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ABSTRACT. In this paper, we introduce a new class of multi-valued mappings in
metric spaces and show that it lies between the class of nonexpansive mappings
and the class of semi-nonexpansive mappings. We prove the semiclosed principle
and apply it to obtain endpoint and commmon endpoint theorems for mappings
in this class. We also prove A and strong convergence theorems of the SP-
iteration for semi-nonexpansive mappings in 2-uniformly convex geodesic spaces.
Our results extend and improve many results in the literature.

1. INTRODUCTION

Let C be a nonempty subset of a metric space (X, d). For z € X, we set
dist(z, C) := inf{d(z,y) : y € C}, R(z,C):=sup{d(z,y):y € C},

and
diam(C) :=sup{d(y,z) : y,z € C}.

We denote by CB(C') the family of all nonempty closed bounded subsets of C, and
by K(C) the family of all nonempty compact subsets of C. The Pompeiu-Hausdorff
distance on CB(C') is defined by

H(A, B) := max {sup dist(a, B), sup dist(b, A)} for all A, B € CB(C).
acA beB

A mapping T from C into CB(C) is called a multi-valued mapping. In particular, if
T'(x) is a singleton for every x in C, then T is called a single-valued mapping. Notice
that every single-valued mapping can be regarded as a multi-valued mapping. A
point z in C' is called a fixed point of T' if € T'(x). We denote by Fix(T) the set
of all fixed points of T. Let k € [0,1). A mapping T : C — CB(C) is said to be
k-contractive if

(1.1) H(T(x),T(y)) < kd(z,y) for all z,y € C.

If (1.1) is valid when k = 1, then T is said to be nonexpansive.
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Fixed point theory is an important tool for finding solutions of problems in the
form of equations or inequalities. One of the fundamental and celebrated results
in metric fixed point theory is the so-called Banach contraction principle [6] which
stated that every single-valued k-contractive mapping on a complete metric space
always has a fixed point. The principle was extended to multi-valued mappings by
Nadler [26] in 1969.

The concept of endpoints (or strict fixed point) for multi-valued mappings is
an important concept which is weaker than the concept of fixed points for single-
valued mappings and stronger than the concept of fixed points for multi-valued
mappings. In 1986, Corley [10] proved that a maximization with respect to a cone
is equivalent to the problem of finding an endpoint of a certain multi-valued map-
ping. In 2010, Amini-Harandi [4] proved the existence of endpoints for multi-valued
k-contractive mappings in complete metric spaces. After that, Ahmad et al. [3]
applied his result to guarantee the existence of solutions of the mixed Hadamard
and Riemann-Liouville fractional inclusion problems. For more details and further
applications of endpoint theory, the reader is referred to [16,19,20,41-43].

In 2015, Panyanak [29] proved the existence of endpoints for multi-valued non-
expansive mappings in uniformly convex Banach spaces. It was quickly noted by
Espinola et al. [12] that the results of Panyanak can be extended to Banach spaces
with the Dominguez—Lorenzo condition. In 2016, Saejung [39] obtained endpoint
theorems for some generalized multi-valued nonexpansive mappings in uniformly
convex Banach spaces as well as Banach spaces which satisfy the Opial’s condition.
Moreover, he also obtained the analogous results in complete CAT(x) spaces. Since
then endpoint theorems for several classes of generalized multi-valued nonexpansive
mappings in metric and Banach spaces have been developed and many papers have
appeared (see, e.g., [8,9,17,22-24,28,31,33,35,44]).

In 2011, Garcia-Falset et al. [14] generalized the concept of single-valued nonex-
pansive mappings in the following way: a mapping f : C — C' is said to satisfy
condition (C)) for some \ € (0,1) if d(f(z), f(y)) < d(x,y) for all z,y € C with
Ad(z, f(z)) < d(x,y). This concept has been extended to multi-valued cases in
many directions (see, e.g., [2,13,18,25,38]). Among other things, Kaewcharoen
and Panyanak [18] defined a multi-valued mappings in the following manner: a
mapping 7' : C — CB(C) is said to satisfy condition (C)) for some A € (0,1) if
H(T(x),T(y)) < d(z,y) for all x,y € C with Adist(z,T(x)) < d(x,y). Recently,
Panyanak [33] proved the existence of endpoints for multi-valued mappings satisfy-
ing condition (C)) in complete uniformly convex hyperbolic spaces.

