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where f : Rn → R, is still a convex function, gi : Rn × Rq → R is continuous such
that gi(·, vi) is convex and vi ∈ Rq is an uncertain parameter which belongs to some
set Vi ⊂ Rq, i = 1, . . . ,m.

Following the robust (worst-case) approach, the robust counterpart of prob-
lem (UCP) is stated as follows:

min f(x) subject to gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m.(RCP)

The feasible set F of problem (RCP) (also known as the robust feasible set of
problem (UCP), see [37]) is defined by

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m},(1.1)

which is assumed to be nonempty. Then x̄ ∈ F is called a (global) optimal solution
to problem (RCP), if f(x̄) ≤ f(x), for all x ∈ F.

1.2. Approximate Solution Concepts. It is well-known that an optimal solu-
tion to a convex optimization problem may not be exact but very near to it; for
instance, minimizing the convex function ex over (−∞, 0]. This fact leads to the
notion of approximate solutions, which also play a key role in algorithmic study of
optimization problems. A large number of research papers studied the character-
izations of approximate solutions in mathematical optimization problems; see, for
example, [2, 6, 8, 9, 12, 18, 20–24, 27, 30, 32, 33, 35, 36] and the references therein.

Below, we recall the definition of approximate solutions to problem (RCP).

Definition 1.1. Let α ≥ 0 and ϵ ≥ 0 be given, then x̄ is said to be

• an ϵ-solution to problem (RCP), if f(x̄) ≤ f(x) + ϵ, for all x ∈ F ;
• a quasi α-solution to problem (RCP), if f(x̄) ≤ f(x) + α∥x − x̄∥, for all
x ∈ F ;

• a regular (α, ϵ)-solution to problem (RCP), if for any x ∈ F, x̄ is an ϵ-solution
to problem (RCP) as well as a quasi α-solution;

• a quasi (α, ϵ)-solution to problem (RCP), if

f(x̄) ≤ f(x) + α∥x− x̄∥+ ϵ, for all x ∈ F.(1.2)

Remark 1.2. (i) By definition, if x̄ is an ϵ-solution to problem (RCP), then
it is a quasi (α, ϵ)-solution, but the converse is not true. Similarly, if x̄ is a
quasi α-solution to problem (RCP), then it is a quasi (α, ϵ)-solution, again
the converse is not true.

(ii) It is also apparent that, if α = 0 (resp., ϵ = 0), then the notion of a quasi
(α, ϵ)-solution defined above coincides with an ϵ-solution (resp., a quasi α-
solution); see, for example [18, 21–24]. Moreover, if α = ϵ = 0, then a quasi
(α, ϵ)-solution will reduce to an exact solution (if exists). Therefore the case
of α ̸= 0 and ϵ ̸= 0 is often of interest, for such a reason, we always assume
hereafter that α > 0 and ϵ > 0.

Now, we are going to explain the geometrical meaning of the mentioned approx-
imate solutions, and give two examples to show their differences.

• Geometrical meaning of an ϵ-solution. Let ϵ > 0 be given, by definition of
an ϵ-solution to problem (RCP), we have f(x̄) ≤ inf

x∈F
f(x)+ ϵ. Observe that
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the ϵ-solution set of problem (RCP) is {x̄ ∈ F : f(x̄) ≤ inf
x∈F

f(x) + ϵ}, i.e.,
the intersection of ( inf

x∈F
f(x) + ϵ)-(lower-)level set and the feasible set F.

• Geometrical meaning of a quasi α-solution. Let α > 0 be given, it follows
from the definition that x̄ is a quasi α-solution to problem (RCP) if

f(x̄) ≤ f(x) + α∥x− x̄∥, for all x ∈ F.

Clearly, a quasi α-solution means f(x) ≥ f(x̄) − α∥x − x̄∥ =: g(x) for all
x ∈ F by means of their graphs. If in addition f is differentiable over its
domain, then ∥∇f(x̄)∥ ≤ α due to [27]. It is also worth mentioning that the
notion of a quasi α-solution introduced by Loridan [27] is motivated by the
well-known Ekeland’s Variational Principle [10].

