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equilibrium problem in the admissible space Rm with partial order provided by p-
order cone. To the best of our knowledge, this special type of problems has not
been considered.

It is well known that the vector equilibrium problems include some famous prob-
lems as special cases, like vector variational inequalities, vector complementarity
problems and vector optimization problems, etc. Various equilibrium problems have
significant applications in the areas of network analysis, transportation, mechanics,
economics, finance and operations research, see [7, 10,17] and references therein.

On the other hand, numerous important concepts and techniques of nonlinear
analysis used in optimization have been extended from Euclidean spaces to Rie-
mannian manifolds, see [31]. From the perspective of Riemannian geometry, such
extension offers certain advantages, especially some originally nonconvex and non-
smooth problems can be regarded as convex and smooth ones under some settings,
see [8, 26]. In 2012, Colao et al. [6] introduced a class of “scalar” equilibrium
problems in the setting of Hadamard manifolds, where the solution existence was
investigated with certain coercivity condition. Batista et al. [4] further generalized
it to the “vector” equilibrium problem on Hadamard manifolds and studied a suffi-
cient condition for its the existence of solution. Thereafter, various kinds of vector
equilibrium problems have been proposed and investigated, see [13,14,20,21].

The upper bound, so-called error bound, is known as an upper error estimate of
the distance from an arbitrary feasible point to the solutions set of a certain prob-
lem. From the viewpoint of theoretical analysis, upper bounds have been significant
to studying the convergence of iterative algorithms for solving variational inequali-
ties, complementarity problems and equilibrium problems. In 2003, Mastroeni [22]
developed upper bounds for “scalar” equilibrium problems where the used main tool
lies on various gap functions, originally introduced by Auslender [3]. An advantage
of using gap functions is that we can reformulate the variational inequalities and
equilibrium problems into equivalent optimization problems. Due to the feature
of non-differentiability of Auslender gap functions in general, Fukushima [9], and
Yamashita and Fukushima [33] introduced the notion of regularized gap functions
for variational inequalities. They also obtained upper bounds controlled by gap
functions in forms of the Fukushima regularization and the Moreau-Yosida regular-
ization. In light of that, a large number of works discussed regularized gap functions
and upper bounds for variational inequalities, hemivariational-variational inequali-
ties, and equilibrium problems, see [1, 5, 11, 12, 18, 28–30]. In particular, Khan and
Chen [18] studied regularized gap functions and upper bounds for a class of “vec-
tor” equilibrium problems with partial order provided by the usual positive cone in
finite dimensional spaces. Very recently, Anh et al. [1] and Hung et al. [12] extended
the results [18] to generalized mixed vector equilibrium problems with partial order
given by a infinite dimensional cone. Hung et al. [15] also characterized illustrat-
ing upper bounds using regularized gap functions for vector equilibrium problems,
whose final space is partially ordered by a “polyhedral cone” generated by some
matrix. In the setting of Hadamard manifolds, only limited results on this inter-
esting topic for variational inequalities and equilibrium problems of “vector” types.
Jayswal et al. [16] established a gap function for a non-smooth vector variational
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inequality on Hadamard manifolds. Recently, Hung et al. [14] developed regular-
ized gap functions and upper bounds for vector equilibrium problems and vector
variational inequalities on Hadamard manifolds. The partial order of the vector
problems considered in [14,16] is induced from the usual “positive cone”.

Motivated by the aforementioned works, this paper focuses on a class of vector
equilibrium problems VEP(D, G,Kk

p), which may be viewed as a follow-up of [14,15].

The novelty of setting to VEP(D, G,Kk
p) is that the space is with a partial order

induced from “p-order cone” and the admissible space is the Hadamard manifolds.
As below, we highlight the contributions of the paper:

• In contrast to the literature, we study several gap regularized functions of
the Fukushima and Moreau-Yosida types to the problem VEP(D, G,Kk

p).
Our main tool in using of the gap regularized functions is based on a new
concept of Kk

p-convexity of a vector-valued function on Hadamard manifolds.
• The novelty of this paper is to derive upper bounds for problem
VEP(D, G,Kk

p) controlled by these regularized gap functions and depend
on the data of the component functions of the vector-valued cost function.

The paper is structured as follows. Section 2 provides several definitions, no-
tations and properties of manifolds. In Section 3, we introduce a new concept of
Kk

p-convexity of a vector-valued function on Hadamard manifolds. Then, we derive

some regularized gap functions and upper bounds for VEP(D, G,Kk
p) under suit-

able conditions. Furthermore, some examples for illustrating our main results are
provided. Finally, we give some conclusions of this paper in Section 4.

