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If A = {a, b} with gcd(a, b) = 1, then

Hp(A;x) =
xabp(1− xab)

(1− xa)(1− xb)
=

xabp

1− x
Φab(x)

([6, 18]) and

Cp(A;x) =
1

1− x
− xabp(1− xab)

(1− xa)(1− xb)
,

where Φn(x) is the n-th cyclotomic polynomial determined by

Φn(x) =
∏
d|n

(xd − 1)µ(n/d)

with the Möbius function µ(n).
For a given set A = {a1, a2, . . . , ak} with gcd(a1, a2, . . . , ak) = 1, the p-Frobenius

number gp(A) and the p-Sylvester power sum s
(µ)
p (A) with a non-negative integer µ

are defined by

gp(A) := max
n∈Gp(A)

n ,(1.5)

s(µ)p (A) :=
∑

n∈Gp(A)

nµ ,(1.6)

respectively ([12]). When p = 0, g0(A) is the classical and famous Frobenius number,
that is, the largest positive integer that cannot be expressed as a linear combination

of non-negative integers in terms of a1, a2, . . . , ak. And when p = 0, s
(0)
0 and s

(1)
0 are

called the Sylvester number (or genus) and the Sylvester sum, respectively, which
have been studied by many researchers in various ways for a long time.

One of the central research topics in Frobenius problem is to find an explicit
formula for each quantity. In 1850s, Sylvester found that for two variable sets
A = {a, b},

g0(a, b) = (a− 1)(b− 1)− 1 and s
(0)
0 =

(a− 1)(b− 1)

2
.

Rödseth [20] found the formula of s
(µ)
0 (a, b) by using Bernoulli numbers as an ex-

tension for s
(1)
0 (a, b) by Brown and Shiue [5]. For three or more variables, however,

no explicit form has been found, but the Frobenius number cannot be given by any
set of closed formulas, which can be reduced to a finite set of certain polynomials
( [7]). Nevertheless, with the help of the elements of Apéry set, we can give an

explicit formula of s
(µ)
0 (A) ([9]) and s

(µ)
p (A) ([12]). In the special case of the set

A consisting of triangular triplets [10], repunits [11] and Fibonacci triplets [13], we
have successfully found the explicit forms even when p > 0.

A further generalization of power sums is the so-called weighted power sum. For

a real λ, the p-Sylvester weighted power sum s
(µ)
p,λ(A) is defined by

(1.7) s
(µ)
p,λ(A) :=

∑
n∈Gp(A)

λnnµ .
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An explicit formula of s
(1)
0,λ(a, b) is given in [14] when µ = 1 (see the identity (3.1)

below). By using the Apostol-Bernoulli numbers, which is a generalization of the

Bernoulli numbers, an explicit formula of s
(1)
0,λ(a, b) is also given in [14]. For a more

general set A, an explicit formula of s
(µ)
p,1 (A) is given in [12] (see Proposition 3.4

below) by using Apostol-Bernoulli polynomials. More generally, an explicit formula

of s
(µ)
p,λ(A) is given in [12] by using the elements of Apéry set and Eulerian numbers〈

n
l

〉
, counting the number of permutations of 1, 2, . . . , n in which exactly l elements

are greater than the previous element (see Proposition 3.1 below). In [15], the

special case p = 0 is discussed to find an explicit form of s
(µ)
0,λ(A). In this paper, we

give an explicit form of s
(µ)
p,λ(A) by using Apostol-Bernoulli polynomials instead of

Eulerian numbers (see Theorem 3.5 below).

2. Apéry set

Without loss of generality, set a1 = min(A). The p-Apéry set is given by

(2.1) App(A) = {m(p)
0 ,m

(p)
1 , . . . ,m

(p)
a1−1} ,

where m
(p)
j ≡ j (mod a1), m

(p)
j ∈ Sp(A) and m

(p)
j − a1 ∈ Gp(A) (0 ≤ j ≤ a1 − 1).

Then, the p-Hilbert series can also be written as

Hp(A;x) =
1

1− xa1

∑
N∈App(A)

xN

=
1

1− xa1

a1−1∑
j=0

xm
(p)
j .

