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SYLVESTER WEIGHTED POWER SUMS ASSOCIATED WITH
APOSTOL-BERNOULLI POLYNOMIALS

TAKAO KOMATSU

ABSTRACT. In the classical and famous Diophantine problem of Frobenius, the
central topic is the largest integer (Frobenius number) or the number (Sylvester
number) of non-negative integers that cannot be represented by a linear combina-
tion. An extension of these notions is the sum of powers of non-negative integers
that cannot be represented, given an explicit formula using the elements of the
Apéry set and the Bernoulli numbers. In this paper, we give an explicit formula
for a further generalized weighted sum of powers using the elements of the Apéry
set and the Apostol-Bernoulli polynomials, a generalization of the Bernoulli num-
bers. Moreover, we generalize the set of unrepresentable non-negative integers to
the set of non-negative integers that can be represented in at most p ways. That
is, when p = 0, the generalization is reduced to the original problem. We also give
an expression of the p-Volonoi type sums, included in Volonoi type congruences.

1. INTRODUCTION

Given the set of positive integers A = {aq,as, ..., a;} with ged(aq,ag,...,a;) =
1. Denote by d(N;ai,as,...,ar) the number of non-negative solutions (repre-
sentations) of the linear equation ajxy + aswe + -+ + apzr = N. The quantity
d(N;ay,as,...,a) is actually the number of partitions of N whose summands are
taken (repetitions allowed) from the sequence aj,as,...,a;. For a non-negative
integer p, define
(1.1) Sp(A) :{NGN()’d(N;al,...,CLk) >p},
(1:2) Gy(A) = {N € Nold(N:ar, ..., ax) < p}.

satisfying S,(A) U Gp(A) = Ny, which is the set of non-negative integers. S,(A)
is called p-numerical semigroup and G,(A) is the set of p-gaps. When p = 0,
S = Sp(A) is the classical numerical semigroup as S = (A), which is generated by
A. Then, the p-Hilbert series is given by

(1.3) Hy(Az)= > oV
NES,(A)

and the function of p-gaps is given by

(1.4) Cpl i) =

- H,(A;x).
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If A= {a,b} with ged(a,b) =1, then

xabp(l _ xab) xabp

Hy(dio) = g oa = ~ 12

(I)ab(x)

([6,18]) and
1 2P (1 — )
Cp(A;x) = -
b(4;2) -z (1—2%)(1—xb)’
where ®,,(x) is the n-th cyclotomic polynomial determined by
Bo(2) = [ — 1p/

dln

with the Mé&bius function p(n).
For a given set A = {ay,ag,...,ax} with ged(ay,ag,...,ar) =1, the p-Frobenius

number g,(A) and the p-Sylvester power sum 31(3“)(/1) with a non-negative integer p

are defined by

1. A) =

(1.5) 9p(A) B T

(1.6) sWA) = Y ok,
neGp(A)

respectively ([12]). When p = 0, go(A) is the classical and famous Frobenius number,
that is, the largest positive integer that cannot be expressed as a linear combination
of non-negative integers in terms of a, as, ..., a. And when p = 0, s((]o) and s((]l) are
called the Sylvester number (or genus) and the Sylvester sum, respectively, which
have been studied by many researchers in various ways for a long time.

One of the central research topics in Frobenius problem is to find an explicit

formula for each quantity. In 1850s, Sylvester found that for two variable sets

A ={a, b},

go(a,b) =(a—1)(b—1)—1 and s(()o) = W'

Rodseth [20] found the formula of s(()“ )(a, b) by using Bernoulli numbers as an ex-
tension for sél)(a, b) by Brown and Shiue [5]. For three or more variables, however,
no explicit form has been found, but the Frobenius number cannot be given by any
set of closed formulas, which can be reduced to a finite set of certain polynomials

([7]). Nevertheless, with the help of the elements of Apéry set, we can give an
explicit formula of s(()“ ) (A) (]9]) and 52(7“ ) (A) ([12]). In the special case of the set
A consisting of triangular triplets [10], repunits [11] and Fibonacci triplets [13], we
have successfully found the explicit forms even when p > 0.

