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RLDµ
a−, as follows (see, for example, [4, Chapter 13], [14, pp. 69–70] and [21]):

(1.1)
(
RLIµa+f

)
(x) =

1

Γ(µ)

∫ x

a
(x− t)µ−1 f(t) dt

(
x > a; ℜ (µ) > 0

)
,

(1.2)
(
RLIµa−f

)
(x) =

1

Γ(µ)

∫ a

x
(t− x)µ−1 f(t) dt

(
x < a; ℜ(µ) > 0

)
and

(1.3)
(
RLDµ

a±f
)
(x) =

(
± d

dx

)n (
In−µ
a± f

)
(x)

(
ℜ (µ) ≧ 0; n = [ℜ(µ)] + 1

)
,

where the function f is locally integrable, ℜ (µ) abbreviates the real part of the
complex number µ ∈ C and [ℜ (µ)] denotes the greatest integer in ℜ (µ), and Γ(z)
is the classical (Euler’s) Gamma function of argument z, defined by

(1.4) Γ(z) :=



∫ ∞

0
e−t tz−1 dt

(
ℜ(z) > 0

)
Γ(z + n)
n−1∏
j=0

(z + j)

(
z ∈ C \ Z−

0 ; n ∈ N
)
,

which happens to be one of the most fundamental and the most useful special
functions of mathematical analysis, N, N0 and Z−

0 being the sets of positive, non-
negative and non-positive integers, respectively.

Such Eulerian integrals as in the definition (1.4) occur also in defining the familiar
operator L of the Laplace transform as follows:

(1.5) L{f(τ) : s} :=

∫ ∞

0
e−sτ f(τ) dτ =: F (s)

(
ℜ(s) > 0

)
,

where the function f(τ) is so constrained that the Eulerian integral in (1.5) exists.
In the case of the right-sided Riemann-Liouville fractional derivative operator

RLDµ
0+ of order µ in the definition (1.3), it is readily seen that (see, for example, [20,

p. 105, Eq. (2.248)])

(1.6) L
{(

RLD
µ
0+f

)
(t) : s

}
= sµ F (s)−

n−1∑
k=0

sk
(
RLD

µ−k−1
0+ f

)
(0+)

(
n− 1 < ℜ(µ) < n; n ∈ N

)
or, equivalently, that (see, for example, [14, p. 84, Eq. (2.2.37)])

L
{(

RLD
µ
0+f

)
(t) : s

}
= sµ F (s)−

n−1∑
k=0

sn−k−1 dk

dtk

{(
RLI

n−µ
0+ f

)
(t)
} ∣∣∣∣

t=0

= sµ F (s)−
n−1∑
k=0

sk
dn−k−1

dtn−k−1

{(
RLI

n−µ
0+ f

)
(t)
} ∣∣∣∣

t=0

(1.7)

(
n− 1 < ℜ(µ) < n; n ∈ N

)
,
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where, for convenience,(
RLD

µ−k−1
0+ f

)
(0+) := lim

t→0+

{(
RLD

µ−k−1
0+ f

)
(t)
}
=:
(
RLD

µ−k−1
0+ f

)
(t)

∣∣∣∣
t=0

and

dk

dtk

{(
RLI

n−µ
0+ f

)
(t)
} ∣∣∣∣

t=0

:= lim
t→0+

dk

dtk

{(
RLI

n−µ
0+ f

)
(t)
}

=:
dk

dtk

{(
RLI

n−µ
0+ f

)
(0+)

}
(k ∈ {0, 1, 2, . . . , n− 1}).

On the other hand, for the ordinary derivative f (n)(t) of order n ∈ N0, it is known
that

(1.8) L
{
f (n)(t) : s

}
= sn F (s)−

n−1∑
k=0

sk f (n−k−1) (t)

∣∣∣∣∣
t=0

(n ∈ N0)

or, equivalently, that

(1.9) L
{
f (n)(t) : s

}
= sn F (s)−

n−1∑
k=0

sn−k−1 f (k) (0+) (n ∈ N0),

where, as well as in all of such situations in this paper, an empty sum is to be
interpreted as 0.

It should be remarked here that, upon comparing the Laplace transform formulas
(1.6) and (1.8), it is observed that the initial values such as those that occur in (1.6)
are usually not interpretable physically in a given initial-value problem. Besides,
unfortunately, the Riemann-Liouville fractional derivative of a constant is not zero.
Some of these and other situations and disadvantages are overcome at least partially
by means of the Liouville-Caputo fractional derivative which was considered in an
earlier work dated 1832 by Joseph Liouville (1809–1882) [16, p. 10] and which has
arisen in several important recent works, dated 1969 onwards, by Michele Caputo
(see, for details, [20, p. 78 et seq.]; see also [14, p. 90 et seq.] and [5]).

In many recent works, especially in the theory of visco-elasticity and in hereditary
solid mechanics, the following type of the definition dated 1832 of Liouville [16] and
the definition dated 1969 of Caputo [2] is adopted for the fractional derivative of
order µ

(
ℜ(µ) ≧ 0

)
of a causal function f (t), that is,

f (t) = 0 (t < 0),

given by

dµ

dxµ
{f(x)} =

(
LCDµ

0+f
)
(x)

:=


f (n)(x) (µ = n ∈ N0)

1

Γ(n− µ)

∫ x

0

f (n) (t)

(x− t)µ−n+1 dt
(
n− 1 < ℜ(µ) < n; n ∈ N

)
,

(1.10)



2650 H. M. SRIVASTAVA

where

(1.11) n =

 [ℜ(µ)] + 1 (µ ̸= N0)

µ (µ ∈ N0),

f (n)(t) denotes, as before, the usual (ordinary) derivative of f(t) of order n and Γ
is the familiar (Euler’s) Gamma function defined by (1.4).

Unlike the Laplace transform formula (1.6) for the Riemann-Liouville fractional
derivative

(
RLD

µ
0+f

)
(t), the following analogous formula holds true for the Liouville-

Caputo fractional derivative
(
LCD

µ
0+f

)
(t) defined by (1.10) (see, for example, [20, p.

