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2. Main results

Let (Y, ∥ · ∥) be a Banach space and I ⊂ R be an interval. Denote by B be the
closed unit ball in Y and by n(Y ) the family of all nonempty subsets of Y . Assume
that c ∈ R. We say that a set-valued map G : I → n(Y ) is convex with modulus c
if

(2.1) tG(x1) + (1− t)G(x2) + ct(1− t)(x1 − x2)
2B ⊂ G(tx1 + (1− t)x2)

for all x1, x2 ∈ I and t ∈ [0, 1]. Clearly, the usual notion of convex set-valued maps
corresponds to relation (2.1) with c = 0. If c > 0, then condition (2.1) defines
strongly convex set-valued maps with modulus c introduced by Huang [3] (see also
[5]). Since B = −B, condition (2.1) for c and −c is the same. So, for c < 0 we get
also the class of strongly convex set-valued maps (with modulus | c |). It is worth
noting that this situation (i.e. for set-valued maps), is slightly different from that
for single-valued ones. A function f : I → R is called convex with modulus c (cf.
Gilányi at al. [2]) if

(2.2) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2

for all x, y ∈ I and t ∈ [0, 1]. Obviously, for c = 0 this is the definition of convex
functions. If f satisfies (2.2) with c > 0, it is strongly convex with modulus c, while,
in the case when c < 0, we obtain a kind of approximate convexity (semi-convexity).

In what follows (Y, ∥ ·∥) is a separable Banach space and B is the closed unit ball
in Y . We denote by cl(Y ) the family of all closed nonempty subsets of Y . Assume
that (Ω,A, P ) is a probability space with a nonatomic measure P and I ⊂ R is
an open interval. We denote by E[X] and D2[X] the expectation and variance of
a random variable X, respectively. For a given set-valued map G : Ω → n(Y )
the integral

∫
ΩG(ω)dP is understood in the sense of Aumann, i.e. it is the set of

integrals of all integrable (in the sense of Bochner) selections of the map G. A set-
valued map G : Ω → n(Y ) is called integrable bounded if there exists a nonnegative
integrable function k : Ω → R such that G(ω) ⊂ k(ω)B, for all ω ∈ Ω.

Recently counterparts of Ohlin’s theorem for convex and strongly convex set-
valued maps were proved in [8] and [4], respectively. We can reformulate both these
results as:

Theorem 2.1. Let c ∈ R. Assume that X1, X2 : Ω → I are square integrable
random variables such that E[X1] = E[X2]. If for some t0 ∈ R condition (1.1)
holds, then

(2.3)

∫
Ω
G
(
X2(ω)

)
dP + c

(
D2[X2]− D2[X1]

)
B ⊂

∫
Ω
G
(
X1(ω)

)
dP.

for every integrable bounded set-valued map G : I → cl(Y ) convex with modulus c.

As an example of possible application of the above Ohlin type theorem we present
a counterpart of the classical Hermite-Hadamard double inequality for set-valued
maps convex with a modulus c ∈ R. It is an extension of the result obtained in [8]
for c = 0 (cf. also [6]). Other examples of this type one can find in [8] and [4].
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Theorem 2.2. Let G : I → cl(Y ) be an integrable bounded set-valued map convex
with a modulus c ∈ R. Assume that [a, b] ⊂ I and µ is a Borel measure on [a, b]

with µ([a, b]) > 0. Denote by sµ = 1
µ([a,b])

∫ b
a x dµ(x) the barycenter of µ on [a, b].

Then

(2.4)
1

µ([a, b])

∫ b

a
G(x) dµ(x) + c

( 1

µ([a, b])

∫ b

a
x2 dµ(x)− s2µ

)
B ⊂ G(sµ)

and

(2.5)
b− sµ
b− a

G(a) +
sµ − a

b− a
G(b)

+ c
(
(b− sµ)(sµ − a) + s2µ − 1

µ([a, b])

∫ b

a
x2 dµ(x)

)
B

⊂ 1

µ([a, b])

∫ b

a
G(x) dµ(x).

Proof. By the mean value theorem sµ ∈ [a, b]. Assume that (Ω,A, P ) is a probability
space with a nonatomic measure P and take random variables X1, X2, X3 : Ω →
[a, b] with the distributions

µX1 = δxµ , µX2 =
b− sµ
b− a

δa +
sµ − a

b− a
δb, µX3 =

1

µ([a, b])
µ.

Then the distribution functions FX1 , FX3 and FX3 , FX2 satisfy condition (1.1) as
well as E[X1] = sµ = E[X3] and E[X3] = sµ = E[X2] . We have also∫

Ω
G
(
X1(ω)

)
dP = G(sµ),

∫
Ω
G
(
X2(ω)

)
dP =

b− sµ
b− a

G(a) +
sµ − a

b− a
G(b)

and ∫
Ω
G
(
X3(ω)

)
dP =

1

µ([a, b])

∫ b

a
G(x) dµ(x).

Moreover,

D2[X1] = 0, D2[X2] =
b− sµ
b− a

a2 +
sµ − a

b− a
b2 − s2µ = (b− sµ)(sµ − a)

and

D2[X3] =
1

µ([a, b])

∫ b

a
x2 dµ(x)− s2µ.

Hence, applying Theorem 2.1 for X1, X3 and for X3, X2, we obtain (2.4) and (2.5).