A further generalization of power sums is the so-called weighted power sum. For

a real A, the p-Sylvester weighted power sum s;’g(A) is defined by

(1.7) sUNA) = ST A
neGp(A)
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An explicit formula of s(()l/)\(a, b) is given in [14] when p = 1 (see the identity (3.1)
below). By using the Apostol-Bernoulli numbers, which is a generalization of the
Bernoulli numbers, an explicit formula of 3(()1;\(@, b) is also given in [14]. For a more

general set A, an explicit formula of sl(f 1)(A) is given in [12] (see Proposition 3.4
below) by using Apostol-Bernoulli polynomials. More generally, an explicit formula

()
DA

<7>, counting the number of permutations of 1,2,...,n in which exactly [ elements
are greater than the previous element (see Proposition 3.1 below). In [15], the

of s3(A) is given in [12] by using the elements of Apéry set and Eulerian numbers

special case p = 0 is discussed to find an explicit form of s(()” ;\(A) In this paper, we

give an explicit form of 52(7“ ))\ (A) by using Apostol-Bernoulli polynomials instead of

Eulerian numbers (see Theorem 3.5 below).
2. APERY SET
Without loss of generality, set a; = min(A). The p-Apéry set is given by
(2.1) Ap,(A) = {m(()p),mgp),...,mgi)_l},
where m§p) =j (mod ay), m® e Sp(A) and m) —qy € Gp(A) (0<j<a;—1).

J J
Then, the p-Hilbert series can also be written as
1
H,(A;z) = Z N

1—zn
NeAp,(A)

ay1—1

1 m®
= 1 — gat Z rod
Jj=0

If A= {a,b} with ged(a,b) = 1 and a < b, then Ap,(A4) = {abp + ib|0 < i <
a — 1}. Note that the order of mg-p ) may be different from that of j. For example,
if A={57} thenm() =4-5-7m =4.5.743. 7, mY =4.5.741-7,
m§4) =4-5-7T44-7 and mz(:l) =4-5-7+2-7. Therefore, by permutation 7(j), we
get m® =pab+jb (0<j<a-—1).

m(4)
By using the elements in the p-Apéry set, we have

Cp(x) = Cp(4; )

a1—1
(p) (p) (p) (p)
_ <xmjp —aq + ;L‘mjp —2a1 4ot ,’Emjp _Lmjp /alJa1>

Jj=0
(p) (p)
a1—1 x (1 —r ™ |~mj /a1J>
B l—za
Jj=0
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By the multisection formula (see [17, (2)], [19, §4.3], [21]), we have for 0 < j < a;—1

(el 1)

T D DL A
i=0
where (,, = exp(2mv/—1/a1), the a;-th root of unity. Then we obtain
(€9) a1 _ 1 % !
xm {mj /alJ — 14 x Z Calsz Cal )

Taking the limit at x — 1, we have

m(P) a1—1
ay - CL]_ ZZ; Cal Cal °

In particular, if A = {a,b} with ged(a, b) =1 and a < b, then we get

i (j) i
+—7 Zc NCy(Ci)

salbptLib/a)) _

a

(2.2 P LS i iy
=0

and

Jb _ 1 “ —ZTI' ’L

bp + {GJ = Z Ca C
1 g ,
2.3 L5 Gy,
=0

respectively, where 7(j) denotes the permutation, satisfying m(j) = jb (mod a). In
other words, m(j) is given by
: . jb
=jb—a|—].
m(j) =J a{aJ

3. APOSTOL-BERNOULLI POLYNOMIALS

The Apostol-Bernoulli polynomials B, (x, \) are defined by the generating func-
tion ([3, p.165, (3.1)]):

¢ oo m
1 E)Bn(%}\)n! (|t +log A| < 27).

When z = 0, B,(\) = B,(0,\) are Apostol-Bernoulli numbers. When A — 1,
B, (x) = limy_,; B, (z,\) are Bernoulli polynomials® defined by

tea:t "

INote that By () # Bn(x,1).
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Furthermore, when z = 1, B,, = limy_,; B,,(1, A) are Bernoulli numbers. For \ # 1,
Apostol-Bernoulli polynomials B, (x, \) are expressed explicitly by

Bz, \) = ék(Z) jz:é(—)\)j()\ _ 1)Ly {k ; ! } (0> 0)

([16, Remark 2.6]), where the Stirling numbers of the second kind {Z} are given by

n 1< k
—_ _1\k—J -7
{k} k! Z( D (j)J '
7=0
The Sylvester weighted sum sy, defined by
sx(A) == Z A'n,
nGGo(A)
can be given explicitly when A = {a, b} with ged(a,b) = 1. For a real A with \* # 1
and \b # 1,
sx(a,b)
A ab\® (A% —1)((a 4 b)A"P — X — bAP)

(3.1) SO e —1) (A = 1)2(A\0 —1)2

(W)

([14, Theorem 1.1]). More generally, the p-Sylvester weighted power sum Sp Ao

defined by
31()’3(14) = Z At
neGp(A)
can be given explicitly when A = {a, b} with ged(a,bd) = 1.
(1)

»a(A), we need the formula in [12, Theorem

In order to obtain an explicit form of s
2]. The case p = 0 is discussed in [15].