80, Eq. (2.140)]; see also [14, p. 98, Eq. (2.4.62)]):

L
{(

LCD
µ
0+f

)
(t) : s

}
= sµ F (s)−

n−1∑
k=0

sµ−k−1 dk

dtk
{f (t)}

∣∣∣∣∣
t=0

= sµ F (s)−
n−1∑
k=0

sµ−k−1 f (k)(0+)(1.12)

(
n− 1 < ℜ(µ) ≦ n; n ∈ N

)
,

which does have the distinct advantage that, just as in the Laplace transform for-
mula (1.8) or (1.9), the initial values at the lower terminal t = 0 involve the ordinary

derivative f (k)(t) of integer order k given by

k ∈ {0, 1, 2, . . . , n− 1} (n ∈ N).

We turn now to an interesting two-parameter family of fractional derivatives of
order µ (0 < µ < 1) and type ν (0 ≦ ν ≦ 1), which was introduced and studied
recently by Hilfer in the following form (see [7], [8] and [9]; see also [10] and [42]).
Indeed, the right-sided Hilfer fractional derivative HDµ,ν

a+ and the left-sided Hilfer

fractional derivative HDµ,ν
a− of order µ (0 < µ < 1) and type ν (0 ≦ ν ≦ 1) with

respect to x are defined, in terms of the Riemann-Liouville fractional integrals in
(1.1) and (1.2), by

(1.13)
(
HDµ,ν

a± f
)
(x) =

(
± RLI

ν(1−µ)
a±

d

dx

(
RLI

(1−ν)(1−µ)
a± f

))
(x) ,

where it is tacitly assumed that the second member of (1.13) exists.

The generalization in the equation (1.13) yields the classical Riemann-Liouville
fractional derivative operator when ν = 0. Moreover, in the case when ν = 1,
it leads to the fractional derivative operator introduced by Liouville [16, p. 10],
which is quite frequently attributed to Caputo [2], but which should more appropri-
ately be referred to as the Liouville-Caputo fractional derivative, giving due credits
to Joseph Liouville (1809–1882) who considered such fractional derivatives many
decades earlier in 1832 (see [16]). Many authors (see, for example, [18] and [41])
called the general two-parameter operators in (1.13) the Hilfer fractional derivative

operators. Several applications of the Hilfer fractional derivative operators Dα,β
a±

can indeed be found in [9] (see also [24] and [25]).
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By applying the formulas (1.1) and (1.2), together with the equation (1.3), we
find for the fractional derivative operator HDµ,ν

a± that(
HDµ,ν

a± f

)
(x) =

(
± RLI

ν(1−µ)
a±

(
RLIµ+ν−µν

a± f

))
(x)(1.14)

(
0 < µ < 1; 0 ≦ ν ≦ 1

)
.

The difference between fractional derivatives of different types becomes clearer
from their Laplace transformations. For the right-sided Hilfer fractional derivative
operator HDµ,ν

0+ of order µ and type ν in the definition (1.13), it is readily seen
from the relationships in (1.13) and (1.14) with 0 < µ < 1 and 0 ≦ ν ≦ 1 that

(1.15) L
{(

HD
µ,ν
0+ f

)
(t) : s

}
= sµ L{f(t) : s} − sν(µ−1)

(
RLI

(1−ν)(1−µ)
0+ f

)
(0+)(

0 < µ < 1; 0 ≦ ν ≦ 1
)
,

where (
RLI

(1−ν)(1−µ)
0+ f

)
(0+)

is the Riemann-Liouville fractional integral of order (1−ν)(1−µ), which is evaluated
in the limit when t → 0+ just as we have already explained above.

Here, in this article, we investigate some general families of hybrid-type fractional-
order kinetic equations involving the Hilfer derivative operator HDµ,ν

0+ , which is
given above by the equation (1.13), as well as including a remarkably general class
of functions as a part of the non-homogeneous term. The main results, which are
established here, are stated as Theorem 3.1, Theorem 3.3 and Theorem 3.4 in this
article. Each of these main results is capable of producing solutions of a significantly
large number of relatively simpler fractional-order kinetic equations. Some of this
deductions from the main results (Theorem 3.1, Theorem 3.3 and Theorem 3.4 in
this article) are presented here as corollaries and consequences.

2. Conventions, definitions and preliminary results

In this section, we choose first to remark that most (if not all) of the various
claimed one-variable and multi-parameter (or multi-index) “generalizations” of the
familiar Mittag-Leffler function Eα(z) and its two-parameter extension Eα,β(z),
which are defined as follows:

(2.1) Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
and Eα,β (z) :=

∞∑
k=0

zk

Γ(αk + β)(
z, α, β ∈ C; ℜ(α) > 0

)
,

are no more than fairly obvious specialized or limit cases of the substantially much
more general Fox-Wright function pΨq (p, q ∈ N0) or pΨ

∗
q (p, q ∈ N0). As a matter

of fact, the familiar and widely-investigated Fox-Wright function pΨq (p, q ∈ N0) or

pΨ
∗
q (p, q ∈ N0) happens to be the Fox-Wright generalization of the relatively more

familiar hypergeometric function pFq (p, q ∈ N0), with p numerator parameters
a1, . . . , ap and q denominator parameters b1, . . . , bq such that

aj ∈ C (j = 1, . . . , p) and bj ∈ C \ Z−
0 (j = 1, . . . , q).
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These general Fox-Wright functions pΨq (p, q ∈ N0) and pΨ
∗
q (p, q ∈ N0) are

indeed defined by (see, for details, [3, p. 183] and [39, p. 21]; see also [13, p.
65], [14, p. 56] and [23])

pΨ
∗
q

 (a1, A1) , . . . , (ap, Ap) ;

(b1, B1) , . . . , (bq, Bq) ;
z


:=

∞∑
n=0

(a1)A1n
. . . (ap)Apn

(b1)B1n
. . . (bq)Bqn

zn

n!

