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ABSTRACT. We prove a Halpern-type strong convergence theorem for finding
common attractive and fixed points of commutative nonlinear mappings using
a mean-valued iterative method. Summable errors are also incorporated. The
mappings we assume are in the class called normally 2-generalized hybrid map-
pings, which includes nonexpansive mappings, generalized hybrid mappings, and
2-generalized hybrid mappings as special cases. One highlight of this article is
that our approach yields various types of iterative methods that are effective
to approximate common attractive and fixed points of commutative mappings.
Three-step and more general multi-step iterative methods are derived as special
cases of our result.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and the induced norm
|I|l. For a mapping T : C' — H, the sets of fixed points and attractive points of T’
are denoted by

(1.1) F(T)={x€C:Tx =2z} and
(1.2) A(T)={x € H:|Ty—z| < ||y — x| forall y € C},
respectively, where C' be a nonempty subset of H. For fixed point theorems and
their applications, excellent monographs by Goebel and Kirk [9] and Goebel [8]
are available. The concept of attractive points was introduced by Takahashi and
Takeuchi [43]. For various results concerning attractive points, see, e.g., the studies
of [3,29-31].

A mapping T : C'— H is said to be nonexpansive if it satisfies the condition
(1.3) [Tz —Ty|| < ||z —y|| forall z,y € C.

Approximation methods for finding fixed points of nonexpansive mappings have
been investigated by many researchers because they have broad range of applica-
tions. The following iteration is called the Mann-type [35]:

(1.4) x1 € C is given,
Tnt1 = MZpn + (1= Ap) Ty
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for all n € N, where \,, € [0, 1] satisfies some conditions. Reich [39] demonstrated
that sequences generated by Mann iteration (1.4) converge weakly to a fixed point
of T in a framework of Banach spaces.

In 1974, Ishikawa proposed the following 2-step approximation method for finding
a fixed point of a nonlinear mapping 7"

(1.5) x1 € C' is given,
Yn = HUpTn + (1 - :U’n) Ty,
Tnt1 = AZn + (L= X)) Ty,

for all n € N, where A, p,, € [0, 1] satisfy certain conditions. Various results have
been established using Ishikawa iteration, see, e.g., the studies of [6, 21, 46, 48|.
Setting p,, = 1 in (1.5) yields the Mann iteration (1.4). Therefore, the Ishikawa
iterative method is an extension of the Mann-type. The Ishikawa method has been
further extended to three-step versions; see Noor [37], Phuengrattana and Suantai
[38], and Chugh et al. [7]. Wittmann [47] proved a strong convergence theorem for
finding a fixed point of a nonexpansive mapping 7" using Halpern-type iteration [10]:

x1 € C is given,
Tnt1 = Mz + (1= Ap) Ty

for all n € N, where \,,u, € [0,1] satisfy certain conditions. For this type of
iterative methods, see the articles [3,14,15,30-32, 34,41, 45].

Subsequent studies have extended the class of mappings for which various types
of iterative schemes are available to approximate fixed points. In 2010, Kocourek et
al. [18] defined a new type of mappings. A mapping 7" : C' — H is called generalized
hybrid [18] if there are «, 8 € R such that

(1.6)  a|Te—Ty|*+ (1 - a) o - Ty|* < BT - y|* + (1 - 6) [|lz - y|”

for all z,y € C. Setting « = 1 and 5 = 0 in (1.6), we have the condition (1.3) of
nonexpansive mappings. Hence, a class of generalized hybrid mappings contains non-
expansive mappings as special cases. Furthermore, the class of generalized hybrid
mappings includes nonspreading mappings [20], hybrid mappings [42], and A-hybrid
mappings [1] as special cases. For various types of convergence theorems for finding
fixed and attractive points of generalized hybrid mappings, see, e.g., the studies
of [14,18,43,45].