If A = {a, b} with gcd(a, b) = 1 and a < b, then App(A) = {abp + ib|0 ≤ i ≤
a − 1}. Note that the order of m

(p)
j may be different from that of j. For example,

if A = {5, 7}, then m
(4)
0 = 4 · 5 · 7, m(4)

1 = 4 · 5 · 7 + 3 · 7, m(4)
2 = 4 · 5 · 7 + 1 · 7,

m
(4)
3 = 4 · 5 · 7+ 4 · 7 and m

(4)
4 = 4 · 5 · 7+ 2 · 7. Therefore, by permutation π(j), we

get m
(p)
π(j) = pab+ jb (0 ≤ j ≤ a− 1).

By using the elements in the p-Apéry set, we have

Cp(x) = Cp(A;x)

=

a1−1∑
j=0

(
xm

(p)
j −a1 + xm

(p)
j −2a1 + · · ·+ xm

(p)
j −

⌊
m

(p)
j /a1

⌋
a1

)

=

a1−1∑
j=0

xm
(p)
j

(
1− x−a1

⌊
m

(p)
j /a1

⌋)
1− x−a1

=

a1−1∑
j=0

xj
(
xa1

⌊
m

(p)
j /a1

⌋
− 1

)
xa1 − 1

=

a1−1∑
j=0

xm
(p)
j − xj

xa1 − 1
.
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By the multisection formula (see [17, (2)], [19, §4.3], [21]), we have for 0 ≤ j ≤ a1−1

xj
(
xa1

⌊
m

(p)
j /a1

⌋
− 1

)
xa1 − 1

=
1

a1

a1−1∑
i=0

ζ−ij
a1 Cp(ζ

i
a1x) ,

where ζa1 = exp(2π
√
−1/a1), the a1-th root of unity. Then we obtain

x
a1

⌊
m

(p)
j /a1

⌋
= 1 +

xa1 − 1

a1xj

a1−1∑
i=0

ζ−ij
a1 Cp(ζ

i
a1x) .

Taking the limit at x → 1, we have⌊
m

(p)
j

a1

⌋
=

1

a1

a1−1∑
i=0

ζ−ij
a1 Cp(ζ

i
a1) .

In particular, if A = {a, b} with gcd(a, b) = 1 and a < b, then we get

xa(bp+⌊jb/a⌋) = 1 +
xa − 1

axπ(j)

a−1∑
i=0

ζ−iπ(j)
a Cp(ζ

i
ax)

= 1 +
xa − 1

axπ(j)

a−1∑
i=0

ζ−ijb
a Cp(ζ

i
ax)(2.2)

and

bp+

⌊
jb

a

⌋
=

1

a

a−1∑
i=0

ζ−iπ(j)
a Cp(ζ

i
a)

=
1

a

a−1∑
i=0

ζ−ijb
a Cp(ζ

i
a) ,(2.3)

respectively, where π(j) denotes the permutation, satisfying π(j) ≡ jb (mod a). In
other words, π(j) is given by

π(j) = jb− a

⌊
jb

a

⌋
.

3. Apostol-Bernoulli polynomials

The Apostol-Bernoulli polynomials Bn(x, λ) are defined by the generating func-
tion ([3, p.165, (3.1)]):

text

λet − 1
=

∞∑
n=0

Bn(x, λ)
tn

n!
(|t+ log λ| < 2π) .

When x = 0, Bn(λ) = Bn(0, λ) are Apostol-Bernoulli numbers. When λ → 1,
Bn(x) = limλ→1 Bn(x, λ) are Bernoulli polynomials1 defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

1Note that Bn(x) ̸= Bn(x, 1).
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Furthermore, when x = 1, Bn = limλ→1 Bn(1, λ) are Bernoulli numbers. For λ ̸= 1,
Apostol-Bernoulli polynomials Bn(x, λ) are expressed explicitly by

Bn(x, λ) =

n∑
k=1

k

(
n

k

) k−1∑
j=0

(−λ)j(λ− 1)−j−1j!

{
k − 1

j

}
xn−k (n ≥ 0)

([16, Remark 2.6]), where the Stirling numbers of the second kind
{
n
k

}
are given by{n

k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn .

The Sylvester weighted sum sλ, defined by

sλ(A) :=
∑

n∈G0(A)

λnn ,

can be given explicitly when A = {a, b} with gcd(a, b) = 1. For a real λ with λa ̸= 1
and λb ̸= 1,

sλ(a, b)

=
λ

(λ− 1)2
+

abλab

(λa − 1)(λb − 1)
−

(λab − 1)
(
(a+ b)λa+b − aλa − bλb

)
(λa − 1)2(λb − 1)2

(3.1)

( [14, Theorem 1.1]). More generally, the p-Sylvester weighted power sum s
(µ)
p,λ,

defined by

s
(µ)
p,λ(A) :=

∑
n∈Gp(A)

λnnµ ,

can be given explicitly when A = {a, b} with gcd(a, b) = 1.

In order to obtain an explicit form of s
(µ)
p,λ(A), we need the formula in [12, Theorem

2]. The case p = 0 is discussed in [15].

Proposition 3.1. Let k, p and µ be integers with k ≥ 2, p ≥ 0 and µ ≥ 1, and λ
be a real with λa1 ̸= 1. Then for A = {a1, a2, . . . , ak} with gcd(a1, a2, . . . , ak) = 1,
we have

s
(µ)
p,λ(A)

=

µ∑
n=0

(−a1)
n

(λa1 − 1)n+1

(
µ

n

) n∑
j=0

〈
n

n− j

〉
λja1

a1−1∑
i=0

(
m

(p)
i

)µ−n
λm

(p)
i

+
(−1)µ+1

(λ− 1)µ+1

µ∑
j=0

〈
µ

µ− j

〉
λj ,

where
〈
n
m

〉
are Eulerian numbers, appearing in the generating function

(3.2)

∞∑
k=0

knxk =
1

(1− x)n+1

n−1∑
m=0

〈 n

m

〉
xm+1 (n ≥ 1)

with 00 = 1 and
〈
0
0

〉
= 1.
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When A = {a, b} with gcd(a, b) = 1 and a < b, by applying Proposition 3.1 as

m
(p)
π(i) = abp+ ib, we obtain the following. Note that

〈
1
1

〉
= 0 and

〈
1
0

〉
= 1.

Proposition 3.2. For integers p and µ with p ≥ 0 and µ ≥ 1, and a real λ with
λa ̸= 1 and λb ̸= 1, we have

s
(µ)
p,λ(a, b) =

µ∑
n=0

(−a)n

(λa − 1)n+1

(
µ

n

) n∑
j=0

〈
n

n− j

〉
λja

a−1∑
i=0

(abp+ ib)µ−nλabp+ib

+
(−1)µ+1

(λ− 1)µ+1

µ∑
j=0

〈
µ

µ− j

〉
λj .

In particular, for the simple p-Sylvester weighted sum as µ = 1, we have the
following. When p = 0, the identity (3.1) is reduced.

Proposition 3.3. For a non-negative integer p and a real λ with λa ̸= 1 and λb ̸= 1,
we have

sp,λ(a,b) :=
∑

n∈Gp(A)

λnn

=
λ

(λ− 1)2
+

ab
(
p(λab − 1) + λab

)
(λa − 1)(λb − 1)

−
(λab − 1)

(
(a+ b)λa+b − aλa − bλb

)
(λa − 1)2(λb − 1)2

.

On the other hand, the simple p-Sylvester sum (the weight λ is equal to 1) can
be explicitly given, as in [12, Theorem 1] (see also [15]).

Proposition 3.4. Let k, p and µ be integers with k ≥ 2, p ≥ 0 and µ ≥ 1. Then
for A = {a1, a2, . . . , ak} with gcd(a1, a2, . . . , ak) = 1, we have

s(µ)p (A) =
1

µ+ 1

µ∑
κ=0

(
µ+ 1

κ

)
Bκa

κ−1
1

a1−1∑
i=0

(
m

(p)
i

)µ+1−κ
+

Bµ+1

µ+ 1
(aµ+1

1 − 1) ,

where Bn are Bernoulli numbers.

The finite part of the infinite sum

M
(n)
N (x) :=

N∑
k=0

knxk ,

appearing in the generating function (3.2) about Eulerian numbers, is called the
Mirimanoff polynomial and discussed in [22]. Namely, we have

lim
N→∞

M
(n)
N (x) =

1

(1− z)n+1

n−1∑
m=0

〈 n

m

〉
xm+1 (n ≥ 1) .