=
Γ (b1) . . .Γ (bq)

Γ (a1) . . .Γ (ap)
pΨq

 (a1, A1) , . . . , (ap, Ap) ;

(b1, B1) , . . . , (bq, Bq) ;
z

(2.2)

(
ℜ(Aj) > 0 (j = 1, . . . , p) ; ℜ(Bj) > 0 (j = 1, . . . , q) ;

1 + ℜ
( q∑

j=1

Bj −
p∑

j=1

Aj

)
≧ 0

)
,

where, and elsewhere in this article, (λ)ν denotes the general Pochhammer symbol
or the shifted factorial, since

(1)n = n! (n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . . }),

which is defined
(
for λ, ν ∈ C and in terms of familiar Gamma function in the

equation (1.4)
)
by

(2.3) (λ)ν :=
Γ (λ+ ν)

Γ (λ)
=

 1 (ν = 0;λ ∈ C \ {0})

λ (λ+ 1) . . . (λ+ n− 1) (ν = n ∈ N;λ ∈ C) ,

in which we have assumed conventionally that (0)0 := 1 and understood tacitly that
the Γ-quotient exists. In general, we suppose that

aj , Aj ∈ C (j = 1, . . . , p) and bj , Bj ∈ C (j = 1, . . . , q)

and that the equality in the convergence condition in the definition (2.2) holds true
only for suitably-bounded values of |z| given by

|z| < ∇ :=

 p∏
j=1

A
−Aj

j

 ·

 q∏
j=1

B
Bj

j

 .

The above-mentioned generalized hypergeoemtric function pFq (p, q ∈ N0),
with p numerator parameters a1, . . . , ap and q denominator parameters b1, . . . , bq,
happens to be a widely- and extensively-investigated and potentially useful special
case of the general Fox-Wright function pΨq (p, q ∈ N0) when

Aj = 1 (j = 1, . . . , p) and Bj = 1 (j = 1, . . . , q).
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We find it to be important to turn now to a series of monumental works (see,
for example, [43], [44] and [45]) by Sir Edward Maitland Wright (1906–2005). For-
tunately (for me, of course), during my visit to the University of Aberdeen in the
year 1976, I had the privilege to have met and discussed with Sir Wright researches
emerging from his publications on hypergeometric and related functions. In fact, as
long ago as 1940, Sir Wright introduced and systematically studied the asymptotic
expansion of the following Taylor-Maclaurin series (see [43, p. 424]):

(2.4) Eα,β(ϕ; z) :=

∞∑
n=0

ϕ(n)

Γ(αn+ β)
zn

(
α, β ∈ C; ℜ(α) > 0

)
,

where ϕ(t) is a function satisfying suitable conditions. Remarkably, it was my proud
privilege to have also met many times and discussed mathematical researches, espe-
cially on various families of higher transcendental functions and related topics, with
my Canadian colleague, Charles Fox (1897–1977) of birth and education in Eng-
land, both at McGill University and Sir George Williams University (now Concordia
University) in Montréal, mainly during the 1970s (see, for details, [23]).

The above-cited contributions by Sir Wright were motivated essentially by the
earlier developments reported for simpler cases by Magnus Gustaf (Gösta) Mittag-
Leffler (1846–1927) in 1905, Anders Wiman (1865–1959) in 1905, Ernest William
Barnes (1874–1953) in 1906, Godfrey Harold Hardy (1877–1947) in 1905, George
Neville Watson (1886–1965) in 1913, Charles Fox (1897–1977) in 1928, and other au-
thors. In particular, the aforementioned work [1] by Bishop Ernest William Barnes
(1874–1953) of the Church of England in Birmingham considered the asymptotic
expansions of functions in the class which is defined below:

(2.5) E
(κ)
α,β(s; z) :=

∞∑
n=0

zn

(n+ κ)s Γ(αn+ β)

(
α, β ∈ C; ℜ(α) > 0

)
for suitably-restricted parameters κ and s. Clearly, we have the following relation-
ship:

lim
α→0

{
E

(κ)
α,β(s; z)

}
=

1

Γ(β)
Φ(z, s, κ)

with the classical Lerch transcendent (or the Hurwitz-Lerch zeta function) Φ(z, s, κ)
defined by (see, for example, [3, p. 27, Eq. 1.11 (1)]; see also [37] and [38])

(2.6) Φ(z, s, κ) :=
∞∑
n=0

zn

(n+ κ)s(
κ ∈ C \ Z−

0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1
)
.

The Hurwitz-Lerch zeta function Φ(z, s, κ) defined by (2.6) contains, as its special
cases, not only the Riemann zeta function ζ(s) and the Hurwitz (or generalized)
zeta function ζ(s, κ):

(2.7) ζ(s) :=

∞∑
n=1

1

ns
= Φ(1, s, 1) and ζ(s, κ) :=

∞∑
n=0

1

(n+ κ)s
= Φ(1, s, κ),
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and the Lerch zeta function ℓs(ξ) defined by (see, for details, [3, Chapter I] and [37,
Chapter 2])

(2.8) ℓs(ξ) :=

∞∑
n=1

e2nπiξ

ns
= e2πiξ Φ

(
e2πiξ, s, 1

)
(
i =

√
−1; ξ ∈ R; ℜ(s) > 1

)
,

but also such other important functions of Analytic Number Theory as the Polylog-
arithmic function (or the de Jonquière’s function) Lis(z):

(2.9) Lis(z) :=
∞∑
n=1

zn

ns
= z Φ(z, s, 1)

(
s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1

)
and the Lipschitz-Lerch zeta function (see [37, p. 122, Eq. 2.5 (11)]):

(2.10) ϕ(ξ, κ, s) :=

∞∑
n=0

e2nπiξ

(n+ κ)s
= Φ

(
e2πiξ, s, κ

)
=: L (ξ, s, κ)

(
κ ∈ C \ Z−

0 ; ℜ(s) > 0 when ξ ∈ R \ Z; ℜ(s) > 1 when ξ ∈ Z
)
,

which was first studied by Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–
1922) in connection with Dirichlet’s famous theorem on primes in arithmetic pro-
gressions (see, for details, [27] and [28]).