In this paper, motivated by the above results, we introduce a new class of multi-
valued mappings and show that it is more general than the class of mappings sat-
isfying condition (C). We also prove endpoint and commmon endpoint theorems
for mappings in this class. Finally, we prove A and strong convergence theorems
for the SP-iteration in several classes of generalized nonexpansive mappings. Our
results extend and improve the results of Panyanak [33], Chuadchawna et al. [9] and
many others.
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2. PRELIMINARIES

Throughout this paper, N stands for the set of natural numbers and R stands for
the set of real numbers. Let C' be a nonempty subset of a metric space (X, d) and
T :C — CB(C) be a multi-valued mapping. A point z in C is called an endpoint
of T if T'(x) = {x}. We denote by End(T') the set of all endpoints of T". Notice that
the following statements hold:

e If z is an endpoint of T, then x is a fixed point of T.

o x € Fix(T) if and only if dist(z, T'(x)) = 0.

o x € End(T) if and only if R(x,T'(z)) = 0.

A sequence {x,} in C' is called an approximate endpoint sequence of T' [4] if

nhi& R(zp,T(xy)) = 0.

Moreover, if {T,, : a € Q} is a family of multi-valued mappings from C into CB(C),
then {x,} is called an approximate common endpoint sequence of {T,, : a € Q} [1]
if limy, 00 R(zp, To(2zy)) = 0 for all a € Q.
Definition 2.1. A multi-valued mapping 7" : C' — CB(C) is said to be

(i) upper semicontinuous if for any sequences {z,} and {y,} with x,, € C and
yn € T(xy,), the conditions lim,, o 2, = x and lim,_,c0 ¥y = y imply y € T'(x);

(ii) lower semicontinuous if for any sequence {z,} in C with lim,,_,o , =  and
y € T'(x), there exists a sequence {y,} such that y, € T(x,) for all n € N and
limy, 00 Yn = ¥;

(iii) continuous if T' is both upper and lower semicontinuous;

(iv) semi-nonexpansive if End(T) # () and

H(T(x),T(p)) < d(x,p) for all x € C and p € End(T).

Definition 2.2. Let A € (0,1). A multi-valued mapping 7' : C — CB(C) is said
to satisfy generalized condition (C)) if for each x,y € C, the following implication
holds:

AR, T() < dw,y) = H(T(),T(y) < dz,y).

Notice that if 0 < A; < A2 < 1, then the condition generalized (C),) implies the
condition generalized (Cl,). The following proposition is easy to established.

Proposition 2.3. The following statements hold:

(i) If T satisfies condition (C)), then T satisfies generalized condition (C\).
(ii) If T satisfies generalized condition (Cy) and End(T) # 0, then T is semi-
nonerpansive.

The following examples show that the converses of (i) and (ii) in Proposition 2.3
are not true.

Example 2.4. Let X =R, C =[0,3] and T : C — CB(C) be defined by

~ ) 0,z] if ©#3;
T(@) = {[0.5, ] if =3

If we choose x = 2.1 and y = 3, then

%dist(x,T(x)) =0 < d(x,y).
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However,
H(T(x),T(y)) = H([0,2.1],[0.5,1]) = 1.1 > 0.9 = d(z, y).

This implies that 7" does not satisfy condition (C'1). Next, we show that T satisfies
2
generalized condition (C1). Let z,y € C.
2

Case 1. z = 3.
If y =3, then H(T'(z),T(y)) = 0, and hence the conclusion holds.
If y € (2,3), then

%R@J@»>l>d@y)md%RmT@»:%>l>d@wy

If y € [0,2], then
H(T(x),T(y)) = H([0.5,1],[0,y]) <1 < d(z,y).
Case 2. z € (2,3).
If y = 3, then
%MLTQ»:5>1>d@y)wd%R@T@D>l>ﬂ@w.

If y € [0,3), then
H(T(x),T(y)) = H([0,2],[0,y]) = d(,y).

Case 3. z € [0,2].
If y = 3, then

H(T(2),T(y)) = H([0,2],[0.5,1]) <1 < d(z,y).
If y € [0,3), then
H(T(x), T(y)) = H([0,2],[0,y]) = d(z, y).
Example 2.5. Let X =R, C' =[0,3] and T": C — CB(C) be defined by
_ ) {0} if = #3;
(@) = {[2,2.5] if =3

It is easy to see that End(T) = {0}. Let x € C. If x = 3, then T'(z) = [2,2.5], which
implies that

H(T(x),T(0)) = H(]2,2.5],{0}) = 2.5 < 3 =d(z,0).
If z # 3, then T'(x) = {0}, which implies that
H(T(z),T(0)) = 0 < d(,0).