2. Preliminaries and notations

In this section, we review some basic definitions, concepts, and properties of
manifolds that will be used in subsequent contents. They can be found in any
standard book on Riemannian geometry [27,31].

Let H be an m-dimensional differentiable manifold. The tangent space of H at
z is denoted by TzH and the tangent bundle of H is denoted by TH =

⋃
z∈H TzH.

An inner product 〈·, ·〉Rz on TzH is called a Riemannian metric on TzH. A tensor
field 〈·, ·〉R is said to be a Riemannian metric on H if for every z ∈ H, the tensor
〈·, ·〉Rz is a Riemannian metric on TzH, where the subscript z can be omitted if no
confusion occurs.

A Riemannian manifold, denoted by (H, 〈·, ·〉R), is a differentiable manifold H
endowed with a Riemannian metric 〈·, ·〉R. Given a piecewise smooth curve δ :
[a, b] → H joining z to w, that is, δ(a) = z and δ(b) = w, the length of δ is defined

by lR(δ) :=
∫ b
a ‖δ′(s)‖ds. For any z, w ∈ H, the Riemannian distance dR(z, w),

which induces the original topology on H, is defined by minimizing this length over
the set of all such curves joining z to w.

The Levi-Civita connection ∇ associated with the Riemannian metric and δ be
a smooth curve in H. A vector field Z is said to be parallel along δ if ∇δ′Z = 0,
where 0 denotes the zero tangent vector. If δ′ itself is parallel along δ, we say
that δ is a geodesic. A geodesic joining z to w in H is said to be minimal if its
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length equals dR(z, w). A Riemannian manifold is complete if its geodesics δ(s) are
defined for all s ∈ R. It follows from Hopf-Rinow Theorem that if H is complete,
then any point in H can be joined by a minimal geodesic. Furthermore, (H, dR)
is a complete metric space, and hence bounded closed subsets in H are compact.
A Hadamard manifold is a complete simply connected Riemannian manifold of
nonpositive sectional curvature.

Assume that H is a Hadamard manifold. The exponential map expz : TzH → H
at z ∈ H is defined by expz(v) = δv(1, z) for each v ∈ TzH, where δ(·) = δv(·, z) is
the geodesic starting at z with velocity v, that is, δ(0) = z and δ′(0) = v. It is easy
to see that expz(sv) = δv(z) for each real number s. Moreover, the exponential map
expz : TzH → H is a diffeomorphism for all z ∈ H. For z ∈ H, exp−1

z : H → TzH is
the inverse of the exponential map. For any z, w ∈ H, we have

(2.1) ‖ exp−1
z (w)‖R = dR(z, w).

For any two distinct points z, w ∈ H, there exists a unique normalized geodesic δ
joining z to w such that δ(s) = expz(s exp

−1
z w) for all s ∈ [0, 1]. In particular, the

exponential map and its inverse are continuous on a Hadamard manifold.

Unless otherwise stated, H is a Hadamard manifold in the rest of the section.

Definition 2.1. (see [31]) A set D ⊂ H is said to be geodesic convex if for any
two distinct points z and w in D, the geodesic joining z to w is contained in D,
that is, if δ : [0, 1] → H is a geodesic such that z = δ(0) and w = δ(1), then
δ(λ) = expz(λ exp−1

z w) ∈ D for all λ ∈ [0, 1].

Lemma 2.2. (see [2], p.3) For z, w ∈ H, r ∈ (0, 1) and a point ur = δ(r) =
expz(r exp

−1
z w) on the geodesic δ : [0, 1] → H joining z to w, we have exp−1

z (ur) =
r exp−1

z w.

Definition 2.3. (see [31]) A real-valued function ρ : H → R is said to be geodesic
convex if, for any z, w ∈ H and λ ∈ [0, 1], there holds

ρ
(
expz

(
λ exp−1

z w
))

≤ (1− λ)ρ(z) + λρ(w).

Lemma 2.4. (see [19]) Let z0 ∈ H and {zn} be a sequence in H such that zn → z0.
Then, the following assertions hold.

(i) For any w ∈ H, exp−1
zn w → exp−1

z0 w and exp−1
w zn → exp−1

w z0;
(ii) If {un} is a sequence such that un ∈ TznH and un → u0, then u0 ∈ Tz0H;
(iii) Given sequences {un} and {tn} satisfying un, tn ∈ TznH, if un → u0 and

tn → t0, then 〈un, tn〉R → 〈u0, t0〉R.