A natural unification and generalization of the Fox-Wright function pΨ
∗
q defined

by (2.2) as well as the Hurwitz-Lerch zeta function Φ(z, s, κ) defined by (2.6) was
indeed accomplished by introducing essentially arbitrary numbers of numerator and
denominator parameters in the definition (2.6). For this purpose, in addition to the
symbol ∇∗ defined by

(2.11) ∇∗ :=

 p∏
j=1

ρ
−ρj
j

 ·

 q∏
j=1

σ
σj

j

 ,

the following notations will be employed:

(2.12) ∆ :=

q∑
j=1

σj −
p∑

j=1

ρj and Ξ := s+

q∑
j=1

µj −
p∑

j=1

λj +
p− q

2
.

Then the extended Hurwitz-Lerch zeta function

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(z, s, κ)

is defined by (see [40, p. 503, Equation (6.2)]; see also [26] and [38])

(2.13) Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp;µ1,...,µq

(z, s, κ) :=
∞∑
n=0

p∏
j=1

(λj)nρj

n! ·
q∏

j=1
(µj)nσj

zn

(n+ κ)s

(
p, q ∈ N0; λj ∈ C (j = 1, . . . , p); κ, µj ∈ C \ Z−

0 (j = 1, . . . , q);
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ρj , σk ∈ R+ (j = 1, . . . , p; k = 1, . . . , q);∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and ℜ(Ξ) > 1

2
when |z| = ∇∗

)
.

An interesting and potentially useful family of the λ-generalized Hurwitz-Lerch
zeta functions, which further extend the multi-parameter Hurwitz-Lerch zeta func-
tion

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(z, s, κ)

defined by (2.13), was introduced and investigated systematically by Srivastava
[26], who discussed their potential application in Number Theory by appropriately
constructing a presumably new continuous analogue of Lippert’s Hurwitz measure
and also considered some other statistical applications of these families of the λ-
generalized Hurwitz-Lerch zeta functions in probability distribution theory (see also
the references to several related earlier works cited by Srivastava [26]).

We now introduce some general families of the Riemann-Liouville type fractional
integrals and fractional derivatives by making use of the following interesting unifi-
cation of the definitions in (2.4), (2.5) and (2.13) for a suitably-restricted function
φ(τ) given by

(2.14) Eα,β(φ; z, s, κ) :=
∞∑
n=0

φ(n)

(n+ κ)s Γ(αn+ β)
zn

(
α, β ∈ C; ℜ(α) > 0

)
,

where the parameters α, β, s and κ are appropriately constrained as above. The
resulting general right-sided fractional integral operator Iµ

a+(φ; z, s, κ, ν) and the
general left-sided fractional integral operator Iµ

a−(φ; z, s, κ, ν), and the correspond-
ing fractional derivative operators

Dµ
a+(φ; z, s, κ, ν) and Dµ

a−(φ; z, s, κ, ν),

each of the Riemann-Liouville type, are defined by (see, for details, [30], [31], [32]
and [22, Chapter 1])

(2.15)
(
Iµ
a+(φ; z, s, κ, ν)f

)
(x) =

1

Γ(µ)

∫ x

a
(x− t)µ−1 Eα,β

(
φ; z(x−t)ν , s, κ

)
f(t) dt(

x > a; ℜ (µ) > 0
)
,

(2.16)
(
Iµ
a−(φ; z, s, κ, ν)f

)
(x) =

1

Γ(µ)

∫ a

x
(t− x)µ−1 Eα,β

(
φ; z(t−x)ν , s, κ

)
f(t) dt(

x < a; ℜ (µ) > 0
)

and

(2.17)
(
Dµ

a±(φ; z, s, κ, ν)f
)
(x) =

(
± d

dx

)n (
In−µ
a± (φ; z, s, κ, ν)f

)
(x)(

ℜ (µ) ≧ 0; n = [ℜ (µ)] + 1
)
,
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where the function f is in the space L(a, b) of Lebesgue integrable functions on a
finite closed interval [a, b] (b > a) of the real line R given by

(2.18) L(a, b) =

{
f : ∥f∥1 =

∫ b

a
|f (x)| dx < ∞

}
,

it being tacitly assumed that, in situations such as those occurring in conjunction
with the usages of the definitions in (2.15), (2.16) and (2.17), the point a in all such
function spaces as (for example) the function space L(a, b) coincides precisely with
the lower terminal a in the integrals involved in the definitions (2.15), (2.16) and
(2.17).

Next, in terms of the operator L of the Laplace transform given by the equation
(1.5), it is easily seen for the function Eα,β

(
φ; z, s, κ

)
, defined above by the equation

(2.14), that

L
{
τµ−1 Eα,β

(
φ; zτν , s, κ

)
: s
}
=

1

sµ

∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

( z

sν

)k
(2.19)

(
min

{
ℜ(s),ℜ(µ),ℜ(ν),ℜ(α)

}
> 0
)
,

provided that each member of (2.19) exists. Obviously, upon setting µ = β and
ν = α, the Laplace transform formula (2.19) simplifies to the following form:

L
{
τβ−1 Eα,β

(
φ; zτα, s, κ

)
: s
}
=

1

sµ

∞∑
k=0

φ(k)

(k + κ)s

( z

sα

)k
(2.20)

(
min

{
ℜ(s),ℜ(α),ℜ(β)

}
> 0
)
.

In case we apply the limit formula given by

(2.21) Eα,β(ϕ; z) = lim
s→0

{Eα,β(φ; z, s, κ)}
∣∣
φ≡ϕ

or, alternatively, if we make use of the definitions in (2.4) and (1.5), we find for
Wright’s function Eα,β

(
ϕ; z
)
that

L
{
τµ−1 Eα,β

(
ϕ; zτν

)
: s
}
=

1

sµ

∞∑
k=0

ϕ(k) Γ(νk + µ)

Γ(αk + β)

( z

sν

)k
(2.22)

(
min

{
ℜ(s),ℜ(µ),ℜ(ν),ℜ(α)

}
> 0
)
,

which, in the special case when ν = α and µ = β, yields

L
{
τβ−1 Eα,β

(
ϕ; zτα

)
: s
}
=

1

sβ

∞∑
k=0

ϕ(k)
( z

sα

)k
(2.23)

(
min

{
ℜ(s),ℜ(α),ℜ(β)

}
> 0
)
.