• Geometrical meaning of a regular (α, ϵ)-solution. It is easy to see that
the regular (α, ϵ)-solution set of problem (RCP) is the intersection of its
ϵ-solution set and quasi α-solution set.

• Geometrical meaning of a quasi (α, ϵ)-solution. Let α > 0 and ϵ > 0 be
given. By definition, it is true that (1.2) can be written as

f(x̄) + α∥x̄− x̄∥ ≤ f(x) + α∥x− x̄∥+ ϵ, for all x ∈ F ;

in other words, x̄ is an ϵ-solution of function f(·)+α∥ ·−x̄∥ over F. Besides,
let g(x) = f(x̄)− α∥x− x̄∥ − ϵ, particularly, one has g(x̄) = f(x̄)− ϵ. Thus,
a quasi (α, ϵ)-solution says f(x) ≥ g(x) for all x ∈ F in view of their graphs.

Below, we give two simple examples with (detailed) calculations to show the differ-
ences of the mentioned approximate solutions. One may see [21] for the calculations
of the first three approximate solution sets in Example 1.3, while the calculation of
quasi (α, ϵ)-solution set is new as we shall see in the following. Besides, we leave
the calculations of Example 1.3 to the reader.

Example 1.3. Consider the following unconstrained convex optimization problem:

min f(x) := x2 subject to x ∈ R.(P1)

Observe that x = 0 is the (global) optimal solution to problem (P1). Let α > 0 and
ϵ > 0 be given, a simple calculation yields that

• x̄ is an ϵ-solution to problem (P1) if f(x̄) ≤ f(x) + ϵ, for all x ∈ R, which is
equivalent to f(x̄) ≤ inf

x∈R
f(x) + ϵ, and the ϵ-solution set is [−

√
ϵ,
√
ϵ];

• x̄ is a quasi α-solution to problem (P1) if f(x̄) ≤ f(x) + α∥x − x̄∥, for all
x ∈ R. Since f(x) = x2 is differentiable over R, it follows from Geometrical
meaning of a quasi α-solution that ∥∇f(x̄)∥ = ∥2x̄∥ ≤ α, hence the quasi
α-solution set is [−α

2 ,
α
2 ];

• the regular (α, ϵ)-solution set is [max{−α
2 ,−

√
ϵ},min{

√
ϵ, α2 }].

Now, we will calculate the quasi (α, ϵ)-solution set with a detailed calculation. By
definition, we have x̄2 ≤ x2+α|x−x̄|+ϵ, for all x ∈ R. Let g(x) = f(x̄)−α|x−x̄|−ϵ =
x̄2−α|x− x̄|− ϵ, clearly, g(x̄) = f(x̄)− ϵ. See the Fig. 1, since a quasi (α, ϵ)-solution
says f(x) ≥ g(x) for all x ∈ R in the view of their graphs, consider first x ≥ 0,
so the slope of g, i.e., α should be no less than the slope of g1 at the point a, i.e.,
∇f(a) = 2a, as shown in Fig. 1; in other words, α ≥ 2a. Now, we calculate the
point a. Observe that g1(x) = 2a(x − a) + a2, and point (x̄, x̄2 − ϵ) locates in the
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Figure 1. A quasi (α, ϵ)-solution x̄ means f(x) ≥ g(x) for all x ∈ R
in the view of their graphs.

graph g1(x), then, we have a = x̄ −
√
ϵ, furthermore 0 ≤ x̄ ≤ α

2 +
√
ϵ. A similar

argument shows that −α
2 −

√
ϵ ≤ x̄ ≤ 0 if we consider x ≤ 0.

• Hence, the quasi (α, ϵ)-solution set is [−α
2 −

√
ϵ, α2 +

√
ϵ].

