Definition 2.2. Consider a G-metric space (Y,G) and let f,g,h: Y — Y be con-
tinuous mappings. If the triplet of mappings (f, g, h) is a generalized G-contraction
with A € [0,1). Then

(1) the elements in C%(Y") are mapped to elements in C%(Y") under f, g and h;
(2) if for an arbitrary U € C%(Y), the mappings f,h,g : C¢(Y) — CY(Y) are
defined as
fU) = {f(wr):u €U},
gU) = {g(v1) :v1 €U},
hU) = {h(wy):w €U},
then the triplet (f, g, h) is a generalized G-contraction on (C%(Y), Hg).
Proof. To prove (1): Since f is a continuous mapping and the image of a compact
subset under a continuous mapping, f : Y — Y is compact, then
U e CY%(Y) implies that f(U) e CE(Y).
Similarly,
U € CY(Y) implies that g(U) € C(Y) and h(U) € CY(Y).
To prove (2): Let Q,R,N € CY%(Y). Since the triplet (f,g,h) is a generalized
G-contraction mappings on Y, so we have
G (fuy, gui, hwi) < AG (u1,v1,wq) for all ug, vy, w1 €Y,

where A € [0, 1).
Now

G (fu1,9(R),h(N)) = inf{G (fu1, gv1, hwy) : v1 € R,w; € N'}
< inf{\G (u1,v1,wy) : v1 € R,w; € N'}
= AG (u;, R,N).
In the same manner,
G (g1, £ (Q), h (N)) = inf{G (gu1, fur, htw:) : u1 € Q, w1 € N'}
< inf{A\G (vi,u1,w1) : ug € Q, w1 € N'}

= \G (v1, Q,N)
and
G (hwy, f(Q),g(R)) = inf{G (hwy, fu1,gv1) : u1 € Q,v; € R}
< inf{A\G (wy,u1,v1) 1 u; € Q,v1 € R}
=\G (w1, Q,R).
Now

He (f(Q),9(R) . h (M) = max { sup G(fur,g(R),h ().

u1 €L
sup Glgur, f(Q),h(N), sup G(hwi, f(Q).g(R))}
vIEM w1 EN

< max{ sup A\G(u1, R,N), sup AG(vi, Q,N), sup )\G(wl,Q,R)}

ui €L v1EM w1 EN
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:)\max{ sup G(u1, R,N), sup G(v1,Q,N), sup G(wl,Q,R)}
ul €L v1EM w1€N

— AHg (Q,R,N).

Hence, the triplet (f, g, h) is a generalized G-contraction mappings on (C%(Y), Hg).
O

Proposition 2.3. In a G-metric space (Y,G), suppose the mappings fi,gi, hi :
Y =Y fork=1,2,...,q are continuous and satisfy

G (fru1, grv1, hpwr) < MG (ur,v1,wr) for all up,vi,wy €Y,
where N € [0,1) for each k € {1,2,...,q}. Then the mappings Y, ¥, ® : CE(Y) —
CE(Y) defined by
T(Q) = Ul_, fr(Q), for each Q € CY(Y),

U(R) =Ul_,gk(R), for each R € cé(y)
and
O(N) = UI_ hi(N), for each N € CY(Y)
satisfy
Hg (YQ,UR,®N) < M Hg (Q,R,N) forall Q,R,N € CY(Y),
where N\, = max{A; : k = 1,2,...,q}, that is, the triplet (Y, ¥, ®) is a generalized
G-contraction on CE (Y).

Proof. We give a proof for ¢ = 2. Let fx, gk, h,: Y — Y, k € {1, 2} be self-mappings
such that (f1, g1, h1) and (fa, g2, he) are triplets of generalized G-contractions. For
Q,R,N € CY%Y) and from Lemma 1.7 (c),

Ha(Y(Q), ¥ (R),2(N)) = Ho(f1(Q) U f2(Q), 91(R) U g2(R), h1(N) U ha(N))
< max{Ha(f1(Q), 91(R), i(N)), Ha(f2(Q), 92(R), ha(N)) }
<max{\ Hg(Q,R,N),Hc(Q,R,N)}
< MHG(Q,R,N).
O
Definition 2.4. In a G-metric space (Y,G), let T, ¥, ® : C¢(Y) — CY(Y). The
mappings (Y, ¥, @) are called

(I) generalized G-Hutchinson contractive operators (type I) if for any

Q,R,N €C4(Y),
HG(T(Q)a v (R) ) Q(N)) S ZT7\I/’<I>(Q,R,N)
holds, where

Zvwe(QR,N) = alg(Q R,N) + BH(Q,1(Q),T(Q))
+7Ha(R, ¥ (R), ¥ (R)) +nHa(N, 2 (N),®(N)),

with o, 8,v,n>0and a+ 8 +v+n < 1.
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(IT) generalized G-Hutchinson contractive operators (type II) if for any
Q,R,N €CY(Y),
Hg(Y(Q), ¥ (R),2(WN)) < Rrwe(Q,R,N)
holds, where
Ry wo(QR,N)=MHc(Q,R,N) + X[Ha(Q,Q,T(Q))
+ He(R,R, ¥ (R)) + Ho(N, N, @ (N))]
+ A3[Ha(Y(Q),R,N) + Hz(Q,¥ (R),N)
+ Hg(Q,R,® (N))],
with \; > 0 for j € {1,2,3} and A + 3Xs + 4)g < 1.

Note that if the mappings (T, ¥, ®) defined as in Proposition 2.3 are generalized
G-contractions on C% (Y'), then (T, ¥, ®) are generalized G-Hutchinson contractive
operators.

Definition 2.5. In a complete G-metric space (Y, G), if fi, gk, hi : Y = Y, k =
1,2, ..., q are continuous mappings such that each triplet ( fx, gi, hg) for k =1,2,....¢q
is a generalized G-contraction, then {Y (fx,gr, hx),k = 1,2,...,q} is called the
generalized G-iterated function system.

Consequently, the generalized G-iterated function system consists of a G-metric
space and a finite collection of generalized G-contraction mappings on Y.

Definition 2.6. Let (Y,G) be a complete G-metric space and U C Y a non-
empty compact set. Then U is the unique common attractor of the mappings
T, 0, ®:CE(Y) = CE(Y) if
i) Y(U)=v(U)=®oU)="U and
ii) there exists an open set V3 C Y such that U C V; and limg_ 4 Tk Q) =
limy_s 400 TF(R) = limp_y 400 ®¥(N) = U for any compact sets Q, R, N' C
V1, where the limit is taken relative to the G-Hausdorff metric.