Moreover, in the case when the sequence {φ(n)}∞n=0 is given by

(2.24) φ(n) =

Γ(αn+ β)
p∏

j=1
(λj)nρj

n! ·
q∏

j=1
(µj)nσj

(n ∈ N0),
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the Laplace transformation formula (2.20) would yield the following result:

L
{
τµ−1 Φ

(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
zτν , s, κ

)
: s
}

=
Γ(µ)

sµ
Φ
(ν,ρ1,...,ρp;σ1,...,σq)
µ,λ1,...,λp;µ1,...,µq

( z

sν
, s, κ

)
(2.25) (

min
{
ℜ(s),ℜ(µ),ℜ(ν),ℜ(α)

}
> 0
)

for the extended Hurwitz-Lerch zeta function

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(z, s, κ)

defined by the equation (2.13).

3. General hybrid-type families of fractional-order kinetic
equations

Given an arbitrary reaction, which is characterized by a time-dependent quantity
N = N(t), it is possible to calculate the rate of change dN

dt to be a balance between
the destruction rate d and the production rate p of N , that is,

dN

dt
= −d+ p.

By means of feedback or other interaction mechanism, the destruction and the
production depend on the quantity N itself, that is,

d = d(N) and p = p(N).

Since the destruction or the production at a time t depends not only on N(t), but
also on the past history N(η) (η < t) of the variable N , such dependence is, in
general, complicated. We may formally represent this by the following equation
(see [6]):

(3.1)
dN

dt
= −d (Nt) + p (Nt) ,

where Nt denotes the function defined by

Nt (t
∗) = N (t− t∗) (t∗ > 0).

Haubold and Mathai [6] studied a special case of the equation (3.1) in the following
form:

(3.2)
dNj

dt
= −cj Nj (t) ,

that is,

(3.3)
dNj(t)

Nj(t)
= −cj dt,

with the initial condition given by

Nj (t)
∣∣
t=0

= N0,
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where Nj(t) is the number density of the species j at time t = 0 and the constant
cj > 0. This is known as a standard kinetic equation. The solution of the equation
(3.2) is readily seen to be given by

(3.4) Nj (t) = N0 e
−cjt,

which, upon integration, yields the following alternative form of the solution of the
equation (3.2) (without the subscript j):

(3.5) N (t)−N0 = c · 0D
−1
t {N (t)} ,

where 0D
−1
t is the standard (ordinary) integral operator and c is a constant of

integration.
A fractional-order generalization of the equation (3.5) is given as in the following

form (see [6]):

(3.6) N (t)−N0 = cν
(
RLIν0+N

)
(t)

in terms of the familiar right-sided Riemann-Liouville fractional integral operator
RLIν0+ of order ν defined, as in (1.1), by (see, for example, [14])

(3.7)
(
RLIν0+f

)
(t) =

1

Γ (ν)

∫ t

0
(t− u)ν−1 f (u) du

(
t > 0; ℜ (ν) > 0

)
.

For a notably large number of extensions and further generalizations of the
fractional-order kinetic equation (3.6), the interested reader should refer (for ex-
ample) to [15], [29] and [30] as well as to the other relevant references which are
cited in each of these earier publications. We propose here to investigate the solution
of a general hybrid-type family of the fractional-order kinetic equations which are
associated with the general function Eα,β(φ; z, s, κ) defined by the equation (2.14),

as well as with the Hilfer-type fractional derivative operator HDσ,ω
0+ defined by

the equation (1.13) with µ and ν replaced by σ and ω, respectively. The results
presented here are sufficiently general in character and are indeed capable of be-
ing specialized appropriately to include solutions of the corresponding (known or
new) fractional-order kinetic equations associated with a wide variety of simpler
functions.

Theorem 3.1. Let each of the parametric constraints c, µ, ν, ρ ∈ R+, 0 < σ < 1
and 0 ≦ ω ≦ 1 hold true. Suppose also that the general function Eα,β(φ; z, s, κ),
defined by the equation (2.14), exists. If we set

χ0(σ, ω) :=
(
RLI

(1−ω)(1−σ)
0+ N

)
(0+)(3.8) (

0 < σ < 1; 0 ≦ ω ≦ 1
)
,

then the solution of the following general hybrid-type family of the fractional-order
kinetic equations:

(3.9) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν , s, κ

)
= −cρ

(
HDσ,ω

0+ N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1
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·
∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+ χ0(σ, ω) t
σ+ω(1−σ)−1

·
∞∑
r=0

(−1)r

Γ
(
σ(r + 1) + ω(1− σ)

) ( tσ

cρ

)r

(t > 0),(3.10)

provided that the second member of the solution given by the equation (3.10) exists.

Proof. Under the hypotheses involving the various parametric constraints in The-
orem 3.1, we first apply the operator L of the Laplace transform on both sides of
the kinetic equation (3.9). Thus, upon setting

(3.11) N (s) := L{N(t) : s} =

∫ ∞

0
e−st N(t) dt,

we make use of the formula (2.20) and the formula (1.15) in the following form:

L
{(

HD
σ,ω
0+N

)
(t) : s

}
= sσ L{N(t) : s} − sω(σ−1)

(
RLI

(1−ω)(1−σ)
0+ N

)
(0+)

= sσ N (s)− sω(σ−1) χ0(σ, ω)(3.12) (
0 < σ < 1; 0 ≦ ω ≦ 1

)
,

where, as in the equation (3.8),(
RLI

(1−ω)(1−σ)
0+ N

)
(0+) =: χ0(σ, ω)

is the Riemann-Liouville fractional integral of order (1−ω)(1−σ), which is evaluated
in the limit when t → 0+ just as we have already explained above. We then find
that