1.3. Motivations and Contributions. Very recently, approximate optimality
conditions and approximate duality theorems for ϵ-solutions and quasi α-solutions
to problem (RCP) were studied by Lee and Lee [22] and Lee and Jiao [21], respec-
tively. In particular, if the feasible set F is given by a linear matrix inequality with
data uncertainty (known as robust convex semidefinite programming problems), ap-
proximate optimality conditions and approximate duality theorems for ϵ-solutions
and quasi α-solutions to such a robust model problem were studied due to its spe-
cial structure by Lee and Lee [23] and Jiao and Lee [18], respectively. Furthermore,
if the feasible set F is given by an infinite number of constraints that is a convex
system with data uncertainty (known as robust convex semi-infinite programming
problems), some results for ϵ-solutions of the robust convex semi-infinite program-
ming problems were studied by Lee and Lee [24]. Meanwhile, some recent works
on approximate solutions for robust convex optimization problems were also inves-
tigated by researchers; see, for example [11, 26, 34]. It is worth mentioning that all
the results in the above mentioned papers were obtained by employing the robust
version of respective Farkas’ lemmas.

On the other hand, in 2008, Beldiman et al. [2] introduced the so-called quasi
(α, ϵ)-solution to a standard optimization problem; however, they didn’t explore
the approximate optimality conditions for such a solution. Since the concept of
a quasi (α, ϵ)-solution to problem (RCP) may provide a rather large range for a
better starting point when we design algorithms, in contrast to a quasi α-solution;
see, for example [9], this motivates us to consider the study on approximate opti-
mality conditions and approximate duality theorems for such a class of approximate
solutions to robust convex optimization problems (RCP). Besides, comparing with
the works in [18, 21–23], we also examine approximate saddle point theorems. We
mainly make contributions to robust convex optimization as follows.
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(i) We explore approximate optimality conditions and approximate duality the-
orems for a quasi (α, ϵ)-solution to problem (RCP) by using the robust ver-
sion of Farkas’ lemma.

(ii) The results of this paper generalize the ones in [21, 22]. Nevertheless, the
results on a quasi (α, ϵ)-solution to problem (RCP) seem new, even though
the tools are from [15, 21, 22].

(iii) We propose some results on approximate saddle point theorems as well.

The rest of the paper is organized as follows. Section 2 gives some notations
and preliminaries. In Sect. 3, under the fulfilment of the robust characteristic cone
constraint qualification [15], we examine approximate optimality theorems for a
quasi (α, ϵ)-solution to problem (RCP). In Sect. 4, the ϵ-Wolfe type duality is
formulated, and approximate duality theorems are established; we also design an
example to illustrate the approximate duality results. Finally, we give some results
on approximate saddle point theorems in Sect. 5. Conclusions are given in Sect. 6.

2. Preliminaries

In this section, we recall some notations and preliminary results that will be
used in the paper; see [4, 7, 31] for more details. We abbreviate (x1, x2, . . . , xn) by
x. The Euclidean space Rn is equipped with the usual Euclidean norm ∥ · ∥. The
nonnegative orthant of Rn is defined by Rn

+ := {(x1, · · · , xn) ∈ Rn : xi ≥ 0}. The
inner product in Rn is defined by ⟨x, y⟩ := xT y for all x, y ∈ Rn. We say that a set A
in Rn is convex whenever λa1 + (1− λ)a2 ∈ A for all λ ∈ [0, 1], a1, a2 ∈ A. Besides,
for a given set A ⊂ Rn, we denote the interior, closure and convex hull generated
by A, by intA, clA and convA, respectively.

Let f be an extended-real-valued function from Rn to R, where R := [−∞,+∞].
A function f is said to be proper if for all x ∈ Rn, f(x) > −∞ and there exists
x0 ∈ Rn such that f(x0) ∈ R. We denote the domain of f by dom f, and dom f :=
{x ∈ Rn : f(x) < +∞}. The epigraph of f, denoted by epi f, is defined by epi f :=
{(x, r) ∈ Rn ×R : f(x) ≤ r}. The function f is said to be convex if for all λ ∈ [0, 1],
f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y) for all x, y ∈ Rn; equivalently, epi f is convex.
f is said to be concave whenever −f is convex.

Let f : Rn → R be a proper convex function. The (convex) subdifferential of f
at x ∈ dom f is defined by

∂f(x) := {x∗ ∈ Rn : ⟨x∗, y − x⟩ ≤ f(y)− f(x), ∀y ∈ Rn}.