The classes of mappings have been furthermore extended for fixed point and
attractive point theorems and convergence theorems to be established. A mapping
T :C — C is called a normally 2-generalized hybrid mapping [29] if there exist
o, By, a1, 81, a2, B9 € R such that

(1.7) as || 7%z — TyH2 + o Tz — Ty|* + ag |z — Tyl?
48, | T2 — y||” + By | Tz — y|* + By llz — ylI* < 0

for all z,y € C, where the parameters satisfy 2721:0 (an + B,,) > 0and o+ +ap >
0. This class of mappings contains generalized hybrid mappings (1.6) as the case of
ag =9 =0, a1 + ap =1, and B, + 5y = —1. Furthermore, the class of normally
2-generalized hybrid mappings includes normally generalized hybrid mappings [44]
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and 2-generalized hybrid mappings [36] as special cases. For examples of these types
of nonlinear mappings, see Kondo [21,26] and articles cited therein.

In 2018, Hojo et al. [12] proved the following strong convergence theorem for
commutative normally 2-generalized hybrid mappings using a “mean-valued itera-
tive method”:

Theorem 1.1 ([12]). Let C be a nonempty and convex subset of a real Hilbert space
H. Let S and T be commutative normally 2-generalized hybrid mappings from C
into itself that satisfy A(S)NA(T) # 0. Let {\,} be a sequence of real numbers in
the interval [0,1) such that A, — 0 and Y .2 1 A\, = 00. Let {u,} be a sequence in
C such that u, — u (€ H). Define a sequence {x,,} in C as follows:

x1 € C is given,
n—1n—1

1
(1.8) Tng1 = Antin + (1= An) — > kT,
k=0 =0

for all n € N. Then, {z,} converges strongly to a point w = Pyg)naryu of
A(S)NA(T), where Pas)na(r) is the metric projection from H onto A (S)NA(T).
Additionally, if C is closed in H, then x, — U = Prsynr(ryu, where Ppsynp(T) 1S
the metric projection from H onto F (S)NF (T).

They also proved other types of weak and strong convergence theorems. Mean-
valued iterative methods such as (1.8) was initiated by Shimizu and Takahashi [40]
and Atsushiba and Takahashi [4]; see also the classic study by Baillon [5]. In very
recent articles, Kondo [25,27, 28] combined the mean-valued and the three-step
iterative methods and showed that various types of iterative methods are effective
to approximate fixed points for general classes of nonlinear mappings.

In this article, we develop Theorem 1.1, incorporating multi-step iteration such
as Kondo [25,27,28]. An error term is also introduced following Kamimura and
Takahashi [17] and Kondo and Takahashi [33]. We assume two commutative nor-
mally 2-generalized hybrid mappings that have a common attractive point while
continuity of mappings is not required. Our approach reveals that various types of
iterative methods are effective to approximate common attractive and fixed points.
Three-step and more general multi-step iterative methods are derived as special
cases of our result. In Section 2, we introduce background knowledge and results.
In Section 3, we prove the main theorem that generalizes Theorem 1.1. In Section
4, deduced results are presented as corollaries.

2. PRELIMINARIES

This section provides background information. In a real Hilbert space H, it is
known that

(2.1) 2(z—y, y) < |lz* = |yl <2(z —y, 2)

for all x,y € H. Following convention, we denote by Po a metric projection from H
onto C, which means that ||z — Poz|| < ||z — h|| for any x € H and h € C, where C
is a nonempty, closed, and convex subset of H. A metric projection is nonexpansive.
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Concerning the metric projection, the following inequality is frequently employed:
(2.2) (x — Pcx, Pcx —h) >0

forall x € H and h € C.

Weak and strong convergence of a sequence {x,} in H to a point z (€ H) are
denoted by x, — x and x,, — =z, respectively. The following lemma has been used
in the literature to prove strong convergence theorems:

Lemma 2.1 ([2]; see also [49]). Let {X,,} be a sequence of nonnegative real numbers,
let {U,} be a sequence of real numbers such that lim, .U, < 0, and let {n,}
be a sequence of nonnegative real numbers such that > > n, < oco. Let {\,}
be a sequence of real numbers in the interval [0,1) such that Y 7 N\, = oo. If
Xn+1 < (1= Ap) Xopn + MUy, + 1, for alln € N, then X,, — 0 as n — oco.