N (s)− N0

sµ

∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

( z

sν

)k
= −cρ

[
sσ N (s)− sω(σ−1) χ0(σ, ω)

]
= −cρ sσ N (s) + cρ χ0(σ, ω) s

ω(σ−1),(3.13)

which leads us to the following result:

N (s) =
N0

1 + cρ sσ

∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sνk+µ
+

cρ χ0(σ, ω)

1 + cρ sσ
sω(σ−1).(3.14)

We now apply the series expansion given by

1

1 + cρ sσ
=

∞∑
r=0

(−1)r(
cρ sσ

)r+1 (|cρ sσ| > 1) ,

so that the equation (3.14) can be rewritten as follows:

N (s) = N0

∞∑
r=0

(−1)r

cρ(r+1)

∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β)

zk

sνk+σ(r+1)+µ
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+ χ0(σ, ω)

∞∑
r=0

(−1)r

cρr sσ(r+1)+ω(1−σ)
.(3.15)

Finally, if we invert the Laplace transforms occurring in (3.15) by means of the
following well-known identities for the operators L and L−1 of the Laplace transform
and the inverse Laplace transform, respectively:

L
{
tλ : s

}
=

Γ(λ+ 1)

sλ+1

⇐⇒ L−1

(
1

sλ+1

)
=

tλ

Γ(λ+ 1)

(
ℜ(λ) > −1; ℜ(s) > 0

)
,(3.16)

we obtain the solution (3.10) asserted by Theorem 3.1. This evidently completes
the proof of Theorem 3.1. □

Remark 3.2. The use of the general function Eα,β(φ; z, s, κ), defined by the equa-
tion (2.14), in the non-homogeneous term of the fractional-order kinetic equation
(3.9) in Theorem 3.1 provides a distinct advantage in its generality so that solutions
of other kinetic equations involving relatively simpler non-homogeneous terms can
be derived by appropriately specializing the solution (3.10) which is asserted by
Theorem 3.1. In what follows, we choose to record two relatively simpler versions
of Theorem 3.1.

Theorem 3.3. Let each of the parametric constraints c, µ, ν, ρ ∈ R+, 0 < σ < 1
and 0 ≦ ω ≦ 1 hold true. Suppose also that the general function Eα,β(ϕ; z), defined
by the equation (2.4), exists. If χ0(σ, ω) is defined by the equation (3.8), then the
solution of the following general hybrid-type family of the fractional-order kinetic
equations:

(3.17) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν

)
= −cρ

(
HDσ,ω

0+ N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1

·
∞∑
k=0

ϕ(k) Γ(νk + µ)

Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+ χ0(σ, ω) t
σ+ω(1−σ)−1

·
∞∑
r=0

(−1)r

Γ
(
σ(r + 1) + ω(1− σ)

) ( tσ

cρ

)r

(t > 0),(3.18)

it being assumed that the second member of the solution given by the equation (3.18)
exists.

Proof. Our demonstration of Theorem 3.3 is indeed analogous to that of Theorem
3.1. Here we make use of the definition (2.4) and the Laplace transform formula
(2.22). The details involved in the proof of Theorem 3.3 are being omitted here. □
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Theorem 3.4. Under the parametric constraints c, µ, ν, ρ ∈ R+, 0 < σ < 1 and
0 ≦ ω ≦ 1, let the extended Hurwitz-Lerch zeta function:

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
z, s, κ

)
,

defined by the equation (2.13), exist. If χ0(σ, ω) is defined by the equation (3.8),
then the solution of the following generalized hybrid-type fractional-order kinetic
equation:

(3.19) N (t)−N0 t
µ−1 Φ

(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
ztν , s, κ

)
= −cρ

(
HDσ,ω

0+ N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1 Γ(µ)

Γ
(
σ(r + 1) + µ

)
· Φ(ν,ρ1,...,ρp;ν,σ1,...,σq)

µ,λ1,...,λp;σ(r+1)+µ,µ1,...,µq

(
ztν , s, κ

)
+ χ0(σ, ω) t

σ+ω(1−σ)−1

·
∞∑
r=0

(−1)r

Γ
(
σ(r + 1) + ω(1− σ)

) ( tσ

cρ

)r

(t > 0),(3.20)

provided that the second member of the solution in the equation (3.20) exists.

Proof. Theorem 3.4 can be proven, along the lines which are parallel to those of
our demonstrations of Theorem 3.1 and Theorem 3.3. In this case, we apply the
definition (2.13) and the Laplace transform formula (2.25). We choose to omit the
details involved in our proof of Theorem 3.4. □

4. Corollaries and consequences

We begin this section by presenting the following sequel to Remark 3.2 of the
preceding section (Section 3).

Remark 4.1. As we observed above, since

RLDσ
0+ := HDσ,0

0+ and LCDσ
0+ := HDσ,1

0+(4.1)

for the operators of the Riemann-Liouville and the Liouville-Caputo fractional-order
derivatives, each of our main results (Theorems 3.1, 3.3 and 3.4) can be specialized
to deduce the solution of the corresponding hybrid-type fractional-order kinetic
equations involving these simpler and relatively more familiar fractional derivatives
(see, for details, [30], [35] and [36]). Here, in this section, we state each of these
corollaries and consequences of Theorems 3.1, 3.3 and 3.4. Corollaries 4.2, 4.3 and
4.4 below would follow when we appropriately apply the first relationship in (4.1).

Corollary 4.2. Let each of the parametric constraints c, µ, ν, ρ ∈ R+ and 0 < σ < 1
hold true. Suppose also that the general function Eα,β(φ; z, s, κ), defined by the
equation (2.14), exists. If we set

Υ0(σ) :=
(
RLI

1−σ
0+ N

)
(0+)

(
0 < σ < 1

)
,(4.2)
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then the solution of the following general hybrid-type family of the fractional-order
kinetic equations:

(4.3) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν , s, κ

)
= −cρ

(
RLDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1

·
∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+Υ0(σ) t
σ−1

∞∑
r=0

(−1)r

Γ
(
σ(r + 1)

) ( tσ

cρ

)r

(t > 0),(4.4)

provided that the second member of the solution given by the equation (4.4) exists.