We set ∂f(x) = ∅ whenever x /∈ dom f. More generally, for any ϵ ≥ 0, the ϵ-
subdifferential of f at x ∈ dom f is defined by

∂ϵf(x) := {x∗ ∈ Rn : ⟨x∗, y − x⟩ ≤ f(y)− f(x) + ϵ, ∀y ∈ Rn}.

We set ∂ϵf(x) = ∅ whenever x /∈ dom f. We say f is a lower semicontinuous function
if lim inf

y→x
f(y) ≥ f(x) for all x ∈ Rn. As usual, for any proper convex function

f on Rn, its conjugate function f∗ : Rn → R ∪ {+∞} is defined by f∗(x∗) :=
sup {⟨x∗, x⟩ − f(x) : x ∈ Rn} for any x∗ ∈ Rn.

Let δA be the indicator function with respect to a closed convex subset A of Rn,
that is, δA(x) = 0 if x ∈ A, and δA(x) = +∞ if x /∈ A.
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Definition 2.1. Let A ⊂ Rn be a closed convex set and x ∈ A. Then we denote

• NA(x) to be the normal cone to A at x ∈ A, where

NA(x) := {v ∈ Rn : ⟨v, y − x⟩ ≤ 0, ∀y ∈ A};
• Nϵ,A(x) to be the ϵ-normal set to A at x ∈ A, where

Nϵ,A(x) := {v ∈ Rn : ⟨v, y − x⟩ ≤ ϵ, ∀y ∈ A}.

A remarkable result of indicator function δA is that its subdifferential coincides
with normal cone, and its ϵ-subdifferential coincides with ϵ-normal set. In summary,
see the following proposition.

Proposition 2.2 ([7, Chapter 2]). Let A ⊂ Rn be a closed convex set and x ∈ A.
Then,

∂δA(x) = NA(x), ∀x ∈ A; and ∂ϵδA(x) = Nϵ,A(x), ∀x ∈ A.

Now, we recall the following celebrated result due to Jeyakumar (see [13]), which
describes the relationship between the epigraph of a conjugate function of a proper
lower semicontinuous convex function and its ϵ-subdifferential, and it also plays an
important role in deriving the main results in the paper.

Proposition 2.3 ([13]). Let f : Rn → R∪{+∞} be a proper lower semicontinuous
convex function. If a ∈ dom f := {x ∈ Rn : f(x) < +∞}, then

epi f∗ =
⋃
ϵ≥0

{(v, ⟨v, a⟩+ ϵ− f(a)) : v ∈ ∂ϵf(a)}.

Next, we recall the epigraphical conditions for the sum rule of the conjugate
functions.

Proposition 2.4 ([14]). Let f, g : Rn → R∪{+∞} be proper lower semicontinuous
convex functions. If dom f ∩ dom g ̸= ∅, then

epi (f + g)∗ = cl (epi f∗ + epi g∗).

Moreover, if one of the functions f and g is continuous, then

epi (f + g)∗ = epi f∗ + epi g∗.

3. Approximate optimality conditions

It is well known that optimality conditions play an important role in both the
theory and practice of mathematical optimization. In order to obtain (approximate)
optimality conditions, constraint qualifications are indispensable, since a constraint
qualification is a condition ensuring that every (approximate) optimal solution to
the considered problems satisfies the (approximate) optimality conditions.

In this section, we establish approximate optimality theorems for a quasi (α, ϵ)-
solution to problem (RCP) under the fulfilment of the closed convex cone constraint
qualification [15], that is, the cone⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
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is closed and convex. In fact, it follows from [15, Proposition 2.2] that the set
D :=

⋃
vi∈Vi,λi≥0 epi (

∑m
i=1λigi(·, vi))∗ is a cone in Rn+1, which is called the robust

characteristic cone. Furthermore, it is also known from [15] that the robust charac-
teristic cone D is convex whenever gi(x, ·) is concave and Vi ⊆ Rq, i = 1, . . . ,m, is
convex; and the robust characteristic cone D is closed whenever the robust Slater
condition, i.e., {x ∈ Rm : gi(x0, vi) < 0, ∀vi ∈ Vi, i = 1, . . . ,m} ̸= ∅ holds and
Vi ⊆ Rq, i = 1, . . . ,m, is compact.