3. Main results

In this section, we introduce the notion of the Kk
p-convexity of a vector-valued

function on Hadamard manifolds associated with p-order cone and the exact defini-
tion of gap functions for VEP(D, G,Kk

p). Then regularized gap functions and upper

bounds for VEP(D, G,Kk
p) will be considered under some suitable assumptions on

the data of the problem. Furthermore, some examples are given for illustrating our
main results.



UPPER BOUNDS FOR VEP(D, G,Kk
p) ON HADAMARD MANIFOLDS 2597

Throughout the paper, unless other specified, let the function G : D × D → Rk

be defined by

G(u, v) = (G1(u, v), ..., Gk(u, v))
⊤ ∈ Rk,

where Gj : D × D → R for all j ∈ {1, ..., k} and u, v ∈ D. Denote the solution set

of the problem VEP(D, G,Kk
p) by S(D, G,Kk

p). Since the existence of solutions for
vector equilibrium problems on Hadamard manifolds with partial order provided
by closed convex cones have been well investigated, see [4, 13] and the references
therein, we always assume that S(D, G,Kk

p) is a nonempty set.

Definition 3.1. For each j ∈ {1, ..., k}, let Fj : H → R be a function. A function

F := (F1, ..., Fk)
⊤ defined by F (z) = (F1(z), ..., Fk(z))

⊤ ∈ Rk is said to be Kk
p-

convex if, for all z, v ∈ H and λ ∈ [0, 1],

(1− λ)F (z) + λF (v)− F
(
expz

(
λ exp−1

z v
))

∈ Kk
p .(3.1)

Remark 3.2. We point out couple things regarding this new concept.

(i): Let q > 1 satisfying
1

p
+

1

q
= 1. By applying Hölder’s inequality, the

condition (3.1) leads to

(1− λ)F1(z) + λF1(v)− F1

(
expz

(
λ exp−1

z v
))

≥

 k∑
j=2

∣∣(1− λ)Fj(z) + λFj(v)− Fj

(
expz

(
λ exp−1

z v
))∣∣p 1

p

≥(k − 1)
− 1

q

k∑
j=2

[
(1− λ)Fj(z) + λFj(v)− Fj

(
expz

(
λ exp−1

z v
))]

,

that is,

(k − 1)
− 1

q

k∑
j=2

Fj

(
expz

(
λ exp−1

z v
))

− F1

(
expz

(
λ exp−1

z v
))

≥(k − 1)
− 1

q

k∑
j=2

[(1− λ)Fj(z) + λFj(v)]− [(1− λ)F1(z) + λF1(v)](3.2)

for all z, v ∈ H and λ ∈ [0, 1].
(ii): If Fj ≡ 0 for all j ∈ {2, ..., k}, then we can take F ≡ F1 and it follows

from (3.2) that

F
(
expz

(
λ exp−1

z v
))

≤ (1− λ)F (z) + λF (v),

for all z, v ∈ H and λ ∈ [0, 1]. Thus, the Kk
p-convexity of F reduces the

geodesic convexity in Definition 2.3.
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Proposition 3.3. Suppose that the function F := (F1, ..., Fk)
⊤ is given in Defi-

nition 3.1. If F1 is a geodesic convex function and Fj is a linear affine function
(i.e., Fj and −Fj are geodesic convex) for all j ∈ {2, ..., k}, then the function F is

Kk
p-convex.

Proof. Let z, v ∈ H and λ ∈ [0, 1]. For each j ∈ {2, ..., k}, since the function Fj is
linear affine, we have

(1− λ)Fj(z) + λFj(v)− Fj

(
expz

(
λ exp−1

z v
))

= 0.

Moreover, F1 is a geodesic convex function, i.e., we obtain

(1− λ)F1(z) + λF1(v)− F1

(
expz

(
λ exp−1

z v
))

≥ 0.

Therefore, the following inequality

(1− λ)F1(z) + λF1(v)− F1

(
expz

(
λ exp−1

z v
))

≥

 k∑
j=2

∣∣(1− λ)Fj(z) + λFj(v)− Fj

(
expz

(
λ exp−1

z v
))∣∣p 1

p

holds for all p > 1. This implies that

(1− λ)F (z) + λF (v)− F
(
expz

(
λ exp−1

z v
))

∈ Kk
p

that is, F is Kk
p-convex. □

The following example illustrates the Kk
p-convexity of a vector-valued function on

Hadamard manifolds.