As Carlitz pointed out ([4]), by using Apostol-Bernoulli polynomials, the Mirimanoff
polynomial can be expressed as

M
(n)
N (x) =

zNBn+1(N, x)− Bn+1(0, x)

n+ 1
.
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Using the Mirimanoff polynomials instead of Eulerian numbers, the p-Sylvester
weighted power sum can be given in a different form from Proposition 3.1 ( [12,
Theorem 2], [15]).

Theorem 3.5. Let k, p and µ be integers with k ≥ 2, p ≥ 0 and µ ≥ 1, and λ be
a real with λa1 ̸= 1. Then for A = {a1, a2, . . . , ak} with gcd(a1, a2, . . . , ak) = 1, we
have

s
(µ)
p,λ(A) =

a1−1∑
i=0

λm
(p)
i

µ∑
κ=0

(
µ

κ

)(
m

(p)
i

)µ−κ
(−a1)

κM
(κ)
ℓi

(λ−a1)

=

a1−1∑
i=0

λm
(p)
i

µ∑
κ=0

(
µ

κ

)(
m

(p)
i

)µ−κ
(−a1)

κ

κ+ 1

×
(
λ−aiℓiBκ+1(ℓi, λ

−ai)− Bκ+1(0, λ
−ai)

)
,

where

ℓi =
m

(p)
i − i

a1
=

⌊
m

(p)
i

a1

⌋
(0 ≤ i ≤ a1 − 1) .

Proof. We have

s
(µ)
p,λ(A) =

∑
n∈Gp(A)

λnnµ

=

a1−1∑
i=0

ℓi∑
j=1

λm
(p)
i −ja1(m

(p)
i − ja1)

µ

=

a1−1∑
i=0

λm
(p)
i

ℓi∑
j=1

(λ−a1)j
µ∑

κ=0

(
µ

κ

)(
m

(p)
i

)µ−κ
(−ja1)

κ

=

a1−1∑
i=0

λm
(p)
i

µ∑
κ=0

(
µ

κ

)(
m

(p)
i

)µ−κ
(−a1)

κM
(κ)
ℓi

(λ−a1) .

□
Remark 3.6. Apostol-Bernoulli polynomials are also related to Hurwitz-Lerch Zeta
functions, defined by the infinite series

Φ(z, α, s) =
∞∑
k=0

zk

(α+ k)s
,

where α, z ∈ C with R(α) > 0, |z| ≤ 1, z ̸= 0, and R(s) > 1 (s ∈ C). When |z| = 1,
for a non-negative integer n,

Φ(z, α,−n) = −Bn+1(α, z)

n+ 1
.

Namely, when λ = e2π
√
−1z, since

ϕ(z, α,−n) = −Bn+1(α, e
2π

√
−1z)

n+ 1
,
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the p-Sylvester weighted sum can be expressed by using the Lipschitz-Lerch Zeta
function ([3, p.161]), defined by

ϕ(z, α, s) =

∞∑
k=0

e2kπ
√
−1z

(α+ k)s
.

Corollary 3.7. Let k, p and µ be integers with k ≥ 2, p ≥ 0 and µ ≥ 1, and |z| ≤ 1
with a1z ̸∈ Z. Then we have

s
(µ)

p,e2π
√
−1z

(A) =

a1−1∑
i=0

e2π
√
−1m

(p)
i z

µ∑
κ=0

(
µ

κ

)(
m

(p)
i

)µ−κ
(−a1)

κ

×
(
−ϕ(−a1z, ℓi,−κ) + ϕ(−a1z, 0,−κ)

)
.

When A = {a, b} in Theorem 3.5, we have a different expression of Proposition
3.2.

Corollary 3.8. Let p and µ be integers with p ≥ 0 and µ ≥ 1, and λ be a real with
λa1 ̸= 1. Then we have

s
(µ)
p,λ(a, b) =

a−1∑
j=0

λpab+jb
µ∑

κ=0

(
µ

κ

)
(pab+ jb)µ−κ(−a)κM

(κ)
pb+⌊jb/a⌋(λ

−a)