A mapping T : C — H with F (T) # 0 is called quasi-nonezpansive if
[Tz — g < [l — 4l

for all x € C and q € F(T'), where C is a nonempty subset of H. It is known
that the set of fixed points of a quasi-nonexpansive mapping is closed and convex.
Kondo and Takahashi [29] showed that a normally 2-generalized hybrid mapping
(1.7) with a fixed point is quasi-nonexpansive:

Lemma 2.2 ([29]). Let T : C — C be a normally 2-generalized hybrid mapping with
F (T) # 0, where C is a nonempty subset of H. Then, T is quasi-nonexpansive.

As nonexpansive mappings (1.3) and generalized hybrid mappings (1.6) are spe-
cial cases of normally 2-generalized hybrid mapping, they are also quasi-nonexpansive
if they have fixed points.

According to Takahashi and Takeuchi [43], a set of attractive points (1.2) has the
following properties:

Lemma 2.3 ([43]). Let T be a mapping from C into H, where C is a nonempty
subset of H. Let A(T) be the set that collects all attractive points of T. Then, the
following hold true:

(a) A(T) is a closed and convex subset of H;
(b) A(T)NC C F(T);
(¢c) F(T) C A(T) if T is quasi-nonexpansive.
Hojo et al. [12] proved the following:
Lemma 2.4 ([12]; see also [30]). Let S,T : C — C be commutative normally 2-

generalized hybrid mappings such that A(S) N A(T) # 0, where C' is a nonempty
subset of H. For a bounded sequence {y,} in C, define

n—1n—1

LYY STy (e H)

k=0 [=0

(2.3) A,

for each n € N. Suppose that An; — p € H, where {Anj} is a subsequence of {A,}.
Then, p € A(S)NA(T). Additionally, if C is closed and convez, then it holds that
p € F'(S)N F(T) whenever Ay, — p.
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In the main theorem of this article, we assume that two commutative normally
2-generalized hybrid mappings have a common attractive point. The next theorem
reveals a framework for that assumption to be fulfilled:

Theorem 2.5 ([11]). Let S,T : C — C be commutative normally 2-generalized
hybrid mappings, where C' is a nonempty subset of H. Assume that there exists an
element z € C such that {S*T'z : k,1 € NU{0}} is bounded. Then, A(S)N A(T)
is nonempty. Additionally, if C is closed and convex, then F (S)N F (T) is also
nonempty.

For the existence theorems of attractive or fixed points, see also [13,19,22,24,29,
36,43, 44].

3. MAIN RESULTS

In this section, we prove the main theorem of this article.

Theorem 3.1. Let C be a nonempty and convex subset of a real Hilbert space H.
Let S and T be commutative normally 2-generalized hybrid mappings from C into
itself that satisfy A(S) N A(T) # 0. Let {\,} be a sequence of real numbers in
the interval [0,1) such that A, — 0 and > 72 | A, = c0. Let {n,} be a sequence of
nonnegative real numbers that satisfies Y oo | n, < oo. Let {un} be a sequence in C
such that u, — u (€ H). Let {y,} be a sequence in C. Define a sequence {x,} in
C as follows:

x1 € C is given,

n—1n—1

) DS

k=0 1=0

Y,, € C such that < Nps

Tl = Aplp + (L= X)) Ya
for all n € N. Assume that

(3.1) lyn —all < [lzn — 4l

for allq € A(S)NA(T) and n € N. Then, {x,} converges strongly to a point u
of A(S) N A(T), where U = Pysynacryu. Additionally, if C is closed in H, then
Ty — U= PF(S)MF(T)U'

Proof. First, note that from Lemma 2.3-(a), A(S) N A(T) is a closed and convex
subset of H. As A(S)N A(T) # () is assumed, the metric projection P(syna(r)
from H onto A (S) N A(T) exists. Define

n—1ln—1

A, = % > ) STy, (€ H)

k=0 1=0

for all n € N. Then, we have that ||Y,, — A,|| <7, Let us verify that

(3-2) [An = all < llyn =4l
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for all ¢ € A(S)N A(T) and n € N. Indeed, using the definition of an attractive
point (1.2) we have that