Example 3.4. The set H = R++ = {u ∈ R | u > 0} endowed with the Riemannian
metric 〈·, ·〉R defined by 〈z, v〉R = g(u)zv for all z, v ∈ TuH (where g(u) = 1

u2 ) is
a Riemannian manifold, ϕ : R → H, ϕ(u) = eu is an isometry, and the sectional
curvature of H is 0. Moreover, the tangent plane at u ∈ H is TuH= R. For any
u,w ∈ H the Riemannian distance is dR : H×H → R+,

dR(u,w) = |ϕ−1(u)− ϕ−1(w)| =
∣∣∣ln( u

w

)∣∣∣ .
Thus, H is a Hadamard manifold (see e.g., [25]). The geodesic curve δ : R → H
starting form u (δ(0) = u) will have the equation δ(s) = ue(

w
u
)s, with w = δ′(0) ∈

TuH as the tangent unit vector of δ in the starting point. Then, the exponential
map expu and the inverse exponential map exp−1

u are defined by

expu(sw) = ue(
w
u
)s and exp−1

u w = u ln
(w
u

)
.

Let the functions F1 : H → R and Fj : H → R (j ∈ {2, ..., k}) be defined by

F1(u) = 3 ln2 u+ 1; Fj(u) =
5

2
lnu+ 3, ∀u ∈ H.

Then, for any u,w ∈ H, λ ∈ [0, 1], we obtain

F1

(
expu

(
λ exp−1

u w
))

= 3 ln2(u1−λwλ) + 1

= 3[(1− λ) lnu+ λ lnw]2 + 1
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≤ (1− λ)
(
3 ln2 u+ 1

)
+ λ

(
3 ln2w + 1

)
= (1− λ)F1(u) + λF1(w).(3.3)

and

Fj

(
expu

(
λ exp−1

u w
))

=
5

2
ln(u1−λwλ) + 3

= (1− λ)

(
5

2
lnu+ 3

)
+ λ

(
5

2
lnw + 3

)
= (1− λ)Fj(u) + λFj(w).(3.4)

From (3.3) and (3.4), we get that the function F1 is geodesic convex and the function
Fj is linear affine for all j ∈ {2, ..., k}. However, it is easy to see that the function
Fj is non-convex in the usual sense for all j ∈ {2, ..., k}.

Let us consider the function F := (F1, ..., Fk)
⊤ defined by F (u) = (F1(u), ..., Fk(u))

⊤

for all u ∈ H. Using Proposition 3.3, we conclude that the function F is Kk
p-convex.

We introduce the exact definition of gap functions for VEP(D, G,Kk
p) as below.

Definition 3.5. A real function m : D → R is said to be a gap function for
VEP(D, G,Kk

p) if the following properties hold:

(a): m(u) ≥ 0, for all u ∈ D;
(b): for any u∗ ∈ D, m(u∗) = 0 if and only if u∗ is a solution of VEP(D, G,Kk

p).

We now propose a remark to convert the problem VEP(D, G,Kk
p) into a scalar

equilibrium problem.

Remark 3.6. Suppose that the function G : D × D → Rk is defined by G =
(G1, ..., Gk)

⊤ where Gj : D × D → R for all j ∈ {1, ..., k}. Then, thanks to the

definition of the p-order cone Kk
p in (1.2), we can verify that (1.1) is equivalent to

G1(u, v)−

 k∑
j=2

|Gj(u, v)|p
 1

p

≥ 0.

For each fixed constant ξ > 0, let us consider the following function Φξ : D → R
defined by

Φξ(u) = sup
v∈D


 k∑

j=2

|Gj(u, v)|p
 1

p

−G1(u, v)−
1

2ξ
d2R(u, v)

 ,(3.5)

for all u ∈ D.

We are ready to assert that Φξ is a gap function of VEP(D, G,Kk
p).

Theorem 3.7. Suppose that D is a closed and geodesic convex set and G is Kk
p-

convex in the second component. Then the function Φξ defined by (3.5) for any

ξ > 0 is a gap function of VEP(D, G,Kk
p).
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Proof. For any fixed parameter ξ > 0, we shall prove that Φξ satisfies the conditions
of Definition 3.5.

(a) Let u ∈ D be arbitrary. Since Gj(u, u) = 0 for all j ∈ {1, ..., k} and u ∈ D, it
follows from the definition of Φξ that

Φξ(u) ≥

 k∑
j=2

|Gj(u, u)|p
 1

p

−G1(u, u)−
1

2ξ
d2R(u, u) = 0.

(b) Suppose u∗ ∈ D such that Φξ(u
∗) = 0, namely,

sup
v∈D


 k∑

j=2

|Gj(u
∗, v)|p

 1
p

−G1(u
∗, v)− 1

2ξ
d2R(u

∗, v)

 = 0.

This implies  k∑
j=2

|Gj(u
∗, v)|p

 1
p

−G1(u
∗, v) ≤ 1

2ξ
d2R(u

∗, v),

for all v ∈ D. For any u ∈ D and λ ∈ (0, 1), we set

vλ := expu∗
(
λ exp−1

u∗ u
)
.