Thus, the maximal open set V; such that (ii) is satisfied is called a basin of
common attraction.

3. MAIN RESULTS

We state and prove some theorems on the existence and uniqueness of a common
attractor of generalized G-Hutchinson contractive operators in the setup of G-metric
space.

Theorem 3.1. In a complete G-metric space (Y,G), let {Y;(fi, 9%, hr), k =
1,2,...,q} be the generalized G-iterated function system. Define T, ¥, ® : C%(Y) —
CEY) by

T(Q) = Uzzlfk:(g)a

U(R) = Ui_,9x(R),
and

DN) = Ul hi(N)
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for QRN € CE(Y). If the mappings (Y, ¥, ®) are generalized G-Hutchinson
contractive operators (type I), then Y, U and ® have a unique common attractor
U* € CE(Y), that is,

Ur=Y{U")=v(U")=o(U").
Additionally, for any arbitrarily chosen initial set Ro € C¢(Y), the sequence

{Ro, T (Ro),¥Y (Ry),PYTY (Ry), TPYY (Ry),...}
of compact sets converges to the common attractor U*.
Proof. We show that any attractor of T is an attractor of ¥ and ®. To that end,
we assume that U* € CY(Y) is such that T(U*) = U*. We need to show that
U* = U(U*) = ®(U*). As the mappings (Y, V¥, ®) are generalized G-Hutchinson
contractive operators (type I), we get
He(U*, 9(U"), ®(U")) = Ha(Y(U"), ¥ (U"),2(U"))
< aHq(U*,U*,U*)+ BHa(U*,Y(U*),Y(U"))
+ VHG(U*v v (U*) v (U*)) + nHG(U*v o (U*) , @ (U*>)

=yHa(U" ¥ (U*), ¥ (U")) +nHa(U™, @ (U"),® (UY))

< (v+nHeU™, Y (UY), 2 (UY)),
thus

Ha(U™, ¥(U"),(U")) < AHa(U", ¥ (U"), @ (UY)),

where A = v+ n < 1, which implies that Hg(U*, ¥ (U*),®(U*)) = 0 a so U* =
U (U*) = ®(U*). In an analogous manner, for U* = ®(U*) or for U* = ¥(U*), we
obtain that U* is the common attractor of T, ¥ and ®.

We proceed by showing that T, ¥ and ® have a unique common attractor. Let
Ro € CY(Y) be chosen randomly. Define a sequence {R;} by Rspr1 = T(Rax),
Rakro = V(Rskr1) and Rapas = P(Ragao), £ =0,1,2,.... If Ry = Ry for some
k, with & = 3n, then U* = Rgy is an attractor of T and from the Proof above, U* is

a common attractor for T, ¥ and ®. The same is true for Kk =3n+1or k = 3n+ 2.
We assume that Ry # Ry for all k € N, then

Ha(R3k+1, Rak2, R3kt3) = Ha(Y(R3k), ¥ (Rary1) » ® (Rart2))
< aHg(Rak, Rak+1, Raks2) + BHa(R3k, T(Rar), T (Rsk))
+vHa(Raks1, ¥ (Rary1) » ¥ (Rakr1)) + nHa(Rary2, @ (R3ks2) ,  (R3kr2))
= aHg(Rak, Rak+1, Rak+2) + BHG(Rsk, Rak+1, Rak+1)
+ YHe(Rak+1, Rak+2: Rakt2) + nH (Rakt2, Rak+3, Rak+3)
< aHg(Rak, Rakt1, Rak2) + BHG(Rak, Rak+1, Rakt2)
+ YHG(Rsk+1, Rak+2, Rak+3) + nHG(Rak+1, Rak+2, Rak+3)-
Thus, we have
(1 —~v—n)Ha(Rak+1, Rart2, Ras3) < (@ + B)Ha(Rak, R3k+1, Raks2)-

Hence,
He(Rak41, Rak+2, Rak+s) < AHa(Rak, Rak+1, Rak+2),
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where \ = f;ﬁ, with 0 < A\ < 1. Similarly, one can show that
—7=n
Ha(Rsk+2: Rakts, Rakra) < AHG(Rak+1, Rakr2, Rak+3)
and

Hg(R3k+3, Raktas Rakrs) < AHa(Rakt2, Rak+3, Rak+4)-
Thus, for all &,
He(Ri+1, Riev2, Ri+3) < AHa (Ri Ryt1, Rit2)
< - < AFHG (Ro, Ri, Ra)
Now, for I,m, k, with [ > m > k,
He(Ri, R, Ri) < Ha(Ri, Ryt Rier1) + Ha(Riy1, Rit2, Riy2)
+ -+ He(Ri—1, Ri-1, Ry)
< Ho(Ris Ricv1, Riev2) + Ha(Riq 1, Rev2, Rit3)
+ -+ He(Ri—2, Ri-1, Ry)
<P AT HG (Ro, Ry, Re)
A
= 1—AX
Note that if | = m > k, we get identical results and if [ > m = k, then

k-1
)\HG(R(M Ri1,R2).

Hg(Ro, R1,Ra).

A
HG(Rkvale) S 1

and so limy 1400 Ha(Ri; Rm, Ri) = 0. Thus {Ry} is a G-Cauchy sequence in
CY(Y). Since (C%(Y), Hg) is a complete G-metric space, there exists U; € C%(Y)
such that limg_, o Ry = Uy, that is, limg_, oo Hg (Rg, Rk, U1) = 0.
To prove that Y (Uy) = Uy, we have claim in the contrary
Hea(Y (U1)  Rak+2, Rak+3) Ha (Y (U1) , ¥ (Rakt1) s @ (Rak+2))
< aHg(Y (U1), Rags1, Rary2) + BHa(Ur, Y (Ur), Y (Uy))
+vHe(Rakt1, ¥ (Rak+1) » ¥ (Rak+1)) + nHe(Rakt2, @ (Rakt2) s @ (Rak+2))
< aHg(Ur, Rak+1, Rak+2) + BHG(Y (Ur),Ur, Rak+1)
+ YHG(Rak+1, Rak+2, Rak+2) + nHe(Rakt2, Rak+3, Rak+3),
taking the limit as k — +oo, yields
Hg(Y (Uy),Uy,Uy) < BHG(Y (Ur), Uy, Uy),

which is a contradiction as § < 1. Thus Y (U;) = U;. Follows the conclusion above,
U* is a common attractor of T, ¥ and .