Corollary 4.3. Let each of the parametric constraints c, µ, ν, ρ ∈ R+ and 0 < σ < 1
hold true. Suppose also that the general function Eα,β(ϕ; z), defined by the equation
(2.4), exists. If Υ0(σ) is defined by the equation (4.2), then the solution of the
following general hybrid-type family of the fractional-order kinetic equations:

(4.5) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν

)
= −cρ

(
RLDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1

·
∞∑
k=0

ϕ(k) Γ(νk + µ)

Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+Υ0(σ) t
σ−1

∞∑
r=0

(−1)r

Γ
(
σ(r + 1)

) ( tσ

cρ

)r

(t > 0),(4.6)

it being assumed that the second member of the solution given by the equation (4.6)
exists.

Corollary 4.4. Under the parametric constraints c, µ, ν, ρ ∈ R+, 0 < σ < 1 and
0 ≦ ω ≦ 1, let the extended Hurwitz-Lerch zeta function:

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
z, s, κ

)
,

defined by the equation (2.13), exist. If Υ0(σ) is defined by (4.2), then the solution
of the following generalized hybrid-type fractional-order kinetic equation:

(4.7) N (t)−N0 t
µ−1 Φ

(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
ztν , s, κ

)
= −cρ

(
HDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1 Γ(µ)

Γ
(
σ(r + 1) + µ

)
· Φ(ν,ρ1,...,ρp;ν,σ1,...,σq)

µ,λ1,...,λp;σ(r+1)+µ,µ1,...,µq

(
ztν , s, κ

)
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+Υ0(σ) t
σ−1

·
∞∑
r=0

(−1)r

Γ
(
σ(r + 1)

) ( tσ

cρ

)r

(t > 0),(4.8)

provided that the second member of the solution in the equation (3.20) exists.

Remark 4.5. In the case when we apply the second relation in the equation (4.1)
in conjunction with Theorems 3.1, 3.3 and 3.4, we are led to Corollaries 4.6, 4.7 and
4.8, respectively.

Corollary 4.6. Let each of the parametric constraints c, µ, ν, ρ ∈ R+ and 0 < σ < 1
hold true. Suppose also that the general function Eα,β(φ; z, s, κ), defined by the
equation (2.14), exists. If we set

Ξ0 = N(0+) := N(t)
∣∣
t→0+

,(4.9)

then the solution of the following general hybrid-type family of the fractional-order
kinetic equations:

(4.10) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν , s, κ

)
= −cρ

(
LCDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1

·
∞∑
k=0

φ(k) Γ(νk + µ)

(k + κ)s Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+ Ξ0

∞∑
r=0

(−1)r

Γ
(
σr + 1

) ( tσ

cρ

)r

(t > 0),(4.11)

provided that the second member of the solution in the equation (4.11) exists.

Corollary 4.7. Let each of the parametric constraints c, µ, ν, ρ ∈ R+ and 0 < σ < 1
hold true. Suppose also that the general function Eα,β(ϕ; z), defined by the equation
(2.4), exists. If Ξ0 is defined by the equation (4.9), then the solution of the following
general hybrid-type family of the fractional-order kinetic equations:

(4.12) N (t)−N0 t
µ−1 Eα,β

(
φ; ztν

)
= −cρ

(
LCDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1

·
∞∑
k=0

ϕ(k) Γ(νk + µ)

Γ(αk + β) Γ
(
νk + (r + 1)σ + µ

) (ztν)k

+ Ξ0

∞∑
r=0

(−1)r

Γ
(
σr + 1

) ( tσ

cρ

)r

(t > 0),(4.13)

it being assumed that the second member of the solution given in the equation (4.13)
exists.
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Corollary 4.8. Under the parametric constraints c, µ, ν, ρ ∈ R+ and 0 < σ < 1, let
the extended Hurwitz-Lerch zeta function:

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
z, s, κ

)
,

defined by the equation (2.13), exist. If Ξ0 is defined by the equation (3.8), then the
solution of the following generalized hybrid-type fractional-order kinetic equation:

(4.14) N (t)−N0 t
µ−1 Φ

(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(
ztν , s, κ

)
= −cρ

(
LCDσ

0+N
)
(t)

is given by

N (t) = N0 t
µ−1

∞∑
r=0

(−1)r
(
tσ

cρ

)r+1 Γ(µ)

Γ
(
σ(r + 1) + µ

)
· Φ(ν,ρ1,...,ρp;ν,σ1,...,σq)

µ,λ1,...,λp;σ(r+1)+µ,µ1,...,µq

(
ztν , s, κ

)
+ Ξ0

∞∑
r=0

(−1)r

Γ
(
σr + 1

) ( tσ

cρ

)r

(t > 0),(4.15)

provided that the second member of the solution in the equation (4.15) exists.

5. Concluding remarks and observations

In our present investigation, we have established the explicit solution of some
significantly general hybrid-type families of fractional-order kinetic equations in-
volving the Hilfer-type fractional derivative operator HDµ,ν

0+ , which is given (for
convenience) by (1.13) or (1.14) for a = 0, and also involving a remarkably gen-
eral class of functions as a part of the non-homogeneous term. Our main results
(Theorem 3.1, Theorem 3.3 and Theorem 3.4 in this article) include, as a part of
the non-homogeneous term, such general functions as the functions Eα,β

(
φ; z, s, κ

)
,

Eα,β

(
ϕ; z
)
and

Φ
(ρ1,...,ρp;σ1,...,σq)
λ1,...,λp;µ1,...,µq

(z, s, κ),

which are defined by the equations (2.14), (2.4) and (2.13), respectively. We have
also shown as to how each of these main results is indeed capable of yielding solutions
of a significantly large number of (known or new) simpler fractional-order kinetic
equations.