As D is geodesic convex, vλ ∈ D, and hence k∑
j=2

|Gj

(
u∗, expu∗

(
λ exp−1

u∗ u
))

|p
 1

p

−G1

(
u∗, expu∗

(
λ exp−1

u∗ u
))

≤ 1

2ξ
d2
(
u∗, expu∗

(
λ exp−1

u∗ u
))

=
1

2ξ

∥∥exp−1
u∗
[
expu∗

(
λ exp−1

u∗ u
)]∥∥2

R

=
1

2ξ

∥∥λ exp−1
u∗ u

∥∥2
R =

λ2

2ξ
d2R(u

∗, u).(3.6)

Applying the Hölder’s inequality, the Kk
p-convexity of v 7→ G(u∗, v) and (3.2) with

the condition Gj(u
∗, u∗) = 0 for all j ∈ {1, ..., k}, we have k∑

j=2

|Gj

(
u∗, expu∗

(
λ exp−1

u∗ u
))

|p
 1

p

−G1

(
u∗, expu∗

(
λ exp−1

u∗ u
))

≥ (k − 1)
− 1

q

k∑
j=2

Gj

(
u∗, expu∗

(
λ exp−1

u∗ v
))

−G1

(
u∗, expu∗

(
λ exp−1

u∗ u
))

≥ (k − 1)
− 1

q

k∑
j=2

[(1− λ)Gj(u
∗, u∗) + λGj(u

∗, u)]− [(1− λ)G1(u
∗, u∗) + λG1(u

∗, u)]
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=λ

(k − 1)
− 1

q

k∑
j=2

Gj(u
∗, u)−G1(u

∗, u)

 ,

(3.7)

where q > 1 satisfies
1

p
+

1

q
= 1. Combining relations (3.6) and (3.7), it gives

(k − 1)
− 1

q

k∑
j=2

Gj(u
∗, u)−G1(u

∗, u) ≤ λ

2ξ
d2R(u

∗, u),

for all u ∈ D. In the inequality above, letting λ → 0+ yields

0 ≥ (k − 1)
− 1

q

k∑
j=2

Gj(u
∗, u)−G1(u

∗, u)

≥

 k∑
j=2

|Gj(u
∗, u)|p

 1
p

−G1(u
∗, u)

for all u ∈ D, that is,

G(u∗, u) ∈ Kk
p , ∀u ∈ D.

Thus, u∗ is a solution of VEP(D, G,Kk
p).

Conversely, suppose that u∗ is a solution of VEP(D, G,Kk
p), that is, u∗ ∈ D and

G(u∗, v) ∈ Kk
p , ∀v ∈ D. Then, for every v ∈ D, we have k∑

j=2

|Gj(u
∗, v)|p

 1
p

−G1(u
∗, v) ≤ 0.

Therefore, for any ξ > 0, we obtain

Φξ(u
∗) = sup

v∈D


 k∑

j=2

|Gj(u
∗, v)|p

 1
p

−G1(u
∗, v)− 1

2ξ
d2R(u

∗, v)

 ≤ 0.

Since Φξ(u) ≥ 0 for all u ∈ D, one has Φξ(u
∗) = 0. Then, the proof is complete. □

Lemma 3.8. Assume that all hypotheses of Theorem 3.7 hold and, further, that
the set D is compact, Gj is continuous for all j ∈ {1, · · · , k}. Then, for each ξ > 0,
the gap function Φξ is continuous on D.

Proof. Since the function Gj is continuous for each j ∈ {1, ..., k}, we know that the
function P : D ×D → R defined by

P (u, v) =

 k∑
j=2

|Gj(u, v)|p
 1

p

−G1(u, v)−
1

2ξ
d2R(u, v)
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is continuous on D × D. Moreover, D is a compact set, so the function Φξ defined
by

Φξ(u) = sup
v∈D

P (u, v)

is continuous on D. This completes the proof. □
Next, we introduce the following gap function in the form of the Moreau-Yosida

regularization of the function Φξ:

(3.8) RΦξ,ζ(u) = inf
z∈D

[
Φξ(z) + ζd2R(u, z)

]
,

for all u ∈ D. Accordingly, we can rewrite RΦξ,ζ defined by (3.8) as follows:

RΦξ,ζ(u) = inf
z∈D

sup
v∈D


 k∑

j=2

|Gj(z, v)|p
 1

p

−G1(z, v)−
1

2ξ
d2R(z, v)

+ ζd2R(u, z))

 .