Definition 3.1. We say a robust characteristic cone constraint qualification (RC-
CCQ, for short) holds if the robust characteristic cone D is closed and convex.

The following lemma was given in [15], which is the robust version of Farkas’
lemma for convex functions:

Lemma 3.2 ([15]). Let f : Rn → R be a convex function and let gi : Rn ×Rq → R,
i = 1, . . . ,m be continuous functions such that for each vi ∈ Rq, gi(·, vi) is a convex
function. Let Vi ⊆ Rq, i = 1, . . . ,m be convex and compact and let F := {x ∈
Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m} ̸= ∅. Then the following statements are
equivalent:

(i) {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m} ⊆ {x ∈ Rn : f(x) ≥ 0} ;

(ii) (0, 0) ∈ epi f∗ + cl

conv
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
 .

As mentioned before, the above Lemma 3.2 is known as the robust version of
Farkas’ lemma for convex functions, and many results are obtained based on it;
see, for example, [18, 21–24]. Below, we give a result on quasi (α, ϵ)-solutions to
problem (RCP) according to Lemma 3.2.

Theorem 3.3. Let α ≥ 0 and ϵ ≥ 0 be given, and consider problem (RCP). Let
x̄ ∈ F, where F is defined by (1.1). Suppose that the (RCCCQ) holds, i.e., the
robust characteristic cone D is closed and convex. Then the following statements
are equivalent:

(i) x̄ is a quasi (α, ϵ)-solution to problem (RCP);
(ii) there exist λ̄i ≥ 0 and v̄i ∈ Vi, i = 1, . . . ,m such that for any x ∈ Rn,

f(x) +

m∑
i=1

λ̄igi(x, v̄i) + α∥x− x̄∥+ ϵ ≥ f(x̄).

Proof. [(i) ⇒ (ii)] Let x̄ be a quasi (α, ϵ)-solution to problem (RCP), then by
definition,

f(x) + α∥x− x̄∥+ ϵ ≥ f(x̄), ∀x ∈ F.

So F ⊆ {x ∈ Rn : f(x) + α∥x− x̄∥+ ϵ− f(x̄) ≥ 0}. Let ϕ(x) = f(x) + α∥x− x̄∥+
ϵ− f(x̄). It follows from Lemma 3.2 that

(0, 0) ∈ epiϕ∗ + cl

conv
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗
 .(3.1)
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The above inclusion (3.1), along with the fulfilment of (RCCCQ), yields that

(0, 0) ∈ epiϕ∗ +
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗

.

So, there exist λ̄i ≥ 0 and v̄i ∈ Vi, i = 1, . . . ,m such that

(0, 0) ∈ epiϕ∗ + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

.(3.2)

Now, by Proposition 2.4,

epiϕ∗ = epi (f(·) + α∥ · −x̄∥+ ϵ− f(x̄))∗

= epi f∗ + epi (α∥ · −x̄∥+ ϵ− f(x̄))∗.(3.3)

Since

(α∥ · −x̄∥+ ϵ− f(x̄))∗(a) =

{
α∥x̄∥ − ϵ+ f(x̄), if ∥a∥ ≤ α,
+∞, else,

which, along with (3.3), yields

epiϕ∗ = epi f∗ + αB× [α∥x̄∥ − ϵ+ f(x̄),+∞).

Hence it follows from (3.2) that,

(0,−α∥x̄∥+ ϵ− f(x̄)) ∈ epi f∗ + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

+ αB× R+.

Then there exist u ∈ Rn, δ ≥ 0, wi ∈ Rn, βi ≥ 0, i = 1, . . . ,m, b ∈ B and r ∈ R+

such that

(0,−α∥x̄∥+ ϵ− f(x̄)) = (u, f∗(u) + δ) +
m∑
i=1

λ̄i(wi, g
∗
i (wi, v̄i) + βi) + (αb, r).