Hence, T is a semi-nonexpansive mapping.
For any A € (0,1), we have A R(3,7(3)) = A < 1 =d(3,2). However,

H(T(3),T(2)) = H([2,2.5], {0}) = 2.5 > 1 = d(3,2).
This shows that T' does not satisfy generalized condition (C)).
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Let (X, d) be a metric space and x,y € X. A continuous mapping ¢ : [0,1] - X
is called a geodesic joining = and y if ¢(0) = z,¢(1) = y and

d(o(t), o) = |t — t'|d(x,y) for all t,t' € 0,1].

A metric space (X, d) is said to be a geodesic space if for any two points in X there
exists a geodesic joining them. Moreover, if any two points in X are joined by a
unique geodesic, then we say that X is a uniquely geodesic space. In particular, if
¢ is the unique geodesic joining = and y, then we use the notation (1 — t)x @ ty for
¢(t). A subset C of X is said to be convex if (1 —t)x @ty € C for all z,y € C and
te[0,1].

A geodesic space (X, d) is called 2-uniformly convex [27] if there exists a constant
cx € (0,1] such that for any z,y,z € X and for any geodesic ¢ : [0, 1] — X joining
x and y, the following inequality holds:

(2.1) d%(o(t),2) < (1 —t)d*(z, 2) + td*(y, z) — ext(1l — t)d?(z,y) for all t € [0,1].
It is known from [37] that every 2-uniformly convex geodesic space is uniquely

geodesic.

Example 2.6. (1) Every uniformly convex Banach space is a 2-uniformly con-
vex geodesic space (see [34]).
(2) If X is a CAT(0) space, then it is a 2-uniformly convex geodesic space
(see [11]).
(3) If Kk > 0 and X is a CAT(x) space with diam(X) < &;6 for some ¢ €

NG
(0,7/2), then by Lemma 2.3 of [30] we can conclude that

P(6(1), 2) < (1~ D, 2) + 1y, 2) — 11— )(x,)

for all z,y € X and t € [0,1],

where R = (7 — 2¢)tan(e). This clearly implies that X is a 2-uniformly
convex geodesic space.

From now on, X stands for a complete 2-uniformly convex geodesic space. Let C
be a nonempty subset of X and {x,} be a bounded sequence in X. The asymptotic
radius of {x,} relative to C' is defined by

r(C,{z,}) = inf { limsup d(zp, z) : x € C'}.
n—oo

The asymptotic center of {z,} relative to C is the set

A(CHz,}) i ={zeC: liﬁsip d(zn, z) =7(C, {zn})}.

It is known from [5] that if C' is a nonempty closed convex subset of X, then
A(C,{x,}) consists of exactly one point.

Definition 2.7. Let C be a nonempty closed convex subset of X and z € C.

Let {z,} be a bounded sequence in X. We say that {z,} A-converges to z if

A(C,{un}) = {x} for every subsequence {u,} of {z,}. In this case, we write
A

Ty — T.
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It is known from [15] and [21] that every bounded sequence in X has a A-
convergent subsequence.

Definition 2.8. Let C' be a nonempty closed convex subset of X and T : C —
CB(C). Let I be the identity mapping on C. We say that [ — T is semiclosed if

for any sequence {z,} in C such that z, 2, 2 and R(xy,T(zy,)) — 0, one has
T(xz) = {z}.
The following results can be found in [11] and [34], respectively.

Lemma 2.9. Let C be a nonempty closed convex subset of X and {z,} be a
bounded sequence in X. If A(C,{z,}) = {x} and {u,} is a subsequence of {x,}
with A(C,{un}) = {u} and the sequence {d(x,,u)} converges, then r = u.

Lemma 2.10. Let C be a nonempty subset of X and T : C — CB(C). Then the
following statements hold:

(i) If C is convex and T is semi-nonexpansive, then End(T) is conver.

(i) If C is closed and convex and I —T is semiclosed, then End(T) is closed.

3. ENDPOINT THEOREMS

We start this section by proving the semiclosed principle for multi-valued map-
pings satisfying generalized condition (C)). Notice that this is an extension of
Lemma 3.1 in [9].

Theorem 3.1. Let C' be a nonempty closed convex subset of X, and I the identity
mapping on C, and T : C — CB(C) a mappings satisfying generalized condition
(Cy) for some A € (0,1). If T is lower semicontinuous, then I —T is semiclosed.