Theorem 3.9. Suppose that all assumptions of Lemma 3.8 hold. Then, the function
RΦξ,ζ defined by (3.8) for any ξ, ζ > 0 is a gap function for VEP(D, G,Kk

p).

Proof. (a) For any ξ, ζ > 0 fixed, since Φξ(u) ≥ 0 for all u ∈ D, it is easy to verify
that RΦξ,ζ(u) ≥ 0 for all u ∈ D.

(b) Assume that u∗ ∈ S(D, G,Kk
p). Thanks to the proof of part(a) and Theorem

3.7, we have Φξ(u
∗) = 0 and

0 ≤ RΦξ,ζ(u
∗) = inf

z∈D

{
Φξ(z) + ζd2R(z, u

∗)
}
≤ Φξ(u

∗) + ζd2R(u
∗, u∗) = 0.

Thus, we obtain RΦξ,ζ(u
∗) = 0.

Conversely, if u∗ ∈ D and RΦξ,ζ(u
∗) = 0, namely,

inf
z∈D

{Φξ(z) + ζd2R(z, u
∗)} = 0,

which implies that for each n, there exists a sequence {zn} ⊂ D such that

0 ≤ Φξ(zn) + ζd2R(zn, u
∗) <

1

n
.

Thus, Φξ(zn) → 0 and dR(zn, u
∗) → 0, as n → +∞, that is, Φξ(zn) → 0 and

zn → u∗, as n → +∞. Using the continuity of Φξ in Lemma 3.8, we achieve

Φξ(u
∗) = lim

n→+∞
Φξ(zn) = 0.

Then, applying Theorem 3.7 gives u∗ ∈ S(D, G,Kk
p). This completes the proof. □

Remark 3.10. We point out some comments regarding Theorem 3.7 and Theo-
rem 3.9.

(i): The gap functions Φξ and RΦξ,ζ transform VEP(D, G,Kk
p) into minimiza-

tion problems. Accordingly, one can apply optimization methods to solve
the problem VEP(D, G,Kk

p).
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(ii): As mentioned in the introduction, there is no result concerning gap func-
tions in forms of the regularization for the problem VEP(D, G,Kk

p). Thus,
Theorem 3.7 and Theorem 3.9 are new in considering regularized gap func-
tions to vector equilibrium problems on Hadamard manifolds, whose final
space is partially ordered by p-order cone.

In order to establish upper bounds for VEP(D, G,Kk
p), it needs the following

hypotheses.
Assumption (Aµ

G):

(i): For the function G1 : D × D → R, for any (u, v) ∈ D × D, there exists
µ1 > 0 such that

G1(u, v) +G1(v, u) + µ1d
2
R(u, v) ≤ 0.

(ii): For each j ∈ {2, ..., k}, the function Gj : D ×D → R is such that for any
(u, v) ∈ D ×D, there exists µj > 0 such that

Gj(u, v) +Gj(v, u)− µjd
2
R(u, v) ≥ 0.

Proposition 3.11. Under the assumptions (Aµ
G), the solution set of the problem

VEP(D, G,Kk
p) is singleton.

Proof. Suppose that u1, u2 ∈ D are two solutions of VEP(D, G,Kk
p). Then, for each

j = {1, 2}, we have

G1(ui, v)−

 k∑
j=2

|Gj(ui, v)|p
 1

p

≥ 0, ∀v ∈ D.

This implies

G1(ui, v)− (k − 1)
− 1

q

k∑
j=2

Gj(ui, v) ≥ 0, ∀v ∈ D

for i = {1, 2}. Taking v = u2 if i = 1 and v = u1 if i = 2 for the inequalities above,
we sum up the resulting inequalities to achieve

G1(u1, u2) +G1(u2, u1)− (k − 1)
− 1

q

k∑
j=2

[Gj(u1, u2) +Gj(u2, u1)] ≥ 0(3.9)

By the assumptions (Aµ
G), it follow from (3.9) that

−

µ1 + (k − 1)
− 1

q

 k∑
j=2

µj

 d2R(u1, u2) ≥ 0,

which says µ1 + (k − 1)
− 1

q

 k∑
j=2

µj

 d2R(u1, u2) ≤ 0.
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Since µ1 + (k − 1)
− 1

q

(∑k
j=2 µj

)
> 0, the above inequality implies dR(u1, u2) = 0,

and so u1 = u2. Therefore, VEP(D, G,Kk
p) has a unique solution u ∈ D provided

that the solution set of VEP(D, G,Kk
p) is nonempty, i.e., S(D, G,Kk

p) is a singleton
set. □

The following results provide upper bounds for VEP(D, G,Kk
p) using the gap

functions Φξ and RΦξ,ζ .