For uniqueness, we suppose that V; is another common attractor of T, ¥ and ®.
Then

He(Ur, Vi, Vi) = Ha(Y(Ur), ¥(V1), (V1))
< aHg(Ul, Vi, V1) + ,Bﬂg(Ul, T (Ul) , T (Ul))
+vHa(V1, ¥ (V1), ¥ (V1)) + nHe(Vi, @ (V1) , @ (V1))
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= OéHG(Ul, ‘/17 Vl) + BHG(UD Ul) Ul)
+ IVHG(VYMVL ‘/1) + UHG(‘/lv ‘/Ylvvl)
= OéHG(Ul, VYla Vl)

from which we conclude that Hg(Uy, V1, V1) = 0 and thus U; = V;. Hence U is the
unique common attractor of T, ¥ and ®. O

Theorem 3.2 (Generalized Collage I). In a complete G-metric space (Y,G), let
Y5 (frs 9k, hi), k = 1,2,...,q} be the generalized G-iterated function system. Define
T, 0, ®:CE(Y) = CEY) by

Y(Q) = Vi1 fe(Q),

U(R) = Up_196(R),
and

(I)(N) == U%:lhr(‘/\/)

for QRN € CE(Y). Suppose that the mappings (Y, ¥, ®) are generalized G-
Hutchinson contractive operators (type 1) and Uy € CE(Y) is the common attractor
for X, Wand ®. If for any R € CE(Y) such that

(a) Ha(R,T(R),T(R)) < ¢, then
e(l1+ 5)

o <
G(RaUlaUl)_ 1_ o

(b) Ha(R,¥(R),¥(R)) < ¢, then
Hg(R,Uy,Up) < (11+7)
(¢) Ha(R,®(R),®(R)) < ¢, then
He(R,Up,Up) < 551_?
Proof. To prove (a): Let Hg(R, Y(R), Y(R)) < ¢ for any R € C%(Y), then
Hg(R,Ur,Uh) < He(R,Y(R), Y(R)) + Ha(Y(R), U1, Ur)
= Hg(R,T(R),T(R)) + Hc(Y(R), ¥(Uh), ®(U1))
<e+aHg(R,U1,U1) + BHG(R, T(R), T(R))
+vHe(Ur, ¥(Ur), ¥(Ur)) + nHe(Ur, @(Ur), @(Ur))
=¢e+aHg(R,U1,U1) + BHG(R, T(R), Y(R)),
which further implies that
e(l+ ﬁ).

Hg(R,Uy,Uy) < -
To prove (b): Assume that Hg(R, ¥ (R),¥(R)) < ¢ for any R € C%(Y). Then,
Hg(R, U1,U1) < HG'('R \Il( ),\I/('R)) —i—Hg( (R),Ul,Ul)
<e+ Ha(T(Uh), ¥(R), @(U1))

< E+QHG(U1,R, 1) ﬁﬂg(Ul,T(Ul),T(Ul))
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+7HG(R, ¥(R), ¥(R)) +nHe(Ur, ®(Ur), (Ur))
=e+aHg(R,U1,Uy) +vyHg(R, Y (R),¥(R)),
which further implies that
e(1+7)
l-«

To prove (c): Assuming that Hg(R,®(R), ®(R)) < ¢ for any R € CY(Y), we
have

HG(Ra Rv Ul) <

Ha(R,Ui,Uh) < Hg(R,®(R), ®(R)) + Ha(®(R), U1, Uh)
<e+ Hg(Y(U1),¥(U1),2(R))
<e+aHg(U,U1,R)+ BHq(U1, Y(U1), Y(U1))
+vHg(Ur, ¥(U1), ¥(U1)) + nHa(R, 2(R), 2(R))
=e+aHg(R,U1,U1) + nHg(R,®(R), ®(R)),
from which we have
Ho(R,ULUY) < 5(1””)

—

g

Theorem 3.3. (Generalized Collage II) Consider a complete G-metric space
(Y,G). Let R € CE(Y) and € > 0 be given. If a generalized G-iterated function
system {Y; (fr, gk, hi), k = 1,2,...,q} with contractive constant X € [0, 1), such that
either

He(R,R,Y(R)) <¢
or
He(R,R,¥(R)) <e
or
Ho(R,R,®(R)) <e,
where T(R) = Ul_; ft(R), ¥(R) = UI_,gk(R) and ®(R) = UI_ hx(R). Then,

IS
H <
G(R7R7U1) =1 —A7

where Uy € CE(Y) is the common attractor for Y, ¥ and ®.
Proof. Assume that Hg(R, R, Y(R)) < ¢ for any R € C%(Y), then
Ha(R,R,U1) < Hg(R,R,Y(R))+ Hg(T(R),T(R),U1)
He(R, R, L(R)) + Ha(Y(R), ¥(R), ®(U1))
e+ AHg(R,R,Uy),

<
<

which further implies that

g
H <
G(R7R7 Ul) =71_

Similarly, if we assume that Hg(R, R, ¥(R)) < ¢ for any R € C%(Y). Then,
He(R,R,U;) < Hg(R,R,¥Y(R))+ Hg(¥(R),¥(R),Us1)
< Hg(R,R,¥(R)) + Ha(Y(R), ¥(R), (U1))
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< e+ )\HG(R7 R, Ul)a

giving us
€
1—\

Lastly by assuming that Hg(R, R, ®(R)) < € for any R € CY(Y), we get

HG(RaR, Ul) S

Hg(R,R,Uy) He(R,R,®(R)) + Ha(®(R),®(R),U1)
HG(R’ Rv (I)(R)) + HG((I)(R)v ‘II(R)’ T(Ul))

e+ AHg(R,R,Uy),

VAN VANRVAN

from which we have
€

H, < .
G(RaRa Ul) =1_

g

Remark 3.4. In Theorem 3.1, take the collection S%(Y), of all singleton subsets
of the given space Y, then S%(Y) C CY(Y'). Furthermore, if we take the mappings
(fxs gk, he) = (f,g,h) for each k, where f = f1, g = g1 and h = hy, then the
operators (T, ¥, ®) become

(T (v1), ¥ (v2),®(v3)) = (f(v1),9 (v2),h(v3)).