=

a−1∑
j=0

λpab+jb
µ∑

κ=0

(
µ

κ

)
(pab+ jb)µ−κ(−a)κ

κ+ 1

×
(
λ−pab−a⌊jb/a⌋Bκ+1(pb+ ⌊jb/a⌋ , λ−a)− Bκ+1(0, λ

−a)
)
,

Proof. Since

ℓπ(j) =
m

(p)
π(j) − π(j)

a

=
1

a

(
pab+ jb− jb+ a

⌊
jb

a

⌋)
= pb+

⌊
jb

a

⌋
,

by rearranging the order of the summation in Theorem 3.5, we get the desired
result. □

4. Voronöı type sums

In [1] Agoh studied Voronöı type congruence, including the sum of the type

Vm,n(a, b) :=
a−1∑
k=1

km
(⌊

kb

a

⌋)n

.
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We study a more general Voronöı type sum:

Vm,n(a, b, p) : =

a−1∑
k=1

km
(
bp+

⌊
kb

a

⌋)n

=
n∑

ν=1

(
n

ν

)
(bp)n−νVm,ν(a, b) .

This sum can be expressed as a function of p-gaps and Mirimanoff polynomials.

Theorem 4.1. We have

Vm,n(a, b, p) =
1

an

∑
l0+···+la−1=n

l0,...,la−1≥0

(
n

l0, . . . , la−1

) a−1∏
i=0

C li
p (ζ

i
a)M

(m)
a−1

(
ζ
−b

∑a−1
i=0 ili

a

)
,

where
(

n
l0,...,la−1

)
= n!

l0!...la−1!
is the multinomial coefficient. In particular, we have

Vm,1(a, b, p) =
1

a

a−1∑
i=0

Cp(ζ
i
a)M

(m)
a−1

(
ζ−bi
a

)
,

V1,1(a, b, p) =

a−1∑
i=1

Cp(ζ
i
a)

ζ−bi
a − 1

+
a− 1

2

(
abp+

(a− 1)(b− 1)

2

)
.

Proof. We have

Vm,n(a, b, p) =
1

an

a−1∑
k=1

km
∑

l0+···+la−1=n

l0,...,la−1≥0

(
n

l0, . . . , la−1

)
ζ
−bk

∑a−1
i=0 ili

a

a−1∏
i=0

C li
p (ζ

i
a)

=
1

an

∑
l0+···+la−1=n

l0,...,la−1≥0

(
n

l0, . . . , la−1

) a−1∏
i=0

C li
p (ζ

i
a)

a−1∑
k=1

kmζ
−bk

∑a−1
i=0 ili

a

=
1

an

∑
l0+···+la−1=n

l0,...,la−1≥0

(
n

l0, . . . , la−1

) a−1∏
i=0

C li
p (ζ

i
a)M

(m)
a−1

(
ζ
−b

∑a−1
i=0 ili

a

)
.

In particular, when n = 1, we have

Vm,1(a, b, p) =
1

a

a−1∑
i=0

Cp(ζ
i
a)M

(m)
a−1

(
ζ−bi
a

)
.

Furthermore, when m = n = 1, by

Cp(1) = abp+
(a− 1)(b− 1)

2

and

M
(1)
a−1(ζ

−bi
a )

a
=

axa(x− 1)− x(xa − 1)

a(x− 1)2

∣∣∣∣
x→ζ−bi

a
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=
1

ζ−bi
a − 1

(0 < i < a)

with

M
(1)
a−1(ζ

0
a)

a
=

a− 1

2
,

we have

V1,1(a, b, p) =
1

a

a−1∑
i=0

Cp(ζ
i
a)M

(1)
a−1

(
ζ−bi
a

)
=

a−1∑
i=1

Cp(ζ
i
a)

ζ−bi
a − 1

+
a− 1

2

(
abp+

(a− 1)(b− 1)

2

)
.

□

Proposition 4.2. We have

abp+

a−1∑
k=0

⌊
bk

a

⌋
xk =

xa − 1

a

a−1∑
i=0

Cp(ζ
i
a)

ζ−ib
a x− 1

.

Proof. By (2.3), we have

a−1∑
k=0

(
bp+

⌊
bk

a

⌋)
xk =

1

a

a−1∑
k=0

xk
a−1∑
i=0

ζ−ibk
a Cp(ζ

i
a)

=
1

a

a−1∑
i=0

Cp(ζ
i
a)

a−1∑
k=0

(ζ−ib
a x)k

=
xa − 1

a

a−1∑
i=0

Cp(ζ
i
a)

ζ−ib
a x− 1

.

□
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