Theorem 3.12. Let u∗ be a solution of VEP(D, G,Kk
p). Suppose that all hypotheses

of Theorem 3.7 are satisfied and the conditions (Aµ
G) hold. Then, for each u ∈ D

and ξ satisfying

1

2

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

−1

< ξ,

we have

(3.10) dR(u, u
∗) ≤

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ

− 1
2

[Φξ(u)]
1
2 .

Proof. Let u∗ ∈ S(D, G,Kk
p). For each u ∈ D, by the definition of Φξ and applying

Hölder’s inequality, we obtain

Φξ(u) = sup
v∈D


 k∑

j=2

|Gj(u, v)|p
 1

p

−G1(u, v)−
1

2ξ
d2R(u, v)


≥

 k∑
j=2

|Gj(u, u
∗)|p
 1

p

−G1(u, u
∗)− 1

2ξ
d2R(u, u

∗)

≥ (k − 1)
1−p
p

k∑
j=2

Gj(u, u
∗)−G1(u, u

∗)− 1

2ξ
d2R(u, u

∗).(3.11)

Using the condition (Aµ
G)(i) yields

−G1(u, u
∗) ≥ G1(u

∗, u) + µ1d
2
R(u, u

∗).(3.12)

Then, it follows from the condition (Aµ
G)(ii) that for each j ∈ {2, ..., k}, there holds

Gj(u, u
∗) ≥ −Gj(u

∗, u) + µjd
2
R(u, u

∗),

which implies

(k − 1)
1−p
p

k∑
j=2

Gj(u, u
∗)

≥ − (k − 1)
1−p
p

k∑
j=2

Gj(u
∗, u) + (k − 1)

1−p
p

 k∑
j=2

µj

 d2R(u, u
∗).(3.13)
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Since u∗ ∈ S(D, G,Kk
p), one has

0 ≤G1(u
∗, u)−

 k∑
j=2

|Gj(u
∗, u)|p

 1
p

≤G1(u
∗, u)− (k − 1)

1−p
p

k∑
j=2

Gj(u
∗, u).(3.14)

Combining (3.12)-(3.14) leads to

(3.15) Φξ(u) ≥

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ

 d2R(u, u
∗).

This implies that

dR(u, u
∗) ≤

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ

− 1
2

[Φξ(u)]
1
2

and the inequality (3.10) is valid. □

Theorem 3.13. Let u∗ be a solution of VEP(D, G,Kk
p). Suppose that the assump-

tions of Theorem 3.9 and Theorem 3.12 hold. Then, for each u ∈ D, we have
(3.16)

dR(u, u
∗) ≤

1
2
min

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ
, ζ


− 1

2 [
RΦξ,ζ(u)

] 1
2 .

Proof. Let u∗ ∈ S(D, G,Kk
p). In view of (3.15), we obtain

RΦξ,ζ(u) = inf
z∈D

{
Φξ(z) + ζd2R(u, z)

}
≥ inf

z∈D


µ1 + (k − 1)

1−p
p

 k∑
j=2

µj

− 1

2ξ

 d2R(z, u
∗) + ζd2R(u, z)


≥ min

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ
, ζ

 inf
z∈D

{
d2R(z, u

∗) + d2R(u, z)
}

≥ min

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ
, ζ

 [dR(z, u
∗) + dR(u, z)]

2

2

≥ 1

2
min

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ
, ζ

 d2R(u, u
∗).
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This further leads to

dR(u, u
∗) ≤

1
2
min

µ1 + (k − 1)
1−p
p

 k∑
j=2

µj

− 1

2ξ
, ζ


− 1

2 [
RΦξ,ζ(u)

] 1
2 .

Then, the proof is complete. □
Next, we present an example to illustrate our main results on regularized gap

functions and upper bounds for VEP(D, G,Kk
p).

Example 3.14. Let (H, 〈·, ·〉R) be the Hadamard manifold considered in Example
3.4.

Let k = 3, D = {u ∈ R | u = e
5
2
r+1, r ∈ [0, 1]} ⊂ H, for each j ∈ {1, 2, 3}, the

functions Gj : D ×D → R be defined by

G1(u, v) = 2 lnu ln2 v − ln3 u,

G2(u, v) =
3

2
ln2 u− 3

2
lnu ln v,

G3(u, v) = 2 ln2 u− 2 lnu ln v,

for all u, v ∈ D. Moreover, let G : D ×D → R3 be defined by

G(u, v) = (G1(u, v), G2(u, v), G3(u, v))
⊤, for all u, v ∈ D.