Proof. Let {x,} be a sequence in C such that z, 2 2 and R(xp, T(xy)) — 0. We
show that T'(x) = {x}.

Case 1. For each n€ N, there exists m € N such that m> n and A R(xy,, T (zy,)) >
d(zy,x). Then there is a subsequence {z,, } of {z,} such that

AR(xy, ,T(xy,)) > d(zy,,z) forall ke N.

This implies that limg_,o x,, = 2. Let y be an arbitrary point in T'(z). Since
T is lower semicontinuous, for each k € N there exists y,, € T(z,,) such that
limy_s o0 Yn,, = y. Thus,

< d(z,zn,) + R(zpn,, T(xn,)) + d(Yn,,y) = 0 as k — oo.

This implies that = y, and hence T'(z) = {x}.

Case 2. There exists ng € N such that A R(x,, T(zy,)) < d(xy,z) for all n > ny.
This implies that H (T (z,),T(z)) < d(xy,x). Let v be an arbitrary point in T'(x).
For each n € N, there exists v, € T(z,) such that d(v,v,) < dist(v,T(z,)) + L.
Thus,

d(xp,v) < d(zp,vn) + d(vn,v)

< R(xp,T(xy)) + H(T(zn), T(x)) + 1

- n
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< R(wp,T(n)) + d(zn,z) + %

This implies that limsup,, ., d(zn,v) < limsup,,_,. d(zp,x). Since x, EN x, we
have v = x. Therefore, T'(z) = {x}. O

By applying Theorem 3.1, we prove a common endpoint theorem for a family of
mappings satisfying generalized condition (CY).

Theorem 3.2. Let C' be a nonempty closed convex subset of X and {T, : o € Q}
a family of lower semicontinuous mappings from C into CB(C). Suppose that for
each o € Q, there exists X € (0,1) such that T, satisfies generalized condition (C).
If {T,, : @ € Q} has a bounded approzimate common endpoint sequence in C, then
it has a common endpoint in C.

Proof. Let {x,} be a bounded approximate common endpoint sequence of {7y :
a € Q}. As we have observed, there exists a subsequence {z,, } of {z,} such that

Ty 2, 2. Tt follows from Theorem 3.1 that 7, o(x) = {z} for all a € Q. Therefore x
is a common endpoint of {7}, : a € Q}. O

As a consequence of Theorem 3.2, we can obtain the following result. Notice that
it is an extension of Theorem 3.5 in [33].

Corollary 3.3. Let C be a nonempty closed convex subset of X andT : C — CB(C)
a lower semicontinuous mapping. Suppose that T satisfies generalized condition
(Cy) for some X € (0,1). Then T has an endpoint if and only if T has a bounded
approximate endpoint sequence in C.

Now, we prove another common endpoint theorem which can be viewed as an
extension of Theorem 3.2 in [23].

Theorem 3.4. Let C' be a nonempty closed convex subset of X and {T, : o € Q}
a family of lower semicontinuous mappings from C into CB(C). Suppose that for
each o € €, there exists X € (0,1) such that T, satisfies generalized condition
(Cy). If there exist two disjoint subsets A and B of Q such that AUB = Q, and
for each o € A, the mapping T, has a bounded approrimate endpoint sequence in

NgepEnd(Tg), then {T,, : o € Q} has a common endpoint in C.
Proof. Fix a € A and let {z,,} be a bounded approximate endpoint sequence of T, in
NgepEnd(Tg). Without loss of generality, we may assume that x,, N According
to Theorem 3.1, x € E(T,). Fix 8 € B and let y € Ts(x). Since A R(zp, Tp(zy)) =
0 <d(zn,z), H(Tps(xn), Tp(x)) < d(xn,x). This implies that

d(y, xn) dist(y, TB (xn))
H(Tp(x), Ts(zn))
d(z,zy).

<
<

Thus, limsup,,_, d(y, z,) < limsup,,_, . d(x,z,). Since x, EN x, we have y = z
for all y € Ts(z), and hence Tg(x) = {x}. This shows that z is a common endpoint
of {To, : a € Q}. O

As a consequence of Theorem 3.4, we also obtain the following result.
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Corollary 3.5. Let C be a nonempty closed convex subset of X and T,S : C —
CB(C) be lower semicontinuous mappings. Suppose that T and S satisfy generalized
condition (Cy) for some X\ € (0,1). If T has a bounded approximate endpoint
sequence in End(S), then T and S has a common endpoint in C.