The following common fixed point result is obtained.

Corollary 3.5. Let {Y;(fx,9x, hi),k = 1,2,...,q} be a generalized G-iterated
function system in a complete G-metric space (Y, G) and define the mappings f, g, h :
Y — Y as in Remark 3.4. If some o, 8,7v,m > 0 exist with a + 3+ ~v+n <1 such
that for any vi,ve,v3 € Y, the following holds

G (fv1, gua, hvz) < aG(v1,v2,v3) + BG(v1, T(v1), L(v1))
+ G (v2, ¥ (v2) , ¥ (v2)) + nG(v3, ® (v3) , P (v3)).

Then f,g and h have a unique common fized point u € Y. Additionally, for an ar-
bitrary element ug € Y, the sequence {ug, fug, gfug, hgfuo, fhgfuo,...} converges
to the common fized point of f,g and h.

Corollary 3.6. Let {Y; (fx, gk, hi),k = 1,2,...,q} be a generalized G-iterated
function system in a complete G-metric space (Y, G) and define the mappings f, g, h :
Y =Y as in Remark 3.4. If a triplet (f,g,h) is a generalized G-contraction map-
pings, then the triple (T, ¥, ®) defined on CE(Y) as in Theorem 3.1 has exactly
one common fized point in C% (Y). Moreover, for any initial set Ry € C% (Y),
{R0,T(Ro),¥Y (Rp),P¥Y (Rg), YTPUTY (Ry),...} converges to the common fized
point of T,V and .
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Example 3.7. Let Y = [0, 1] and a G-metric on Y be given by G (y1,y2,y3) =
max{|y1 — y2|,y2 — ysl,ys — y1[}. Define fr,gx, by : Y =Y, k=1,2 by

Yy . 1 y1 . 1

E if 0§y1<§ ﬁ if 0§y1<§
Jfilyr) = ) fa(yr) = )

1 . 1 1 . 1

16 if §§Z/1§17 19 if §§?/1§17

yr . 1 Yy . 1

TO if 0<y1<§ g if 0§y1<§
g1(y1) = ) g2(y1) = y

1 . 1 .

2 if §<y<1, T if <y <1,

% if 0<y <1 % it 0<y <i
hi(y1) = ha(y1) =

Zoit f<ps, o f<pc<t

\

We observe that the maps f1, f2, g1, g2, h1 and ho are not G-continuous. Moreover,
1y _ 1y _ 1 1y _ 1y _ 1
fon(3)=hH(%) = 9h(E)=9(x)=m

f2(3) = R (§) =1 92h(:)=9(3)=x

Q
ey
>
=
—
N[ —
S—
—~
—
»&"“

feha (3) = f2(5) =510 hefe(3) = 2 (51) = 7

and so the mappings fi, gr and hi for k = 1,2 do not commute.
Now, for y1,y2,ys € [0, %], we have

G (y1,92,y3) = max{[y1 — ya|, [y2 — ysl, [ys — v},
G (y1, fyr, fron) = max{|yn — 4|, | % — %] [ — 0]} = 52,
G (y1, fay1, foyr) = max{ |y — L], |4 — B, |8 —y|} = 138,
G (y2, g1y2, q1y2) = max{|yz — B, |2 — L] |2 — |} = 91%2’
G (Y2, 9292, 92y2) = 1113@‘1*{’2/2—‘1/*2 ?—%2 6 —y2|}: 5%7
G (y3, hays, hays) = max{|ys — %8|, |% - L|,|% — s} = %,
G (ys, hays, hays) = max{|y; — |, [ — 2|, |1 —ys[} = .
Thus
G (fiy1, g1y, hays) = max{| % — 2] |2 —%| |% — 4]}
:fomax{)f—yz) }yQ—% e & }
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< & fmax{|y1 — vol ., ly2 — y3l» lys — 1|} + y1 + y2 + y3]

= Lmax{|y1 — vol, ly2 — ys|, lys — |} + & (1‘i’i’l> +3 (91%2) +& (673)
= a1G (y1,y2,y3) + B1G (Y1, fy1, fy1)
+7G (y2, 9y2, gy2) +mG (y3, hys, hys)

and
G (f2y1, 92y2, hoys) = max{|4 — 2| |2 — L] |& _ 0]}
:émax{sl—yz) —6%76%—3%}

< Fmax{|y1 — ol ly2 — ysl, lys — 1|} +y1 + y2 + y3)
= g max{|y1 — yo|, |y2 — y3|, lys — w1} + 5 (1:1331> +3 (%) + 3 (%)
= @G (y1,v2,¥3) + B2G (y1, fy1, fy1)
+ %G (y2, 9y2, 9y2) + 112G (y3, hys, hys) -
Therefore
G (fry1, 9xy2, hiys) = oG (y1,y2,y3) + BG (y1, fryr, fry1) + G (Y2, 9rye, gxy2)
+nG (y3, hiys, hiys)
for k=1,2, where 0 < a+ 8+ ~v+n=0.755 < 1 and

a = max{ar, az} = max{{g, §} = g,
B = max{f1, b2} = max{gs, 55} = 50
v = max{y1, 72} = max{§,+} = 3,

n = max{ni,ne} = max{@, ﬂ} - ﬂ'

For Y1,Y2,Y3 € [%’ 1]7

G (y1,y2,y3) = max{[y1 — vl [y2 — ysl, [y3 — w1l},
G (y1, fiyn, i) = max{[yr — §] %—yl oy |} = B,
G (y1, fayr, foyn) = max{|ys — B[ [T — 5| |5 — [} = 45,
G (y2, 192, 1y2) = max{|ya — 2|, [L2 — 2|, |2 — g} = T2,
G (y2, 9292, goy2) = max{|ya — |, [L2 — 2|, |L — g} = 32,
G (ys, hays, hays) = max{|ys — 2|, | %L — 2|, | — ys|} = %,
G (y3, hays, hays) = max{|ys — L |, [L — L] |L — ys|} = 2.
Thus
G (f1y1, g1y, hiys) = max{| % — 2| |2 — %] |%£ — 4]}
el = 22|22~
< g max{lyr — vl , ly2 — usl, lys — n1l} + v1 + v2 + us]

3
= tmax{|y1 — ol ly2 — ysl,lys — |} + = (1i’gl> +1 (

‘\I
[0l
|N)
—
_|_
&l
/
=)
~|
0
—



and

G (f2y1, 9292, hays) =
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= a1G (y1,y2,y3) + B1G (y1, iy, fiyr)
+ 711G (Y2, 9192, 91y2) + mG (y3, h1ys, h1ys)

ma{|t ]| %

ﬂ_i‘}

= 15 max{|y1 — 32|, [3y2 — 4ys|, |4ys — y1|}

N

1

12

[max{|y1 — y2|, [y2
— 42|, [ye

% max{|y;
@2G (y1,y2,y3) + B2G (y1, foy1, fayr)
+72G (Y2, 9292, 92y2) + 112G (y3, hays, hays) .