Consider the problem VEP(D, G,Kk
p) with p = q = 2, i.e., finding u ∈ D such that((

3

2
ln2 u− 3

2
lnu ln v

)2

+
(
2 ln2 u− 2 lnu ln v

)2) 1
2

≤ lnu ln2 v − ln3 u, ∀v ∈ D,

which is equivalent to solving

5

2

√
ln2 u(ln v − lnu)2 ≤ lnu(ln v − lnu)(lnu+ ln v), ∀v ∈ D.

Following from a direct computation, it is easy to verify that S(D, G,Kk
p) = {e}.

In addition, it is not hard to show that D is a nonempty, compact and geodesic
convex set, the function Gj is continuous and Gj(u, u) = 0 for all j ∈ {1, 2, 3} and
so G(u, u) = 0R3 for all u ∈ D. Furthermore, thanks to Example 3.4, we know
that the function v 7→ G1(u, v) is geodesic convex and the functions v 7→ G2(u, v)
and v 7→ G3(u, v) are linear affine for all u ∈ D. Applying Proposition 3.3, G
is the Kk

p-convex function. Thus, all assumptions of Theorem 3.7 and Theorem
3.9 are satisfied, which says, for any ξ, ζ > 0, Φξ and RΦξ,ζ are gap functions of

VEP(D, G,Kk
p).

For any u, v ∈ D, we have

G1(u, v) +G1(v, u) = lnu ln2 v − ln3 u+ ln v ln2 u− ln3 v

= −(lnu+ ln v)(ln v − lnu)2

≤ −2d2R(u, v);

G2(u, v) +G2(v, u) =
3

2
(ln v − lnu)2 =

3

2
d2R(u, v);
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G3(u, v) +G3(v, u) = 2(ln v − lnu)2 = 2d2R(u, v).

Hence, the conditions (Aµ
G) are satisfied with µ1 = µ3 = 2, µ2 = 3

2 . Therefore, for
any

ξ >
1

2

µ1 + (k − 1)
− 1

q

 k∑
j=2

µj

−1

≈ 0.1117,

which implies the inequalities (3.10) and (3.16) hold. In particular, taking ξ = 1
2 ,

by the definition of the function Φξ in (3.5), we obtain

Φξ(u) = sup
v∈D

[
5

2

√
ln2 u(ln v − lnu)2 − lnu(ln2 v − ln2 u)− (ln v − lnu)2

]
,

and with u∗ = e ∈ S(D, G,Kk
p), we have

dR(u, e) ≤
2√

4 + 7
√
2

√
Φξ(u).

for all u ∈ D.

Remark 3.15. There are some comments regarding Theorem 3.12 and Theo-
rem 3.13.

(i): The upper bound results in Theorem 3.12 and Theorem 3.13 provide the
upper estimates of the Riemannian distance from an arbitrary point in the
admissible set D to the unique solution set of VEP(D, G,Kk

p) on Hadamard
manifolds. Computing the upper estimates in (3.10) and (3.16) is controlled
by the regularized gap functions Φξ and RΦξ,ζ and depends on the data in
the component functions G1, · · · , Gk.

(ii): To the best of our knowledge, up to now, deriving upper bounds for
vector equilibrium problems on Hadamard manifolds, whose final space is
partially ordered by p-order cone using gap regularized functions has not
been studied. Therefore, our results in Theorem 3.12 and Theorem 3.13 are
new to the literature.

4. Conclusions

In this article, we have investigated a new class of vector equilibrium problems
associated with partial order provided by p-order cone in the setting of Hadamard
manifolds. In light of the concept of Kk

p-convexity of a vector-valued function on
Hadamard manifolds, we have proposed gap regularized functions of the Fukushima
and Moreau-Yosida types for tackling the problem VEP(D, G,Kk

p) (Theorem 3.7
and Theorem 3.9). Especially, we have also developed several upper bounds for the
problem VEP(D, G,Kk

p) controlled by these regularized gap functions under suitable
assumptions (Theorem 3.12 and Theorem 3.13). The main results are new to the
literature even in the special case where H is a finite dimensional space.

Based on the obtained results, a future direction is studying the solution meth-
ods including numerical algorithms and convergence analyses to solve the problem
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VEP(D, G,Kk
p) via the minimization problems using the regularized gap functions

Φξ and RΦξ,ζ .

References

[1] L. Q. Anh, N. V. Hung and V. M. Tam, Regularized gap functions and error bounds for
generalized mixed strong vector quasiequilibrium problems, Comput. Appl. Math. 37 (2018),
5935–5950.

[2] Q. H. Ansari, M. Islam and J.-C. Yao, Nonsmooth variational inequalities on Hadamard man-
ifolds, Appl. Anal. 99 (2020), 340–358.
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