4. CONVERGENCE THEOREMS

In 2011, Phuengrattana and Suantai [36] introduced an iteration process and
called it the SP-iteration. They compared its convergence speed with the well-known
Mann, Ishikawa and Noor iterations by showing that the SP-iteration converges
faster than the others for the class of nondecreasing continuous functions on an
interval. In this section, we prove A and strong convergence theorems of the SP-
iteration for semi-nonexpansive mappings.

Let C' be a nonempty convex subset of X, and {an}, {fn}, {7n} be sequences
n [0,1], and 7' : C — K(C) be a multi-valued mapping. The sequence of SP-
iteration [36] is defined by x; € C,

Zn = YnTn O (1 —yp)up, n €N,
where u,, € T'(zy,) such that d(zy, un) = R(zp, T (x,)), and

Yn = Bnzn ® (1 — Br)vn, n €N,
where vy, € T'(zy,) such that d(z,,v,) = R(zn,T(2y)), and
(4.1) Tnt1 = nYn D (1 —ap)wy, n €N,

where w,, € T'(yy) such that d(yn, wn) = R(yn, T (yn)).
A sequence {z,} in X is said to be Fejér monotone with respect to C' [7] if

d(zp41,p) < d(zp,p) for allp € C and n € N.

The following lemma shows that the sequence of SP-iteration defined by (4.1) is
Fejér monotone with respect to the endpoint set of a semi-nonexpansive mapping.

Lemma 4.1. Let C be a nonempty convex subset of X and T : C — K(C) a semi-
nonexpansive mapping. Let {x,} be the sequence of SP-iteration defined by (4.1).
Then {xy} is Fejér monotone with respect to End(T'). Hence, limy,_, oo d(x, p) exists
for all p € End(T).

Proof. Let p € End(T). For each n € N, we have
d(zn,p) < Ynd(Tn,p) + (1 = vn)d(un, p)

< d(@n,p) + (L =) H(T(zn), T (p))
< d(l'nvp)
and
d(ymp) < /Bnd(znap) + (1 - ﬁn)d(vnap)
< d(znap) < d(l‘mp)~
This implies that
d(Tnt1,D) nd(Yn, p) + (1 — ay)d(wn, p)

d(Yn,p) < d(zn, p).
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Thus, {x,} is Fejér monotone with respect to End(T). O
The following fact can be found in [40].

Lemma 4.2. Let C' be a nonempty closed subset of X and {x,} a Fejér monotone
sequence with respect to C. Then {x,,} converges strongly to an element of C' if and
only if lim,,_,~ dist(x,,C) = 0.

The following fact is also needed.

Lemma 4.3. Let C' be a nonempty closed convex subset of X and T : C — K(C)
a mapping such that I — T is semiclosed. If {x,} is a bounded sequence in C' such
that limy, 00 R(xp, T'(zy)) = 0 and {d(zn,p)} converges for all p € End(T), then
ww(zn) C End(T). Here wy(xy) :=J A(C,{un}) where the union is taken over all
subsequences {un} of {xn}. Moreover, wy(xy,) consists of exactly one point.

Proof. Let u € wy(xy), then there exists a subsequence {uy} of {z,} such that
A(C,{un}) = {u}. Since {u,} is bounded, there exists a subsequence {v,} of {u,}
such that v, A> v. It follows from Lemma 2.9 and the semiclosedness of I — T that
u = v € End(T), which implies wy,(x,) € End(T). Next, we show that wy(z,)
consists of exactly one point. Let {u,} be a subsequence of {x,,} with A(C,{u,}) =
{u} and let A(C,{x,}) = {z}. Since u € wy(x,) C End(T), {d(zn,u)} converges.
By Lemma 2.9, = u. This completes the proof. O

Now, we prove a A-convergence theorem.

Theorem 4.4. Let C be a nonempty closed convex subset of X andT : C — K(C) a
semi-nonezxpansive mapping such that I —T is semiclosed. Let {~,} C [a,b] C (0,1)
and {x,} be the sequence of SP-iteration defined by (4.1). Then {x,} A-converges
to an endpoint of T.