Therefore

—ys3l,lys —yil} +y1 + 2 + ys3]
—ysl,lys =l + & (Bw) + 5 Cuz) + 3 (3u3)

2733

G (fryr, grye, hiys) = oG (y1,y2,y3) + BG (y1, fryr, fryr) + G (Y2, gxy2, 9ry2)

+ nG (y37 hk@/37 h’k‘yS)

for k=1,2where 0 < a+p+v+n=0.547 < 1 and

Thus

For y1 € [0,3),v2,y3 € [5, 1],
G (y1,92,y3) = max{|y1 — v2|, [y2 — ysl, lys — w1},
G (y1, fuyrs fron) = max{|yn — 4|, | % — %l |5 -]} = 52,
G (y1, fay1, foyr) = max{|yr — &1, |4 — lﬁ Yoy |} =B
G (y2. 9192, 1y2) = max{|yo — 2|, |2 — 2], |2 — yo|} = T2,
G (y2, 9292, g2y2) = max{|yz — yz |2 — 22| |82 _ |} = 32
G (y3, h1ys, hiys) = max{|ys — L], |2 — L|,|L — y3]} = %,
G (y3, hays, hays) = max{|ys — 2| ,|% — 2|, |£ - y3|}—2%.
G (fiy1, g1y2, hiys) = max{| %4 — 2| |2 — 8| |L - 9]}
O P P A
< g max{lys — ol ly2 — sl lys — 1]} +y1 + 42 + ys]
1 7

o = max{oy, a} = max{}, 5} = 1,
B = maX{BlaﬁQ} = max{%a ﬁ} = %7
~v = max{y1, 2} = max{7, 9} = %

n= ma’X{nla"??} max{4g> 8} - 41

s max{|yr — vol, [y2 — usl,|y3

—nl}+ g () + 3 ) +

= a1G (y1,y2,y3) + B1G (Y1, [ry1, fiyr)
+71G (Y2, 9192, 9192) + MG (y3, h1yz, h1ysz)
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and
G (fay1, 92y2, hoys) = max{|¥% — 2| |%£ — 2| |£ - 4]}
— dymax{|y — 2|, | % - |, | — i}
< L max{lyr — vol, ly2 — ysl, lys — 1|} + y1 + y2 + y3]
= gpmax{lyr —yol, [ —wsl, s~} + B+ B+ 5
= frmax{[y1 — ol , ly2 — usl, lys — |} + 15 (1:1321/1> + & (3%) + 55 <2T3>
= a2G (y1,Y2,y3) + B2G (y1, fay1, fay1)
+ 72G (y2, 92y2, g212) + 12G (y3, hays, hays) -
Therefore

G (fry1, gry2, hiys) = oG (y1,y2,y3) + BG (Y1, fry, fryr) + G (Y2, gry2, gry2)
+nG (y3, hiys, hiys)

for k = 1,2, where 0 < a + f + 7 +7 = 0.546 < 1 with
a = max{ay,as} = max{%, 1—14} = %’
B =max{p1, B2} = max{%, 5} = &,
v = max{y1, 72} = max{%7 %} = %7
n = max{ny,n2} = max{5, =} = k.
For y1,y2 € [0,3) and y3 € [3, 1],
G (y1,y2,y3) = max{|y1 — o, |y2 — u3|. lyz — 1|}

G (y1, fiyr, fiyn) = max{|yy — L], |4 — L] |4 —y|} = 12,
G (y1, fay1, foyr) = max{ |y — &, |4 — L], |8 —y|} = B8,
G (y2, 9192, g1y2) = max{|y2 — |, |2 — 2], 21%—1/2{}:91%2’
G (y2, 9292, goy2) = max{|ya — 2|, [L — 2|, |2 — g} = 22,
G (y3, h1ys, hiys) = max{|ys — 2|, |2 — L], |L — y3|} = % %
G (y3, hays, hays) = max{lys — £|,|L — L] ,|L — y3|} = % 2y3
Thus
G (fiyr, g1y, hays) = max{| 4% — 2], |92 — 2| |£ — 4]}
:110maX{‘5ﬂ_y2 %710%—5%}

< 15 [max{|y1 — yal, |2 — ys|, lys — v1l} + y1 + y2 + ys]
= L max{|yr — yol . [y2 — w3l lys — 1} + o (Fo1) + & (91%2> + & (673>
= a1G (y1,y2,y3) + B1G (y1, iy, fiyn)

+ 711G (Y2, 9192, 91y2) + mG (y3, h1ys, h1y3)
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and
G (foy1, g2y2, hoys) = max{|% — 2| |2 — 2| |& — 4]}
= fymax{|yy - 2|, |2 - M, | -y
< L max{|y1 — val, lv2 — ys|,lys — 1|} + y1 + y2 + ys]
— dymax{lyn — el Iy — vl lus — valb + &5 () + & (%) + 4 (%)
= oG (y1,Y2,¥3) + B2G (y1, fay1, fau1)
+ 72G (Y2, g2y2, g2y2) + 112G (Y3, hays, hays) .
Therefore

G (fry1s gry2, heys) = oG (y1, Y2, y3) + BG (y1, feyr, fevr) + G (Y2, gry2, 9ry2)
+nG (y3, hiys, hrys)
for k=1,2, where 0 < a+ S+ v+ n=0.426 < 1 with

a =max{aj, a2} = max{ i 14} =
B = max{51,52} = max{ 359 13} =
v = max{y1,72} = max{g, ﬁ} = %
17 = max{n,n} = max{GO, 28} = 23
We observe that 0 is the unique common fixed point of f, g and h.
Let {Y’; (f1, f2, 91, 92, h1, h2)} be the generalized G-iterated function system with
the mappings Y, ¥, ® : C¢(Y) — C%(Y) defined by
T(Q) = f1(Q) U f2(9Q),
U(R) = g1(R) U g2(R),
PN) = hi(N) U ha(N)

for all Q, R, N € C%(Y). From Proposition 2.3, we have that
Hg(Y(Q), ¥(R),2(N)) < kHa(Q, R, N),

where £ = max{0.755,0.547,0.546,0.426} = 0.755. Thus, all the conditions of The-
orem 3.1 are satisfied, and moreover, for any initial set Ry € C%(Y), the sequence
{Ro, T (Ro),¥Y (Rp),P¥TY (Ry), TOPYY (Ry),...} of compact sets is convergent
and has a limit, the common attractor of ¥, ¥ and .