1 n—1n-1
Au—all = |55 8%, g
k=0 =0
1 n—1n—1 1 n—1n—1
bS] < LSS (5|
k=0 1=0 k=0 1=0
1 n—1n-1 1 n—1n—1
S LT EF DM L S
k=0 =0 k=0 =0
1 n—1n—1 1 n—1n—1
< L[| < X <
k=0 1=0 k=0 1=0
1 n—1n—1
< ﬁzz lyn — all = llyn — 4|
k=0 =0
as claimed. Using (3.2) and (3.1), we have that
(3-3) [An = gqll < llyn = qll < [lzn — gl and hence,
(3-4) 1Yo =gl < [[Yn = Anll + | An — 4|

<Ny, + |70 — 4|

forallge A(S)NA(T) and n € N.
Observe that {z,} is bounded. This fact can be ascertained as follows: Let
g€ A(S)NA(T) and define

M = max {sup lun — gl fler - qu} .
neN

As {uy,} is bounded, M is a real number. We show that
n—1

|z —gll < M+
i=1

using a mathematical induction, where Z?:l n; = 0. (i) For n = 1, the desired

result holds true. (ii) As a next step, assume that ||z —¢|| < M + Zi-:ll n;, where
k € N. It follows from (3.4) that

lzrr1 — qll = | Aeur + (1 = M) Yi — 4|
< Ak flug = all + (1 = ) [[ Y — 4|
< e Nlur = qll + (1= M) (lox — qll + 1)

k
< AeM 4 (1= Xg) (M‘FZ%)
1=1

k
<M + Zm-
i—1
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Therefore, it holds that ||z, — ¢|| < M+, n; for all n € N and {z,,} is bounded
as claimed. From (3.3), {y,} and {A,} are also bounded.
Next, we verify that

(3.5) |2ns1 — An = 0.

As {n,} C [0,00) and Y ° | n, < oo, it follows that 1, — 0. As {u,} and {A,} are
bounded, using A, — 0, we have

[Zn41 — Anll = [[Anun + (1 = An) Yo — Ap|
< A flun — Apll + (1 = An) [[Yn — Ay
< An Hun - ATZH + (1 - )\n) Np — 0.
Define X,, = ||z, — u||?, where u = Pa(s)na(ryu- Our goal is to demonstrate that
X, — 0. Using (2.1) and (3.4), we have
Xni1 = |[@ns —
[An (un = @) + (1 = Ap) (Yo — ﬂ)HQ

< (A=) Y —al? 4 20 (tn — T, Tpa1 — W)
< (1 =) (|zn =) +1,)% + 20 (U — Ty Tpyq — )
< (1= X) len —al® +m, 2 [lzn — @l + n,,)

+2\,, (Up, — U, Tpy1 — )
< (1= M) @ —al? + Knypy 4 20 (U — T, gy — )
< (1=X) Xn + Kn,

+2An ((un — U, Tntl — ﬂ) + <u — U, Tptl — ﬂ))

where

K =sup (2||zn — @l +n,) .
neN

As {z,} and {7, } are bounded, K is a real number. Recall that n,, — 0. Also,
as {z,} is bounded and w, — wu, it holds that (u, —u, 41 —u) — 0. As it is
assumed that > o7, A\, = co and Y 27, < oo, from Lemma 2.1, our aim is to
prove that

lim (u—7u, xpe1 —u) <O.
n—oo

From (3.5), it follows that

(36) n@o <U — U, Tpil — U> = n@o <U —u, An - ﬂ) :
There exists a subsequence {A,,} of {A,} such that

(3.7) lim (u—u, A, —u) = lim (u—7u, A,, — 7).

n—00 i—00

As {Ay,} is bounded, there exist a subsequence {Ay,} of {4,,} and p € H such
that A,, — p as j — oco. As {yn} is bounded, from Lemma 2.4, we obtain p €
A(S)NA(T). Hence, from (2.2),

(3.8) lim (u—u, Ay, —u) = lim (u—1u, A,, —u)

i—00 j—00
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as U = Py(s)nau- From (3.6)-(3.8), it follows that

lim (u—7u, xp1 —u) = (u—71, p—1u) <0.

n—o0
According to Lemma 2.1, we have X, — 0, which implies that z,, — & = Pa(g)na(r)u-