□
If µ in Theorem 2.2 is the Lebesgue measure on [a, b], then µ([a, b]) = b− a and

sµ = a+b
2 . Moreover, for the random variables X1, X2, X3 appearing in the proof

we have

D2[X1] = 0, D2[X2] =

(
b− a+ b

2

)(
a+ b

2
− a

)
=

1

4
(b− a)2
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and

D2[X3] =
1

b− a

∫ b

a
x2 dx−

(a+ b

2

)2
=

1

12
(b− a)2.

Therefore, as a consequence of Theorem 2.2 we get the following Hermite-Hadamard
type inclusions obtained for strongly convex set-valued maps in [9] (cf. also [4]).

Corollary 2.3. If a set-valued map G : I → cl(Y ) is convex with modulus c ∈ R
and integrable bounded, then

1

b− a

∫ b

a
G(x)dx+

c

12
(a− b)2B ⊂ G

(
a+ b

2

)
and

G(a) +G(b)

2
+

c

6
(a− b)2B ⊂ 1

b− a

∫ b

a
G(x)dx

for any a, b ∈ I, a < b. In particular, if c = 0, then

G(a) +G(b)

2
⊂ 1

b− a

∫ b

a
G(x)dx ⊂ G

(
a+ b

2

)
for any a, b ∈ I, a < b.

Now we will show that the converse Ohlin’s theorem for set-valued maps also
holds.

Theorem 2.4. Let G : I → cl(Y ) be a given set-valued map and c ∈ R. If for any
discrete random variables X1, X2 : Ω → I satisfying E[X1] = E[X2] and condition
(1.1) with some t0 ∈ R, we have

(2.6)

∫
Ω
G
(
X2(ω)

)
dP + c

(
D2[X2]− D2[X1]

)
B ⊂

∫
Ω
G
(
X1(ω)

)
dP.

then G is convex with modulus c.

Proof. Let G : I → cl(Y ) be a given set-valued map. Fix any x1, x2 ∈ I and
t ∈ (0, 1). Consider two random variables X1, X2 : Ω → I with the distributions
µX1 = δtx1+(1−t)x2

and µX2 = tδx1 + (1− t)δx2, respectively. Then

E[X1] = tx1 + (1− t)x2 = E[X2]

and, moreover, the distribution functions FX1 , FX2 satisfy condition (1.1) with t0 =
E[X1]. Therefore G satisfies (2.6). Note that

D2[X1] = E[(X1)
2]−

(
E[X1]

)2
= 0

and

D2[X2] = E[(X2)
2]−

(
E[X2]

)2
= tx21 + (1− t)x22 −

(
tx1 + (1− t)x2

)2
= t(1− t)(x1 − x2)

2.

Moreover, ∫
Ω
G
(
X1(ω)

)
dP = G

(
tx1 + (1− t)x2

)
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and ∫
Ω
G
(
X2(ω)

)
dP = tG(x1) + (1− t)G(x2).

Therefore, by (2.6), we obtain

tG(x1) + (1− t)G(x2) + ct(1− t)(x1 − x2)
2B ⊂ G(tx1 + (1− t)x2),

which proves that G is convex with modulus c. □

Remark 2.5. In fact, in Theorem 2.4 it is enough to assume that condition (2.6)
holds for any random variables X1, X2 with distributions concentrated at one or
two points, satisfying E[X1] = E[X2] and condition (1.1).

It is known that a function f : I → R is convex if and only if for every random
variable X taking values in I the following Jensen’s inequality holds:

f
(
E[X]

)
≤ E[f(X)].

In [14] Rajba and Wa̧sowicz extended this classical result to strongly convex func-
tions proving that f : I → R is strongly convex with modulus c > 0 if and only if
for every random variable X taking values in I

f
(
E[X]

)
≤ E[f(X)]− cD2[X].

As a consequence of Theorems 2.2, we obtain the following counterpart of these
results for set-valued maps convex with modulus c. For c = 0 analogous character-
ization was given in [8].

Corollary 2.6. An integrable bounded set-valued map G : I → cl(Y ) is convex with
modulus c ∈ R if and only if

(2.7)

∫
Ω
G
(
X(ω)

)
dP + cD2[X]B ⊂ G

(∫
Ω
X(ω)dP

)
,

for every square integrable random variable X : Ω → I.

Proof. Assume first that G : I → cl(Y ) is convex with modulus c and fix a square
integrable random variable X : Ω → I. Take a random variable X1 : Ω → I with
the distribution µX1 = δE[X]. Then E[X1] = E[X] and the distribution functions
FX1 and FX satisfy condition (1.1). Therefore, by Theorem 2.2, we obtain

(2.8)

∫
Ω
G
(
X(ω)

)
dP + c

(
D2[X]− D2[X1]

)
B ⊂

∫
Ω
G
(
X1(ω)

)
dP.

Since D2[X1] = 0 and∫
Ω
G
(
X1(ω)

)
dP = G

(
E[X]

)
= G

(∫
Ω
X(ω)dP

)
,

by (2.8) we obtain (2.7).

Conversely, assume now that G satisfies condition (2.7). Fix any x1, x2 ∈ I
and t ∈ (0, 1). Consider a random variable X : Ω → I with the distributions
µX = tδx1 + (1 − t)δx2. Then

∫
ΩX(ω)dP = tx1 + (1 − t)x2 and

∫
ΩG

(
X(ω)

)
dP =
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tG(x1) + (1 − t)G(x2). Moreover, D2[X] = t(1 − t)(x1 − x2)
2. Therefore, by (2.7),

we obtain

tG(x1) + (1− t)G(x2) + ct(1− t)(x1 − x2)
2B ⊂ G(tx1 + (1− t)x2),

which shows that G is convex with modulus c.
□
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