1
10°

2

85

Theorem 3.8. In a complete G-metric space (Y,G), let {Y;(fx, 9k, hi), &k =
1,2,...,q} be the generalized G-iterated function system. Define T, ¥, ® : C%(Y) —

CE(Y) by
T(Q) = Uzzlfk‘(g)a
U(R) = Ui_1gr(R)

and

BN) = UL (A
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for QRN € CE(Y). If the mappings (Y, ¥, ®) are generalized G-Hutchinson
contractive operators (type II), then T, ¥ and ® have a unique common attractor
U* € CE(Y), that is,
Ur=Y{U")=v(U")=o(U").
Moreover, for an arbitrarily chosen initial set Ry € CG(Y), the sequence
{Ro, T (Ro),TY (Ry),PYTY (Ry), YTPUYY (Ry),...}

of compact sets converges to the common attractor U*.

Proof. We show that any attractor of T is an attractor of ¥ and ®. To that end,
we assume that U* € C%(Y) is such that T(U*) = U*. We need to show that
U* = W(U*) = &(U*). As
Ho(U™, ¥ (U),@(U")) = He(Y(U™), ¥ (U"),2(U"))
< MHqU*, U, U") 4+ Xo[Ha(U*, U*, Y (U™)
+ Heo(U*, U, W (U) + Ha(U*,U*, ® (U*))]
Y OS[He(Y(UY), U, U*) + He(U*, ¥ (U*) ,U*) + Ha(U*, U*, ® (U*))]
= (A2 + A3) [Ha(U™, ¥ (U"),U") + He(U™, U", @ (U"))]
< (A2 +X3) [Ha(U, ¥ (UY), @ (U7)) + He(U", ¥ (U”), 2 (UY))]
=2(A2+ A3) He(U", ¥ (U), @ (UY)),
thatis, (1 — 2 (A2+A3)) Ho(U*, U (U*),®(U*))<0andso Hg(U*, ¥ (U*),®(U*))=
0as 2(A2+ A3) < 1. Thus U* = Y (U*) = ¥ (U*) = @ (U*). Similarly, if we take
U* = ®(U*) or U* = ¥(U*), then we conclude that U* = Y (U*) = ¥ (U*) =
o (U*).

We show that T, ¥, and ® have a unique common attractor. Let Rg € CG(Y) be
an arbitrary point. Define {Ry} by Rar+1 = Y(Rax), Rakr2 = V(Rak+1), Rarts =
U(Rski2), k =0,1,2,.... If R = Ry for some k, with k = 3n, then U* = R
is an attractor of T and from the proof above, U* is a common attractor for YT, ¥
and ®. The same is true for £k = 3n + 1 or k = 3n + 2. We assume that Ry # Rit1
for all k € NU{0}, then

Hg(Rskt1, Rak+2, Rak+3) = Ha(T(Rak), ¥ (Rak+1) , ® (R3r42))
< MHG(Rsk, Rak+1, Rak+2) + A2 [Ha(Rsk, Rsk, T(Rak)
+ Hg(Rakt1, Rak+1, ¥V (Rag+1)) + Ha(Raky2, Rapt2, © (Rapy2))]
+ X3[Ha (YT (Rar), Rar+1, Rarv2) + Ho(Rak, ¥ (R3x11) , Rakt2)
+ Hg(Rsk, Rakt1, ® (Rari2))]
= MHG(Rak, Rkt 1, Rakg2) + A2 [Ha(Rak, Rak, Rakt1)
+ He(Rak+1, Rak+1, Rakt2) + Ha(Rakt2, Rak+2, Rak+3)]
+ X3[Ha(Rakt1, Rak+1, Rary2) + Ha(Rak, Rary2, Rar+2)
+ Hg(Rsk, Rak+1, Rak+3)]
< MHg(Rsk, Rakt1, Rart2) + A2[Ha(Rak, Rak+1, Rak+2)
+ Ha(Rak, Rakt1, Rakt2) + Ho(Raki1, Rak+2, Raky3)]
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+ As[Hg (R, Rak+1, Rak+2) + Ha(Rsk, Rakt1, Rak+2)
+{Hc(Rak, R3k+1, Rak+2) + Ha(Rag+1, Rak+2, Rak+3) -
Thus, we have
(1= X2 = A3)HG(Rak+1, Rakt2, Rak+3) < (A1 + 222 + 3A3) Ha(Rsk, Rak+1, Rak+2)-

Hence,
HG(Rak41, Rak+2, Rak+s) < AHa(Rak, R3kp+1, R3k+2),

where \ = %, with 0 < A < 1. In a similar manner, it can be proved that
Ha(Rakt2, Rakt3, Rakva) < AHa(Rapt1, Rakt2, Rakt3)
and

