o2 Pug

& % -
Journal of Nonlinear and Convex Analysis g % mmm P"”’She's
Volume 25, Number 11, 2024, 2691-2702 K-,,.mw) JSSN 1880-5221 ONLINE JOURNAL

© Copyright 2024

AUXILIARY PROBLEM PRINCIPLE EXTENDED TO
EQUILIBRIUM PROBLEMS OVER THE INTERSECTION OF
FIXED POINT SETS

N. D. HIEN, N. V. HONG, AND J. K. KIM

ABSTRACT. In this paper, we introduce a new algorithm which is an application
of the auxiliary problem principle for solving equilibrium problems defined over
the intersection of fixed point sets in a real Hilbert space. Basing on inertial
extrapolation, parallel and auxiliary principle techniques, a strongly convergence
of iterative sequences is showed under standard assumptions. Several numerical
experiments are showed to illustrate the efficiency and accuracy of the proposed
algorithm.

1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Hilbert space H. The
equilibrium problems (EPs, for short) is first introduced by Blum and Oettli in
[13]. In recently years, solving the problem EPs has been a key task since its
importance in economics, physics, engineering, game theory, operations research and
other applied science. The fixed point problem, saddle point problem, variational
inequality problem and Nash-Counot equilibrium model in nonlinear analysis can
be modeled in the formulation of the problem EPs (see, e.g., Akutsah et al. [3], Anh
et al. [7,11], Bianchi et al. [12], Blum et al. [13], Chbani et al. [16], Giannessi et
al. [19], Tusem al. [21]), Kim et al. [24], Lotfikar et al. [27] and Noor [32]: Finding
a point x* € C satisfying

(1.1) fay) 20, Vyed,

where f : C' x C' — R is usually called to be a cost bifunction. We denote the
solution set of the problem EPs (1.1) by Sol(C, f).

It is well known that the auxiliary problem principle is first introduced for solving
optimization problems by Cohen in [18] and then extended to the strongly monotone
and Lipschitz-type problem EPs (1.1) by Mastroeni in [30]. It becomes a useful tool
for analyzing and developing efficient algorithms for the solution to various classes
of mathematical programming and equilibrium problems. Recently, the auxiliary
problem principle was employed and promoted by many authors for solving the
monotone problem (1.1) such as auxiliary principle technique of Noor in [31], dual
extragradient method of Quoc et al. in [33], auxiliary problem methods of Anh et
al. in [8,9] and the references therein.
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Foreachi € I :={1,2,...,n}, let the self-mappings S; : H — H and a bifunction
f:HxH — R such that f(z,-) is convex and f(z,z) = 0 for all z € H. Denote the
fixed point set of S; by Fiz(S;) := {x € H : Si(z) = z}. Given this data, we consider
the equilibrium problem, shortly EP(€2, f), of finding a point z* € Q := N;cr Fix(S;)
such that

[z y) >0, Vye.

Note that the problem EP(S, f) has several important special cases as seen
below.
1. Equilibrium Problem EPs (1.1). Let C' be a nonempty, closed and convex
subset of H. Taking S; is a positive constant (or S; = Pr¢ is the projection onto
C) for each ¢ € I. Then, it is clear that Q = N;erFiz(S;) = C and the problem
EP(Q, f) is written in the form EPs (1.1).
2. General Variational Inequality Problem. Let C' be a nonempty, closed and
convex subset of H, F': H — H, ¢ : H — R and Fiz(S;) = C for all i € I. Setting
f(z,y) = (F(x),y—z)+p(y) — ¢(x) for all z,y € H. Then, the problem EP(Q, f)
is equivalent to the following general variational inequality problem: Find z* € C
such that

(F(z*),z —2*) + o(y) —p(z) >0, Vaxel.

3. Common Fixed Point Problem. Let f(z,y) = 0 for all z,y € H. The
following problem is called the common fixed point problem (CFPP):

Find z* € Fiz(S;), Viel.

We can easily see that the problem (CFPP) becomes a case of the problem

EP(Q, f).
In the cases H := R", for each ¢ € I, S; = 5 : R™ — R" is nonexpansive
and so Q = Fixz(S), some methods have been proposed to solve the problem

EP(Fix(S), f). In [20], liduka and Yamada introduced a subgradient-type method
as follows:

Yt € K= {z € R": |Ja| < p + 1},
fa®,y%) > 0,max{f(y,a*) : y € Ki} < f(y*,2%) + e,
€8 € O f(yF o), e = Slah — Ao f (y*, 2*)EM, prvr = max{[|a* ], o}

To prove the convergence of iterative sequences {z*} and {y*}, the authors assumed
that parameter sequence {&} is bounded by M > 0,¢€; > 0,limg_,o € = 0 and

{\x} Cla,b] C <O, ]\52> Azt e Fiz(S): f(y*, %) <0, Vk>1}#0.