Proposition 3.1. Let k, p and p be integers with k > 2, p > 0 and p > 1, and A
be a real with A** # 1. Then for A = {a1,aq,...,a;} with ged(ay,az,...,a;) =1,
we have

SpA(4)
1% n a;—1
(—a)" K n ja (p)\ 1=y mP)
:Z()\al_l)nH ; e \at Z(mip)u A
n—=0 =0 i=0

(-1t

+(A)1)““ji)<uuj>)\j’

where < :z> are Eulerian numbers, appearing in the generating function

[e.e] n—

. 1
(3.2) >k k:u—;n)nﬂm

n xm—&-l n
(m) ™" 2

1
=0
with 0 = 1 and <8> =1.
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When A = {a,b} with ged(a,b) = 1 and a < b, by applying Proposition 3.1 as
mgrp()i) = abp + ib, we obtain the following. Note that <}> =0 and <(1)> =1.

Proposition 3.2. For integers p and p with p > 0 and p > 1, and a real A\ with
X %1 and A’ # 1, we have

o n a—1
(_a)n /’L n a . —n\a 3
S;E)L,L))\(aa b) = Z W n E n—j M Z(abp + )TN bp-+ib
n=0 §=0 i=0
1)+ M )
Sk

A =D\ —

In particular, for the simple p-Sylvester weighted sum as p = 1, we have the
following. When p = 0, the identity (3.1) is reduced.

Proposition 3.3. For a non-negative integer p and a real A with A* # 1 and A’ # 1,
we have

SpA(ab) ‘= Z A'n
neGp(A)
A ab(p(A® —1) + A%%) (A" — 1)((a + b)A"T? — aX® — bA®)

BECEE AV VP Y (v = D20 = 12

On the other hand, the simple p-Sylvester sum (the weight A is equal to 1) can
be explicitly given, as in [12, Theorem 1] (see also [15]).

Proposition 3.4. Let k, p and p be integers with k > 2, p > 0 and > 1. Then

for A ={ay,aq9,...,ar} with ged(ay,asg,...,ax) =1, we have
1 1 + 1 a;—1 B B
() (A) = K B.a" 1 (p)\ptl=r ptl ol
S = a m; + a 1),
P =g X ()t Sy -

where B, are Bernoulli numbers.

The finite part of the infinite sum
N
M](\;l)(x) = Zk”xk,
k=0
appearing in the generating function (3.2) about Eulerian numbers, is called the
Mirimanoff polynomial and discussed in [22]. Namely, we have

n—1
- My 1 N mil s
]\}1—I>nooMN (@) = (1—z)”+1mzzo<m>x (n=1).

As Carlitz pointed out ([4]), by using Apostol-Bernoulli polynomials, the Mirimanoff
polynomial can be expressed as

ZNBnJrl(N? l‘) - Bn+1(07 SL’)
n+1 '

My (@) =
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Using the Mirimanoff polynomials instead of Eulerian numbers, the p-Sylvester
weighted power sum can be given in a different form from Proposition 3.1 ([12,
Theorem 2], [15]).

Theorem 3.5. Let k, p and p be integers with k > 2, p > 0 and p > 1, and \ be
a real with \* # 1. Then for A = {ay,ag,...,ax} with ged(ay,asz,...,a;) =1, we
have

a1—1
(N) Z /\m(p> Z ( ) (mgp))ﬂfﬁ(_al)nMZi)()\—a1)

k=0
a;—1 (p) H—K K
e w\ (m”)" " (—a1)
-3y (1)

X ()\_al IB,QJrl (fl, A ) — BK+1(O, )\_ai)) s

® . (p)
gi:mi Z:\‘ml J (Ogléal—l)

a a

where

Proof. We have

5;#,2 (A) = Z A"nt
n€Gp(A)
a1—1 ¢

_ Z Z)\m(p)—mn () jay)*

=0 j=1

) alzzl P Z —aryj XM: <Z> (mgp))“_”(—jal)”

k=0

ar—1 I
(p> Z ( ) (P) B N( )f@Méﬁ)()\—m).