Hg(Rsk+3; Rakta, Rak+s) < AHe(Rakt2, R3k+3, Rakta)-
Thus, for all &,
He(Rit1, Riev2, Rirs) < AHa (Ri, Rigg1, Rit2) -
Follow the similar steps as in the Proof of Theorem 3.1, we obtain that {Ry} is
a G-Cauchy sequence in C%(Y). Since (C%(Y), Hg) is a complete G-metric space,
there exists U; € C%(Y) such that limy_, o Hg (R, Ri, U1) = 0.
To show that Y (Uy) = Uy, we have claim in the contrary
He(Y (U1) , Rak+2, Rakts) = Ho(Y (U1) , ¥ (Rakt1) s @ (Rak+2))
< MHG(Ur, Ragt1, Rakt2) + A2[Ha(Ur, Ur, T(Ur)
+ Ho(Rak+1, Rak+1, ¥ (Rakr1)) + Ho(Raky2, Rakr2, P (Rars2))]
+ As[Ha(Y(Ur), Rak+1, Rak+2) + Ha(Ur, ¥ (Rak11) s Rak+2)
+ He(Ur, Rak+1, @ (Rak+2))]
= MHg(Ur, Ragy1, Raky2) + Ae[Hg(Ur, Up, T (Un)
+ Ha(Rak+1, Rak+1, Raky2) + Ho(Ragy2, Rakr2, Rak+3)]
+ As[Ha (T (Ur), Rak+1, Rak+2) + Ha(Ur, Rag+2, Rakt2)
+ Ho(Ur, R3k+1, R3k+3))
and as k — +o00, we gives
He(Y (Uy),U1,Ur) < (A2 + A3) Hg(Y(U1), U, Uy)

which is a contradiction as (A2 + A\3) < 1. Thus T (U;) = U;. Likewise, we can show
that W (Uy) = Uy and ® (Uy) = Uy. To prove uniqueness, suppose that V; is also a
common attractor of T, ¥ and ®. Then

Ha(Up, Vi, Vi) = Ha(Y (Uh) , ¥ (V1) ,, @ (V1))
< )xlﬂg(Ul, V1,V1) + )\Q[HG(Ul, Ul,T(U1) + Hg(vl, W, v (Vl))
+ He(Vi, Vi, @ (V1))] + As[He (Y (Ur), Vi, Vi)
+ Hg(Up, ¥ (V1) , V1) + He(Uy, Vi, ® (V7))]
= MHg(U1,V1,Vi) + Xo[Hg(Ur, U1, Uy) + He(Vi, V1, V1)
+ Ha(V1, Vi, V1) + X3[Hg (U, Vi, Vi) + Hg(Uy, Vi, Vi)
—|—Hg(U1,V1,V1)]



2738 T. NAZIR, M. KHUMALO, AND V. MAKHOSHI

= (M1 +3X3) Hg(Uy, Vi, V1)
from which we conclude that Hg (U1, Vi, V1) = 0 and thus U; = V. Hence U is a
unique common attractor of T, ¥ and ®. O

Corollary 3.9. In a complete G-metric space (Y, G), let {Y'; fx, gk, hi, k=1,2,... . q}
be a generalized iterated function system and define the mappings f,g,h : Y — Y
as in Remark 3.4. If there exist A\; > 0 for j € {1,2,3} with A\; + 3 2 +4X3 < 1
such that for any wy,ws, w3 € C% (Y), the following holds:
G (fwr, gwa, hws) < Ry g p(wy, w2, ws),
where
Ry g n(wi, w2, w3) = MG(wr, w2, w3) + Ao[G(w, w1, f(w1)

+ G(w2, w2, g (w2)) + G(ws3, w3, h (w3))]

+ X3[G(f(w1), wa, w3) + G(wi, g (w2) , ws3)

+ G(wq, wa, h (ws))].
Then f,g and h have a unique common fixzed point. In addition, for a randomly cho-

sen vy € Y, the sequence {vo, fvo, gfvo, hgfve, fhgfuve,...} converges to a common
fized point of f,q and h.

Now we examine the application of the derived result in Theorem 3.10. We apply
results to obtain the existence of solutions of functional equations arising in the
dynamic programming.

Let B; and By be two Banach spaces with U C By and V' C By. Suppose that

K:UXxV —U, ¢:UxV-—7R, 01,00: UxV XR—R.

If we consider U and V as the state and decision spaces respectively, then the
problem of dynamic programming reduces to the problem of solving the functional
equations:

(3.1) pi(z) = Slelg{é(:c,y) +o1(z,y,p1(k(z,y)))} for x €U
(32) pg((l?) = Sgg{((x7y) + 02($,y,p2</€($,y)))} for z € U.

We study the existence and uniqueness of the bounded solution of the functional
equations (3.1) and (3.2) arising in dynamic programming in the setup of G-metric
spaces. Let B(U) denotes the set of all bounded real valued functions on U. For
an arbitrary n € B(U), define ||n|| = sup,cyy [n(t)]. Then (B(U), ||-||) is a Banach
space. Now consider

Gy(n,&w) = félg\n(t) &)+ sup E() —w ()| + Sup jw () —n @],

where 1,&,w € B(U). Then G, is a complete G-metric on B(U).
Also, we assume that:

(T1): ¢, o1 and o9 are bounded and continuous.
(T): Forx € U, n € B(U), take ¥,® : B(U) = B(U) as

(3.3) Un(z) = zgg{C(fE, y) + o1z, y,n(k(z,y)))}, forz €,
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(3.4) Pn(z) = Eg‘g{é(ﬂc, y) + o2z, y,n(k(z,y)))}, for x € U.

Moreover, for every (z,y) € U x V, n,§ € B(U) and t € U implies

(3.5) lo1(@,y,m (1) — o2z, y,£ (¢)| < Rua(n (t),£(t),€(¢)),

where

Ry a(n(t),£(t),6(t) = MGr(n(t).£(1),£(1))
+ X2[GB(n (t) ,n (1), ¥(n () +2Gp(£(t),£(), 2 (£(1)))]
+ A3[Gp(¥(n (1),€(t),€(1) +2GB((n (1), £ (1), (£ (1))

Theorem 3.10. Assume that the conditions (T1) and (Tz) hold. Then, the func-
tional equations (3.1) and (3.2) have a unique common and bounded solution in
B(U).

Proof. By (T1), ¥ and ® are self-mappings of B(U). And by (3.3) and (3.4) in
(T2), it follows that for any n,& € B (U), we can find x € U and y;,y2 € V such
that

(3.6) 2¥n < ((z,p1) + or(z, y1,n(k(z,51))),
(3.7) 208 < ((x,42) + 022, y2, §(K(7,42))),
which further implies that

(3.8) 2Un = ((z,y2) + o1z, y2, n(k(2, 42))),
(3.9) 20¢ > ((z,y1) + oa(z, y1,§(K(2, y1)))-

From (3.6) and (3.9) together with (3.5) implies

2Wn (t) —29¢ (t) < 01(x7y1777<’%(x7y1))) - 0-2(1.73/1’5(’%(1.73/1)))
(3.10) <lo1(z,y1,n(k(z,y1))) — o2(2, y1, (K (7, y1)))|
< Rya(n(t),£(t), & (1))
From (3.7) and (3.8) together with (3.5) implies
29¢ (t) —2¥p (t) < Ug(m,yg,f(lﬁ(l’,yg))) - O'l(xvy%n(’i(xvy?)))