Assume, in addition to the other assumptions, that C is closed in H. As a final

step of this proof, we demonstrate that z, — U = Ppgynpmu. As v, — u =
Pa(s)na(ryu and C' is closed, we have that u € C N A(S) N A(T). From Lemma
2.3-(b), it holds true that w € F (S)NF (T). Consequently, F' (S)NF (T) # (. From
Lemma 2.2, S and T are quasi-nonexpansive. Hence, F' (S) N F (T) is a closed and
convex subset of H. The metric projection Pp(g)np(ry from H onto F'(S) N F'(T)
is defined. We aim to show that

(@ =) Prsynpryt = @ (= Pasynamt) -
Asu € F(S)N F(T), it is sufficient to prove that ||u —u|| < ||u — ¢|| for all ¢ €
F(S)N F(T). Choose ¢ € F(S)N F (T) arbitrarily and fix it. As S and T are
quasi-nonexpansive, according to Lemma 2.3-(c), it follows that F'(S) N F(T) C
A(S)N A(T). Therefore,
|lu—a| =inf {||lu—h||:he A(S)NA(T)}
<inf{|lu—~h|:he F(S)NF(T)}
< lu—qll.

This result implies that U = Pp(g)np(ryu (= ©). This completes the proof. O

4. COROLLARIES

In this section, we present some corollaries deduced from Theorem 3.1. Theorem
1.1 and some other existing results are derived as special cases of Theorem 3.1. A
multi-step iterative method is also presented as Corollary 4.2. First, we consider
a result without errors. Setting n,, = 0 for all n € N in Theorem 3.1 yields the
following;:

Corollary 4.1. Let C be a nonempty and convex subset of a real Hilbert space H.
Let S and T be commutative normally 2-generalized hybrid mappings from C into
itself that satisfy A(S)NA(T) # 0. Let {\,} be a sequence of real numbers in the
interval [0,1) such that A\, — 0 and Y 7| A\, = 0o. Let {u,} be a sequence in C
such that u, — w(€ H). Let {y,} be a sequence in C. Define a sequence {x,} in
C as follows:

x1 € C 1is given,

n—1ln—1

1
Tnt1 = Aptln + (1= An) — Z Z SkTly,
n k=0 =0
for all n € N. Assume that
(4.1) 1y — gl < llzn — 4l

for allg € A(S)NA(T) and n € N. Then, {z,} converges strongly to a point u
of A(S) N A(T), where u = Pysynaryu- Additionally, if C is closed in H, then
Ty — u= PF(S)QF(T)U'
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From this, Theorem 1.1 is derived. A proof is as follows:

Proof. Set y, = x, for all n € N. Then, the condition (4.1) is fulfilled. From
Corollary 4.1, a sequence {x,} defined by (1.8) converges strongly to a point @ =
PA(S)OA(T)U of A (S) N A (T)

Next, assume that C is closed in H. Then, from Corollary 4.1, we obtain x, —
u = Pp(s)nr(ryu- This ends the proof. O

In the next corollary, we assume that C is closed in H, S and T" are nonexpansive
mappings, and u, = z; for all n € N, for simplicity. Corollary 4.1 (Theorem 3.1)
also produces the following multi-step iterative method for finding a common fixed
point:

Corollary 4.2. Let C be a nonempty, closed, and convex subset of H. Let S and
T be commutative nonexpansive mappings from C into itself that satisfy F (S) N
F(T) # 0. Let {\,} be a sequence of real numbers in the interval [0,1) such that
An = 0 and > 07 Ay =00 Let {p,}, {vn}, {an}, {bn}, and {c,} be sequences of
real numbers in the interval [0,1] such that a, + b, + ¢, =1 for all n € N. Define
a sequence {x,} in C as follows:
(4.2) x1 =z € C is given,

Wy, = Ty + b STy + Ty,

Zn = Vpwp + (1 — vy) Swy,

Yn = Pp2n + (1 - :un) Tzp,

n—1ln—1

1
Tnt1 = Az + (1 = Ap) o Z Z SkTly,
k=0 1=0

for alln € N. Then, {x,} converges strongly to a point T of F (S) N F (T), where
T = Pps)nr(r)T-