Proof. Let p € End(T). It follows from (2.1) that

d2(zn,p) S 7nd2(xnap) + (1 - Vn)dz(un;p) - CXVn(l - 7n)d2(xna un)
< dQ(JUmP) —cxn(l— 'Yn)dZ(xmun)
and
d2(ynap) < 5nd2(znap) + (1 - Bn)d2(vnap) - CXﬂn(l - 5n)d2(zna Un)
< d2(zn7p) - CX/Bn(l - Bn)d2(zna Un)-

This implies that

d2(mn+1,p) < andz(yn,p) +(1- O‘n)dQ(wmp) —exap(l — an)dZ(ymwn)
< d2(ynap) —exan(l — O‘n)dZ(yn?wn)
< d*(xp,p) — exVn(l — V) d* (T, ).
Thus,

ZCXaQ(l — b)d? (2, Up) < 00.
n=1

Also, lim,, o0 d*(2p, u,) = 0, and hence
(4.2) nh_)rrgo R(zy, T(x,)) = nh_}ngo d(zp,uy) = 0.
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By Lemma 4.1, {d(zy,p)} converges for all p € End(T). By Lemma 4.3, wy(xy,)
consists of exactly one point and is contained in End(T). This shows that {x,}
A-converges to an element of End(T). O

As a consequence of Proposition 2.3 and Theorem 4.4, we can obtain the following
result.

Corollary 4.5. Let C be a nonempty closed conver subset of X and T : C' —
K(C) a lower semicontinuous mapping with End(T) # 0. Suppose that T satisfies
generalized condition (Cy) for some A € (0,1). Let {v,} C [a,b] C (0,1) and {z,}
be the sequence of SP-iteration defined by (4.1). Then {z,} A-converges to an
endpoint of T.

Next, we prove strong convergence theorems. Recall that a mapping T : C' —
K(C) is said to satisfy condition (J) [32] if End(T) # () and there exists a nonde-
creasing function g : [0,00) — [0,00) with g(0) = 0, g(r) > 0 for r € (0,00) such
that

R(z,T(x)) > g(dist(xz, End(T))) for all x € C.
The mapping T is said to be semicompact if for any sequence {x,} in C such that

lim R(x,,T(x,)) =0,
n—oo
there exists a subsequence {zy, } of {z,} such that limy_, 2, = q € C.

Theorem 4.6. Let C be a nonempty closed convex subset of X andT : C — K(C) a
semi-nonexpansive mapping such that I —T is semiclosed. Let {~,} C [a,b] C (0,1)
and {x,} be the sequence of SP-iteration defined by (4.1). If T satisfies condition
(J), then {x,} converges strongly to an endpoint of T.

Proof. By Lemma 2.10, End(T) is closed. Since T satisfies condition (J), by (4.2)
we get that lim,,_,o dist(z,, End(T)) = 0. By Lemma 4.1, {z,} is Fejér monotone
with respect to End(T'). The conclusion follows from Lemma 4.2. O

Corollary 4.7. Let C be a nonempty closed convez subset of X andT : C — K(C)
a lower semicontinuous mapping. Suppose that T satisfies generalized condition
(Cy) for some X € (0,1). Let {y,} C [a,b] C (0,1) and {z,} be the sequence of SP-
iteration defined by (4.1). If T satisfies condition (J), then {x,} converges strongly
to an endpoint of T.

Theorem 4.8. Let C' be a nonempty conver subset of X and T : C — K(C) a
semi-nonezxpansive mapping. Let {v,} C [a,b] C (0,1) and {x,} be the sequence of
SP-iteration defined by (4.1). If T is semicompact and lower semicontinuous, then
{zn} converges strongly to an endpoint of T.

Proof. By (4.2) and the semicompactness of T, there exists a subsequence {x, } of
{zn} such that z,, — ¢ € C. Let v be an arbitrary point in T'(g). Since T is lower
semicontinuous, for each k € N there exists vy, in T'(x,, ) such that limy_,o vy, = v.

This implies that
d(‘]a U) (Qa xnk) + d(xnkvvnk) + d(vnk’ U)

<d
<d(q,xn,) + R(zn,, T(xpn,)) + d(vp,,v) = 0 as k — oo.
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Thus, v = ¢ for all v € T(q). Therefore ¢ € End(T). By Lemma 4.1, lim,,_,c d(xy, q)
exists and hence ¢ is the strong limit of {x,,}. O

As a consequence of Proposition 2.3 and Theorem 4.8, we can obtain the following
result.

Corollary 4.9. Let C be a nonempty closed conver subset of X and T : C' —
K(C) a lower semicontinuous mapping with End(T) # (. Suppose that T satisfies
generalized condition (Cy) for some A € (0,1). Let {v,} C [a,b] C (0,1) and {z,}
be the sequence of SP-iteration defined by (4.1). If T is semicompact, then {x,}
converges strongly to an endpoint of T.
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