However, these conditions are difficult to verify.

Very recently, by using the properties of the approximation projection, the fixed
point method, parallel and subgradient techniques, Anh and Hong in [10] proposed
a new projection method for solving the problem EP(€, f) with demicontractive
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mappings S;(i € I). At each iteration k, the iterate 25! is defined as follows:

20 eC,
yf = (1 — Oékyi)xk + OzmSi(xk), Vi el,
yF = yfo, where 4o = argmax{|y¥ — 2*|| : i € I},

zhtl e Prg (y* — ypub), uF € 327’“f(yk,yk).

Under the main assumptions that f is strongly monotone and its approximation
subdifferential is Lipschitz continuous, the authors showed that the sequence {:L'k}
strongly converges to a unique solution in the space H. This scheme requires to
compute an approximation diagonal subgradient at each iteration.

Motivated and inspired by the above solution methods, as well as the auxiliary
problem methods in [8,18,30] for the problem EPs (1.1), the parallel techniques
in [5,14,22,23] and the inertial proximal approachs in [1,2,4,15,26] for the varia-
tional inequality problem, for solving the problem EP(€, f) with demicontractive
mappings S;(i € I), the purpose of this paper is three-fold. First, inertial tech-
nique makes use of two previous iterates (i.e. z", xkil) to update the iterate w*. A
self-adaptive updating rule is applied for the stepsize and the inertial parameters.
Second, for each i € I, computing the intermediate approximations uf can be found
in parallel via the fixed point of S;. Then, among all uf(z € I), the farest element
from wF, denoted by ¢, is chosen. Third, the next iterate 2! is based on auxiliary
problem principle and Mann iteration method via the point t*.

The outline of the paper is as follows. In Section 2 we recall some useful definitions
and lemmas. The new algorithm and its analysis are presented in Section 3. In
Section 4, several numerical simulation experiments are provided to illustrate the
efficiency and accuracy of our proposed algorithm.

2. PRELIMINARIES

Let H be a real Hilbert space and C C H is nonempty, closed and convex.

Definition 2.1. Given a mapping T : H — H.

(1) T is called quasi-nonexpansive on H, if
T (x) —z|| < ||z —2z|, V(z,&)eHxFix(T).
(2) T is called firmly nonexpansive, that is, for all z,y € H,
(T(@) — T(y), 2 —v) > |T(x) - T(w)|>
(3) T is called 7—strictly pseudocontractive on H, where T € [0, 1), if
IT() — T@I? < o - yl? + 7@ — ) — [T() — TP, Yo,y €H.
(4) T is called B—demicontractive on H where 5 € [0, 1), if
IT(2) — 22 < o — 3l + Bllz — T@)|2, V(w,2) € H x Fix(T).

(5) T is called demiclosed at zero, if {z¥} weakly converges to # and {(I —
T)(z%)} strongly converges to 0, then Z € Fix(T).
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Let g : H — R U {400} be a convex function. The function g is called proper
if its effective domain D(g) := {z € H : g(z) < 400} # 0 and g(x) > —oo for all
x € H. The g is lower semicontinuous at xo € D(g) if

A
9(zo) < liminf g(z).

It is called lower semicontinuous if it is lower semicontinuous at every xzg € D(g).
The subdifferential Og of a proper convex function g at x € H is defined by

dg(x) ={z €M :g(x)+(z,y —x) <gly), VyeH}
The following lemmas are useful for our algorithm’s analysis.

Lemma 2.2 ([35, Lemma 2.5]). Let {ax} be a positive sequence and {px} a se-
quence of real numbers. Let {ay} be a sequence of real numbers in (0,1) such that
Y peq o = 00. Assume that

apr1 < (L —ag)ap + b, k=1,2,....
If lim supy,_, o % <0 or Zzozl b < +00, then limy_,o ag = 0.

Lemma 2.3 ([28, Remark 4.2]). Let S : H — H be a B-demicontractive mapping
with Fiz(S) # 0 and set S, = (1 — w)Id + wS for w € (0,1]. Then, the S, is

quasi-nonexpansive if w € [0,1 — ] and
1Su(z) = 2| < [lo — 2| —w(l = B —w)[|S(z) —z|?, VI e Fix(5),z € H.