Proof. 1t is sufficient to demonstrate that the condition (4.1) is fulfilled. First,
observe that ||wy, —q|| < ||z, — ¢l for all ¢ € F(S)NF (T) and n € N. In fact, as
S and T are quasi-nonexpansive, it follows that
lwn = gll = [lanzn + bpSzn + cn Ty — 4|

< llan (zn — q) + bp (S0 — @) + cn (Tzy — )|

< an||zn — ql| + bn |Szn — gl + cn | T2 — q|

< an ||[zn = qll + bn llzn — gll + cn [l2n — 4

= l[an —qll-
Similarly, ||zn, — ¢q|| < ||lwn —q| and ||yn — ¢l] < ||zn — ¢|| can be proved. Conse-
quently, we have that

1gn = qll < llzn = gll < lwn = gll < llzn — 4

for all ¢ € F(S)NF(T) and n € N. Thus, the condition (4.1) is met. From
Corollary 4.1, we have that x,, = Z = Pp(synp(r)2. This ends the proof. O
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Setting b, = ¢, = 0 in (4.2) yields the following three-step iterative method:
(4.3) Zn = Uny + (1 — vy) Sy,
Yn = HpZn + (1 - /~Ln) Tzp,

1
Tt = Az (1= ) = > skTly,

where 1 = x € C' is given arbitrarily. Similarly, a two-step iteration is derived by
setting v, = 1 in (4.3). From Corollary 4.1 (Theorem 3.1), various types of iterative
methods can be produced for finding common attractive and fixed points. For some
variations, see Kondo [25,27].

Corollary 4.1 (Theorem 3.1) is also effective to yield convergence theorems for a
single mapping. The following is a result in Kondo and Takahashi [30]:

Corollary 4.3 ([30]). Let C be a nonempty and convex subset of H. Let T be a
normally 2-generalized hybrid mapping from C' into itself that satisfies A(T) # 0.
Let {\,} be a sequence of real numbers in the interval [0,1) such that A\, — 0 and
Yoo 1 An = 00. Define a sequence {x,} in C as follows:

x1,u € C are given,
1 n—1
Tpt1 = Au+ (1 — Ap) - ;Tlxn

for all m € N. Then, {x,} converges strongly to a point w of A(T), where u =
PA(T)U-

Proof. Using Corollary 4.1 with S = I, u, = u, and y, = =, for all n € N, we
obtain that the sequence {z,} converges strongly to a point w = P4yu of A(T),

where [ is the identity mapping defined on C'. This indicates that the desired result
holds true. g

From Corollary 4.3, the following result by Hojo and Takahashi [14] is derived:

Corollary 4.4 ([14]). Let C be a nonempty, closed, and convexr subset of H. Let
T be a generalized hybrid mapping from C into itself that satisfies F (T) # (. Let
{A\n} be a sequence of real numbers in the interval [0,1) such that A\, — 0 and
> o2 A = 00. Define a sequence {x,} in C as follows:

x1,u € C are given,
1 n—1
Tl = A+ (1= Ap) . lz;qu:n

for all n € N. Then, {x,} converges strongly to a point u of F (T), where u =
PF(T)U

Proof. Recall that a generalized hybrid mapping, which is characterized by the
condition (1.6), is normally 2-generalized hybrid (1.7). From Lemma 2.2, T is
quasi-nonexpansive. Hence, F (T) is closed and convex. As F (T) # () is assumed,
the metric projection Pp(ry from H onto F'(T) exists. Furthermore, according to
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Lemma 2.3-(c), F (T') C A(T). Thus, we obtain A (T') # () and therefore, the metric
projection P4y from H onto A (T) exists.

From Corollary 4.3, it follows that x, — u = Pg(ryu. Our aim is to prove that
(i =) Pperyu = (= Pyryu). Asw e A(T)NC, it follows from Lemma 2.3-(b)
that w € F (T). Therefore, it is sufficient to show that ||[u —u| < ||u — ¢ for all
q € F(T). Choose g € F (T) arbitrarily. As F'(T) C A(T), the following holds:

|lu—a| =inf{|ju—h| :he A(T)}
<inf{|u—h||: he F(T)}

IN

which implies that & = Pp(ryu (= @). This completes the proof. O
From Corollary 4.4, Theorem 4.1 in Kurokawa and Takahashi [34] is derived.
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