As corollaries and consequences of our main results (Theorem 3.1, Theorem 3.3
and Theorem 3.4 in this article), we have successfully deduced the explicit solu-
tions of the corresponding general hybrid-type families of fractional-order kinetic
equations involving the Riemann-Liouville fractional derivative operator RLDµ

0+,
which are stated as Corollaries 4.2, 4.3 and 4.4, and also the explicit solutions of
the corresponding general hybrid-type families of fractional-order kinetic equations
involving the Liouville-Caputo fractional derivative operator LCDµ

0+, which are
stated as Corollaries 4.6, 4.7 and 4.8. Each of these corollaries itself is sufficiently
general in character and can yield the solution of many relatively simpler fractional-
order kinetic equations.
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We choose to conclude this article by remarking that the current literature is
being flooded unnecessarily by seemingly amateurish-type publications in which
several obviously false and misleading claims to generalization are made by trivially
and inconsequentially introducing some parametric and argument variations in the
well-established and widely-investigated known definitions and known theories. The
following two of many such false and misleading claims are concerned with the
Eulerian integrals defining the classical (Euler’s) Gamma function in the equation
(1.4) and the classical Laplace transform in the equation (1.5).

For the first example, we can cite the so-called k-Gamma function Γk(z) with a
trivially forced-in redundant (or superfluous) parameter k by making the following
inconsequential change of the variable of integration in the integral definition in the
equation (1.4) (see, for details, [31, Section 3]):

t =
τk

k
and dt = τk−1 dτ (k > 0),

so that, upon trivially replacing the argument z by z
k (k > 0), we have

Γk(z) = k
z
k
−1 Γ

(z
k

)
:=

∫ ∞

0
τ z−1 e−

τk

k dτ
(
ℜ(z) > 0; k > 0

)
.(5.1)

It is indeed regrettable to observe further that, by replacing the classical (Euler’s)
Gamma function Γ(z) by this rather inconsequential k-Gamma function Γk(z) in
the standard definitions of the such operators of fractional calculus as (for example)
the Riemann-Liouville fractional integral and derivative operators and the Liouville-
Caputo fractional derivative operator, which we have worked with in this article,
many seemingly amateurish-type authors and researchers are being fooled or mis-
led to believe that they have produced a “generalization” of the corresponding
extensively-studied fractional integral and fractional derivative operators.

Our second example pertains to the Eulerian integral defining the classical Laplace
transform in the equation (1.5) as well as its following s-multiplied version studied
by the American transmission theorist, John Renshaw Carson (1886–1940):

(5.2) LC {f (τ) : s} := s

∫ ∞

0
e−sτ f (τ) dτ =: FLC (s) ,

which has one distinct advantage over the familiar Laplace transform in the equation
(1.5) in the fact that the Laplace-Carson transform of a constant in the equation
(5.2) is the same constant (see, for details, [19]). Remarkably, many obviously trivial
and inconsequential variations have been and continue to be made in the parameter
(or index) s or in the integration variable τ (or in both s and τ), ridiculously giving
a “new” name to each of such parametric and argument variations of the classical
Laplace transform in the equation (1.5) or its s-multiplied version in (5.2) by forcing-
in some obviously redundant (or superfluous) parameters. Some of these examples
can be found in [31, pp. 1508–1510] and in [33, Section 5, pp. 36–38] and, more
recently, in [34, pp. 2341–2346] and [36, pp. 58–60]. Yet another somehow missed-
out instance of such trivialities can be exemplified by Yang’s attempt to produce
what he called a “new” integral transform by replacing the parameter (or index)
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s in the equation (1.5) by 1
s (see, for details, [46] and [47]). Furthermore, several

presumably amateurish-type researchers are misled (or ”fooled”) by the obviously
false claims that the classical (Euler’s) Gamma function as well as its various re-
lated special functions (such as, for example, the Beta function, the hypergeometric
series and their numerous associated functions, and so on) can be ”generalized” by
making some rather trivial, redundant and inconsequential variable and/or param-
eter (index) changes in the defining integrals and series. Such demonstrably trivial
and obviously inconsequential parametric and argument variations as those that we
have recalled above continue to flood the literature merely to unnecessarily repeat
or translate the already-published remarkably successfully developments using the
original integrals and the original special functions themselves.

Finally, we recall a recent publication by Jafari [11] in which the following vari-
ation of the classical Laplace transform was shown to be useful for solving higher-
order initial-value problems, integral equations and fractional-order integral equa-
tions in just about the same way as it has already been done widely and extensively
by means of the classical Laplace transform itself (see [11, p. 134, Definition 1]):

T {f(t) : s} := p(s)

∫ ∞

0
e−q(s)t f(t) dt

=: p(s) L{f(t) : q(s)}
(
min{p(s), q(s)} > 0

)
,(5.3)

the extension of which to suitably-constrained complex-valued functions p(s) and
q(s) of s ∈ C is a trivial matter. The case of the equation (5.3) without the
obviously inconsequential multiplying factor p(s) was considered independently by
Yang [48, p. 866, Definition 7.73].

Two sequels to the above-mentioned work [11] are worth mentioning here. One
by Meddahi et al. [17] dealt essentially similarly with an analogous double-integral
version of the definition (5.3). The other by Khan and Khalid [12] trivially re-
produced the well-established theory of the classical Laplace transform itself by
simply replacing the complex parameter s

(
ℜ(s) > 0

)
by a positive real parameter

sn > 0 (n ∈ {1, 3, 5, . . . }) and they named it rather strangely and ridiculously
as “Fareeha transform”, which obviously is a special case of the so-called “Sadik
transform” (with v = s) when α = n (n ∈ {1, 3, 5, . . . )} and β = 0 (see, for de-
tails, [33, p. 38, Eq. (52)]). It is unfortunate to observe numerous erroneous and
misleading claims and statements throughout the paper [12]. All such obviously
unnecessary and demonstrably inconsequential flooding of the literature by some
amateurish-type publications with the sole aim to somehow produce “new” papers
with hardly any new or nontrivial content should not be encouraged by the editors
and reviewers of respectable journals.
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