Lemma 2.4 ([28, Remark 4.4]). Let {ax} be a sequence of nonnegative real numbers.
Suppose that for any integer m, there exists an integer p such that p > m and
ap < apt1. Let ko be an integer such that ap, < ap,+1 and define, for all integer
k> k07

(k) =max{i e N : ko <i<k,a; < a1}

Then, 0 < ax < arpy41 for all k > ko. Furthermore, the sequence {T(k)}x>k, is
nondecreasing and tends to +00 as k — oo.

3. CONVERGENT RESULTS

In this section, we introduce a new iteration algorithm for approximating a solu-
tion of the problem EP ({2, f) and prove its strong convergence. The algorithm uses
a parallel technique, auxiliary problem principle and combines the inertial iteration
method with an explicit self-adaptive stepsize rule.

The parameters setup for the algorithm is as follows.

(31) Ck € (07 %)7 ZZOZI Ck’ = +00, T > 07 21?;1 T < 400,
pe > 0,9k € (b,b) C (0,1 —max{B;:i€I}), Vi€l

The Parallel Inertial Auxiliary Principle Algorithm (PIAPA) is presented next.

Algorithm 3.1. Choose starting points 2%, 2! € H.
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Step 1. (Inertial technique) Given the iterates 21 and ¥, compute
(3.2) wh = ok Ozk(xk _ xk_l),
where
53 = {m{nn“} if ok~ ot £ 0,
Mk otherwise.

Step 2. (Parallel technique) Take
uf = (1= ) w” + i Si(w").

Set t* := uf | where iy € argmax{|[uf — w¥| :i € I}.
Step 3. (Auxiliary problem principle) Compute

1
Yk = argmin{)\kf(tk,x) +-lz—tF?:z e C},

2
" = (1= G)t" + Gyt
Let k := k+ 1 and go to Step 1.

Note that, computing w” is used by inertial technique and t* is by parallel tech-
nique. Then, the iteration point z**1 is based on the Mann iteration method and
the auxiliary problem principle. We recall that a point ¥ generated by Algorithm
3.1 is an e—solution of the problem EP(Q, f), if ||zF+! — 2F|| <e.

For the convergence of the algorithm we assume the following.

Assumption 3.2. The mapping f : H x H — R is f—strongly monotone and
Lipschitz continuous with positive constants ci, cs such that g > ¢;.

Assumption 3.3. For all ¢ € I the mappings 5; : H — H are §;—demicontractive
and demiclosed at zero and the set Q := N;erFix(S;) is nonempty.

Theorem 3.4. Assume that Assumptions 3.2 and 3.3 hold. Under Conditions

(8.1), the sequence {x*} generated by Algorithm 3.1 strongly converges to a unique
solution x* of the problem EP (L, f).

Proof. Let 2* be a unique solution of the problem EP(, f). Since y* is the unique
solution of the strongly convex problem

1
yF = argmin{/\kf(tk,x) + in — M2z e C’},

we have

0 € MOaf (5, %) + 4% — tF + No(y").
It means that

t* —y* = Mw® € Ne(yb),
where w¥ € 0o f(t*,y*). Using the definition of the normal cone N¢ and z* € C
yields
(3.4) (" —yF 2" — ") < N(wh 2" — ),
On the other hand, from w* € 9y f(t*,y*) it follows that

)\k’[f(tk)x*) - f(tka yk)] > )‘k<wk’ z* — yk>
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Combining this and (3.4), we get
(3.5) (t" —yF 2" —yF) S NIF(EEa7) = F(E°, 0.
Since A\ > 0 and f is Lipschitz-type with constants ¢; > 0 and ¢z > 0, we have
(3:6)  AR[fF(*,@%) — F(t",0")] < M f (05, &%) + Merlly” — 2P + Awealt* — o* (1.
Using the S—strongly monotone assumption of f yields

F*,a) < —fatyh) = Blly" — 2"
By the definition of z* and y* € C, it follows f(z*,4*) > 0. Then, we deduce

Mef (", 2%) < —MBlly* — 2|,
Combining this, (3.5) and (3.6), we obtain
* 1 * *
(" =y 2" — ") =§(|lyk el R A e (Al
S E2%) + eyt — 21 + Mea |t = oF|1?
< = MBIy = 21+ Meally® — 2P+ Apea[t” — ¥
Note that the first equality is followed from the relation
1
(a,0) = 5 (lall® + IbI* = lla = b]*)  Va,be .