g

Remark 3.6. Apostol-Bernoulli polynomials are also related to Hurwitz-Lerch Zeta
functions, defined by the infinite series

0 k
z
D(z,,8) = E TN R
— (a+ k)

where a, z € C with R(a) > 0, |2] <1, 2 # 0, and R(s) > 1 (s € C). When |z| =1,

for a non-negative integer n,

Bn_t,_l(Oé, Z)

@ — = —
(2,0, —n) n+1
Namely, when A = €™V =12 since

Bn+1(047 e27r\/?lz)
n+1

¢(Zv «, *n) ==

)
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the p-Sylvester weighted sum can be expressed by using the Lipschitz-Lerch Zeta
function ([3, p.161]), defined by

> e2k:7r\/ 1z

Wz08) =D R

=0

Corollary 3.7. Let k, p and p be integers with k > 2, p >0 and p > 1, and |z| < 1
with a1z € Z.. Then we have

a1—1
;Me)%ﬁz Z 6277\/7,”(1’) Z (H) (mz(p)),u—n(_al),«v

K
=0 k=0
X (—qb(falz, li,—kK) + ¢(—ay2,0, f/-c)) .

When A = {a,b} in Theorem 3.5, we have a different expression of Proposition
3.2.

Corollary 3.8. Let p and p be integers with p > 0 and pu > 1, and A be a real with
A% £ 1. Then we have

a—1 H
ab+7 2 1 K K " -
Z Jpabib Z_% (m) (pab+ jb)" " (~a) My 0 (A7)

Z ApabJrjb ZM: 2 (pab + jb),u—n(_a)m
= —\k k41

(ATPebme bl B, 1 (pb + Lib/a) , A7) = Brsn (0,47%)

Q

X

Proof. Since

(»)

My — 70
bey = —"
1 .
= - <pab—|—jb—jb+a VbJ)
a a
b
2]
a
by rearranging the order of the summation in Theorem 3.5, we get the desired
result. O

4. VORONOI TYPE SUMS

n [1] Agoh studied Voronoi type congruence, including the sum of the type

)
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We study a more general Voronoi type sum:

o kb |\
Vm,n(av b7p) L= ka <bp+ \‘GJ>
k=1

= <Z> (bp)™ " Vi (a,b) .

v=1
This sum can be expressed as a function of p-gaps and Mirimanoff polynomials.
Theorem 4.1. We have
-1
1 n TT i ris xpm) [ —b30 il
TP SR R B | TSI ,
lg++lg_1=n =0
1gyslg—1>0
where (lo "la ) = ﬁ is the multinomial coefficient. In particular, we have

a—1

Vi (a.b.p) = ich @ ()

—b
i=1 G —

Proof. We have

., . a1 ‘
Vinn(a,b,p) = Z > (lmfla1)621’@—5’“11005<<;>

=1 o+ +lg—1=
1gslg—1>0
- > H ()T hnG
a™ lo,... e
lO+"'+la71:n k=1
10s-slq—1>0
1 n a—1 Z“ 1
—_ C’lz 1 M(m) i=0 ¢
a” Z <lo,... lo— 1>H p(a) a=1 C
Lo+ Flg—1=n =0
10+ slg—1>0

In particular, when n = 1, we have

a—1
1 i m) [ ~—bi
Viala,b,p) = = " GCM™ () -
i=0
Furthermore, when m =n =1, by
—1)(b—-1
Cy(1) = abp+ L= DO =1 )2( )

and
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1
G —1
with
1
M) -1
a 2
we have

a—1
Via(a,b,p) = % Z Cp(C) MY, (C;bi)
i=0

a—1 i a— a— .
55 0y, 10D,

_b'
i=1 G =1 2
O
Proposition 4.2. We have
a—1 a—1 i
bk a1 v
R
—o L@ @ =1
Proof. By (2.3), we have
a—1 bk 1 a—1 a—1
ik E_ = k —ibk i
> (o4 | %)) = St Y Gy
k=0 k=0  i=0
1 a—1 ' a—1 .
== Go(6) Y (G )
i=0 k=0
a—1 i
_ LUa — ]. Z CP(C )
o ZGatr—1
O
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