(3.11) < lou(z, y2,n(k(x,y2))) — oa(@, y2, £ (K(2,42)))]
< Rye(n(t),£(t),& (1))

From (3.10) and (3.11), we get

(3.12) 2|0 (t) — D€ (1) < Rua(n(t),€(t),€ (1))
The inequality (3.12) implies that

(3.13) Gp(¥n (), (1), P (1) < Rua(n(t),.£(t). £ (1),
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where

Ry a(n(t),£(t),£(1))
=MGB((1(t),§(1),£ (1))
+ X2[G(n(t),n (1), ¥(n(t) +2GB(E 1), § (1), 2 (£ (1))

+ M3(GB(¥(n (1), & (1), £ (1) +2GB(n (1), £ (), @ (£ (1)))]-
Therefore, all the hypothesis of a Corollary 3.9 are fulfilled. Thus, there exists a

unique n* € B(U), such that n* (¢) is a common solution of functional equations
(3.1) and (3.2). O

4. WELL-POSEDNESS

Now, we consider the well-posedness of attractor-based problems of generalized
Hutchinson contractive operators (type I) and generalized Hutchinson contractive
operators (type II) given in Definition 2.4 in the framework of Hausdorff G-metric
spaces. Some useful results of well-posedness of fixed point problems appear in
[2,13].

Definition 4.1. A common attractor-based problem of mappings Y, ¥, ® : C%(Y) —
CY(Y) is said to be well-posed if the triplet (Y, ¥, ®) has a unique common
attractor A, € CY(Y) and for any sequence {A;} in C%(Y) such that
limkg)Jroo H(;(T(Ak),T(Ak),Ak) = 0, limk*)+ooHG(q](Ak),qj(Ak)7Ak) = 0 and
limg 400 H(;((I)(Ak),(p(Ak),Ak) = 0 implies that limg_ 4o Hg(Ak,Ak,A*) = 0,
that is, limg_, 1 o Ax = As.

Theorem 4.2. Let (Y,G) be a complete G-metric space and Y, ¥, ® : CE(Y)
— CG(Y) be defined as in Theorem 3.1. Then the mappings T, ¥, ® have a well-
posed common attractor-based problem.

Proof. From Theorem 3.1, we deduce that the mappings T, ¥ and ¢ have a unique
common attractor By, say.

Let a sequence {B;} in C%(Y) be such that limy_, ;o Hg(Y(Bg), Y(By), Br) = 0,
limys oo He (W (Bg), ¥(By), Bi) = 0 and limy—, o0 He (®(By), ®(Bk), Br) = 0.

We show that B, = limg_, o Bk. As the mappings (T, ¥, ®) are generalized
G-Hutchinson contractive operators (type I), so that

He (B, B, B+) < He(Bk, B, ¥(By)) + He (¥ (B), ¥(By), Bx)
< 2Hq(Bg, ¥(B), V(By)) + Ha(Y(B), ¥(B), 2(Bs))
< 2Hq(By, Y(B), ¥(B,)) + aHa(Bx, By, By)
+ BHG(By, Y(By), Y(By)) + vHe (B, ¥ (B) , ¥ (By))
+nHg(Bg, ® (By) , ® (Bg)).
Thus
H(B By, B) < 1 [2H(Bi W(By), W(BL) + vHo(Bi, ¥ (By) ¥ (By)

+ nHe(By, @ (Bk) , © (By))]-
Taking limit on both sides implies that limy_, 4 Bx = B.. Il
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Theorem 4.3. Let (Y,G) be a complete G-metric space and Y, ¥, ® : CE(Y)
— CG(Y) be defined as in Theorem 3.8. Then the mappings T, V¥, ® have a well-
posed common attractor-based problem.

Proof. From Theorem 3.8, it follows that the mappings T,V and ® have a unique
common attractor By, say.
Let a sequence {B;} in C%(Y) be such that limy_, ;o Hg(Y(By), Y(By), By,
limys 0o HG(V(B), ¥(Bg), Br) = 0 and limy, oo Ha(®(Bg), ®(Bg), Br) = 0.
We want to show that B, = limg_, 4o Bg. As the mappings (T, ¥, ®) are gener-
alized G-Hutchinson contractive operators (type II), so that

He(By, By, B.) < Hg(By, B, V(By)) + Ho(Y(By), V(By), By)
< 2Hg(Bk, Y(Br), U(By)) + Ha(Y(B.), ¥(By), ®(B.))
< 2Hq(By, ¥ (B), Y(By)) + M He(Bx, Bi, Br) + Ao [He (Bx, By, Y(By)
+ He(Bk, B, ¥ (Bk)) + Ha(By, Bi, ® (Br))]
+ A3[Ha(Y(By), B, Br) + Ha(By, ¥ (B) , Br) + Ha(Bx, B, © (Br))]
< 2Hg(By, U(By), ¥(Bk)) + M Ha(Bs, By, Br) 4+ 2 2[Ha(By, ¥ (Bi) , ¥ (By))
+ Hg(By, ® (By) , ® (By))] + A3[3H (B, By, By)
+2Hg (B, ¥ (By) , ¥ (Bi)) + 2Ha (B, @ (By,) , @ (By))]-

) =0,

Thus
He(By, Bi, By) < mp (L4 A2+ A3) Ha(B, ¥(By), ¥ (By))
+2 (A2 + A3) Ha (B, @ (Br.) , ® (By))]-
Taking limit on both side implies that limg_, 1 o B = Bix. O

CONCLUSION

This article dealt with the existence of common attractors of generalized Hutchin-
son operator defined on a finite family of generalized contractive mappings on a
complete G-metric spaces. We also acquire different results for G-iterated function
systems satisfying a different set of generalized contractive conditions. Moreover,
we consider the well-posedness of attractor-based problems of generalized Hutchin-
son contractive operators. One can consider the results in this paper for further
study in the setup of more general spaces like quasi metric spaces and controlled
metric spaces. In quasi metric spaces, the problem of Smyth completeness via the
existence of common attractors of finite family of generalized contractive mappings
would be worth doing.
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