Consequently, we have
37 (L+208 = 2Men)[ly" — 2¥|* < [EF — 212 = (1 = 2Xnea) 0" — £*|I%.
From the condition in (3.1) that
T—4(ﬂ—61> B—Cl—T

0,8 — A a,a] C (0,1), M A >0
T€(0,—a), {M}Cla,a] C(0,1), A+ 272(B — 1) k+T2<5_cl) =
it follows 1

0 <(1—71\)%
< 1+ 2.0 — 2Xpcq 7( g k)
Using (3.7), we have
% 1-— 2/\k02
(3.8) ly* — 21 < (1= rAR)?ItF — 2*)* — lly* — 1%,

1+ 208 — 2Mic
Otherwise, since (3.2) and (3.3), we have

k k

—a| =lla* — ag(a® —2*) -z
k—lH

[Jw
<||* — 2| + aglla* — =

(3.9) <||z* — x|+ 7 Yz eH.
For each z € , it follows from Step 2 and Lemma 2.3 that

E - k-
[#7 — 2|1 =lug, — z||?

2
= H — Vk,io w + Yk zoszo(wk) - I'H
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(3.10) <k = 2% = Yo (1= rio = Bio) 1S3 (w") — w"|.
Combining Step 3, (3.8), (3.9) and (3.10), we obtain

ka+1 _ x*H _ H(l . <k)tk + Ckyk —z*

(L= GlIE" — 2| + Celly® —=*|

(1= GlIE" = ™[+ Ge(1 = AR [ — 27|

=(1 = 7GR [[t" — 2|

<(1 = 7CGAp) " — 2|

<(L = 7GR (2" — | + )

<1 = 7GMe)l2* — 2*|| + 7

<(1 = 7ady)||z" - 2*|| + 7.
Applying Lemma 2.2 for a;, := ||2¥ — 2*||?, oy, := 7@y, by := 7%, and using the
condtion (3.1), we obtain the limit limy_,o [|2* — 2*||> = 0. Which completes the
proof. O

4. NUMERICAL EXPERIMENTS

We start with some numerical examples in which we compare the algorithm
(PIAPA) with two other: Parallel Projection Algorithm (PPA) introduced by Anh
et al. [10, Scheme (3.1)] and Subgradient-type Algorithm (ST A) suggested by Iiduka
et al. [20, Algorithm 3.2] where T := S,,S,—1...5251.

Example 4.1. We use the equilibrium bifunction f : R™ x R™ — R is first
introduced in [34], later in [7,9,10], of the form

where A is an m X m matrix, B is an m x m skew-symmetric matrix, D is an m x m
diagonal matrix, Q = AAT + B+ D and ¢ is a vector in R™, £ > 1+ [|Q||. The
mapping F' is defined by

F(x) = (€xy + Exo +sin(xy), —€xy + Exo + sin(za), (€ — D)z, ..., (€ — Dam) "
By a similar way as the proof of [34, Lemma 6.1], Anh et al. [7] showed that

(1) If £ > 14 ||Q|| then f is strongly monotone with constant 8 = ¢ — 1 — [|Q]];
(2) F is L—Lipschitz continuous, where L = 1/2(2€2 + 2¢ + 1). By [34, Lemma
6.2], f has Lipschitz-type constants ¢; and ¢y satisfying 2,/cica > L+ (|Q)]|.

Next, we consider the feasible set C' and mappings Si,S2, S3 given in [10] as
follows:

C’:{mGRm:ng,eT:Egg},eERm,geR,
Si(x) =z VYreR™,
SQ(:U):Prg(a:),G:Cﬂ{x:(a:l,xg,...,a:m)TGRm:xi§3 Vizl,Z,...,m},

S3(x) = (sin? w1, 1+ 29,73, .., Tp) "

)



2698 N. D. HIEN, N. V. HONG, AND J. K. KIM

where Prg is the metric projection onto G. Then, for each ¢ € I = {1,2,3}, the
mapping S5; : R™ — C' is nonexpansive.

Test 1. First, let us consider the algorithm (PIAPA) in R°. The matrices
A, B, D, the vectors ¢, e and real number g are randomly chosen as follows:

0 1 05 2 1 15 -1 05 0 0
-1 1 -05 0 -2 1 3 -125 -1 0
A=|-05 05 —-08 5 1|,B=|-05 125 5 0 -4,
3 4 -5 4 7 0o -1 0 7 0
-6 05 8 2 9 0 0 4 0 2
5 0 00 0 2 3
0 300 0 3 -5
D=0 0 70 0]|,5=]|-4|,e=110],g=15.
00 09 0 8 3
0 0 00 -2 22 7

It is easy to evaluate that

eig(Q) = {197.5373, 135.0908, 30.3720, 7.4079, 3.9820}, ||Q| = 197.7064,

and hence
L:=max{t:t € eig(Q)} =197.5373 and 5 := min{t : ¢t € eig(Q)} = 3.9820.
Choosing ¢ = 250 and ¢; = 50. From 2,/cic; > L+ ||Q| and =& —1—|Q], it

follows
(L +Ql)?
461
The parameters satisfying (3.1) are set as follows:

7 =0.001 € (0,8 — ¢1) = (0,1.2936),a = 0.001, & = 0.8668,
Ax = 0.01 + 55 € (0,0.4997),
(k= 57 € (0, %), ik = o051 > 0,7k = 5, b = 0.001,b = 0.9882,

Ve = 0.01 + 30k41r100’

B = 51.2936,cy > = 781.0879.

where a := %,b = TBQYE::) and —4=v0—= V2“274b = 0.4997. We take z° =

(1,2,0,0,1) ", 2" = (1,2,1,3,0)" and the tolerance ¢ = 1073, The numerical re-
sults are showed in Figure 1 and Table 1.

Test 2. Second, we compare the (PIAPA) with two algorithm: The (PPA)
and the (ST A). The stopping criterion of the algorithms is ||z¥+! — z¥|| < e. Let
e=(3,-5,10,3,7)",g = 15, all entries B, D, E and vector ¢ be randomly generated
by using the commands in Matlab A = 3 x rand(5,5); B = skewdec(5,1); D =
3 x diag(1 : 5) giving D = (ej;)s5x5 where e;; = 0 for all i # j and e; = 3¢ for all
i€{l,...,5}; ¢ =rand(5,1). The termination criterion is ||2**! —2¥|| < e = 1073.
Data of the algorithms are given as follows:

(a) The algorithm (PIAPA): The starting points z° = (1,2,0,0,1)7, z! =
(1.2,1,3,0)". 7% = gopreze 6 = 0.1+ agpys Yhi = 0.0001 + 1558,
A = 0.02 + o7 and G = 5355
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FIGURE 1. Performance of the seuquence {z*} in the algorithm (PI-

APA) with the tolerence ||z*+1 —

solution is x°

2¥|| < e = 1073. The approximate
1 = (0.0000, 0.1593, 0.0133, 0.0032, 0.0000) .

TABLE 1. Iterations (Iter.) and CPU times (Times) with randomly

different parameters.

Test Tk ke Vii Ak (r  Iter. Times
1 m 1 0.01+ 350155 001+ a5 s D1 6.8750
2 Gorpop Lt aoem 0001+ moppg 002+ gl s 246 8.1719
3 G L+ aem 0001+ giq 001+ g sg 230 9.9531
4 (100,§+7)2 14 5 0.001 + gtrgs 0.01+ g sy 132 5.6563
5 e 1+ s 00001+ W}Hg 0.01+ 1o s 19 0.6719
6 @ 1+ 21<;1+1 0.001 + 30k+100 0.05 + Wiw ﬁlﬂ 64  2.5938
T g 1t %H 0.001 + 30k+100 0.05 + ST T3S 203 6.0781
8 ﬁ?w 8+ 10k+1 0.001 + 30k+100 0.05 + 50k+7 Tsrre 201 6.0156
9 m 8+ 10k+1 0.001 + 30k+100 0.02 + 10k+21 s 399 11.7031
10 L_ 9236 7.0625

10k2+6 2+ 20k+1 0.0005 + 30k+100 0.02 + 10k+21 15k+6

(a) (PPA): oy :=0.001+ Wlloo foralli e I,ep =0,7 =0,y =

k € N, the Starting point z¥ =

(1,2,0,0,1).

1
7410 fOI' all

(b) (STA): p=1. 65L2 € (0,%@) where § = min{m :m € eig(Q)} and L =

max{k : k € eig(Q)}. Parameters \; :=

conditions

hm A =0, Z)\k—+oo lim

k=1

k—o0

The starting point: ° = (1,2,0,0,1)T.

The numerical results are showed in Table 2.

e (k=12,..
Ak = Aktr _ 0.
Akt1

.) satisfy the
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TABLE 2. Comparison results.

No. Iter. CPU times
Tests | (PPA) (STA) (PIAPA)| (PPA) (STA) (PIAPA)
1 153 6093 157 10.5601 297.0412 4.6406
2 253 1105 1158 22.5024 116.8923 32.5781
3 96 3205 1497 7.9941 105.9602  42.1406
4 184 9402 941 12.6981 326.8830 13.0551
5 1104 4057 138 210.4831 130.8024 7.0884
6 8302 3592 297 170.5241 90.8540 7.5015
7 130 2905 94 11.0938 143.9054 1.4431
8 342 6605 164 54.0951 373.7548 6.5201
9 361 403 43 80.5629 294.8840 0.9662
10 126 3055 702 10.0741 109.0413 15.7724
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