So, we have

0 = u+

m∑
i=1

λ̄iwi + αb,

−α∥x̄∥+ ϵ− f(x̄) = f∗(u) + δ +

m∑
i=1

λ̄i((gi(·, v̄i))∗(wi) + βi) + r.

Hence for any x ∈ Rn,

−

〈
m∑
i=1

λ̄iwi, x

〉
− ⟨αb, x⟩ − f(x) = ⟨u, x⟩ − f(x)

≤ f∗(u)

= −α∥x̄∥+ ϵ− f(x̄)− δ

−
m∑
i=1

λ̄i((gi(·, v̄i))∗(wi) + βi)− r.
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Thus for any x ∈ Rn,

f(x̄) ≤ f(x) +
m∑
i=1

λ̄i⟨wi, x⟩ −
m∑
i=1

λ̄i(gi(·, v̄i))∗(wi) + ⟨αb, x⟩ − α∥x̄∥+ ϵ− δ

≤ f(x) +
m∑
i=1

λ̄i

(
⟨wi, x⟩ − (gi(·, v̄i))∗(wi)

)
+ ⟨αb, x⟩ − α∥x̄∥+ ϵ

≤ f(x) +

m∑
i=1

λ̄igi(x, v̄i) + α∥b∥∥x− x̄∥+ α∥b∥∥x̄∥ − α∥x̄∥+ ϵ

≤ f(x) +

m∑
i=1

λ̄igi(x, v̄i) + α∥x− x̄∥+ ϵ.

[(i) ⇐ (ii)] Suppose that there exist λ̄i ≥ 0, v̄i ∈ Vi, i = 1, . . . ,m such that for
any x ∈ Rn, f(x) +

∑m
i=1 λ̄igi(x, v̄i) + α∥x − x̄∥+ ϵ ≥ f(x̄). Then we have for any

x ∈ F ,

f(x) + α∥x− x̄∥+ ϵ ≥ f(x) +
m∑
i=1

λ̄igi(x, v̄i) + α∥x− x̄∥+ ϵ ≥ f(x̄).

Thus f(x) + α∥x− x̄∥+ ϵ ≥ f(x̄) for any x ∈ F . Hence x̄ is a quasi (α, ϵ)-solution
of problem (RCP). □

Now, we are ready to give the approximate optimality condition (both necessary
and sufficient) for a quasi (α, ϵ)-solution of problem (RCP) under the fulfilment of
(RCCCQ).

Theorem 3.4 (Approximate Optimality Condition). Let α ≥ 0 and ϵ ≥ 0 be given,
and consider problem (RCP). Let x̄ ∈ F, where F is defined by (1.1). Suppose that
the (RCCCQ) holds. Then the following statements are equivalent:

(i) x̄ is a quasi (α, ϵ)-solution to problem (RCP);

(ii) (0,−α∥x̄∥+ ϵ− f(x̄)) ∈ epi f∗ +
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗

+ αB×R+;

(iii) there exist ϵ̄0 ≥ 0, ϵ̄i ≥ 0, v̄i ∈ Vi and λ̄i ≥ 0, i = 1, . . . ,m, such that

0 ∈ ∂ϵ̄0f(x̄) +
m∑
i=1

∂ϵ̄i(λ̄igi(·, v̄i))(x̄) + αB,(3.4)

m∑
i=0

ϵ̄i − ϵ ≤
m∑
i=1

λ̄igi(x̄, v̄i).(3.5)

Proof. [(i) ⇔ (ii)] is followed from Theorem 3.3.
[(ii) ⇒ (iii)] Let F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m} ̸= ∅.

Assume that (ii) holds, i.e.,

(0,−α∥x̄∥+ ϵ− f(x̄)) ∈ epi f∗ +
⋃

vi∈Vi,λi≥0

epi

(
m∑
i=1

λigi(·, vi)

)∗

+ αB× R+.
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Then, there exist v̄i ∈ Vi and λ̄i ≥ 0, i = 1, . . . ,m such that

(0,−α∥x̄∥+ ϵ− f(x̄)) ∈ epi f∗ + epi

(
m∑
i=1

λ̄igi(·, v̄i)

)∗

+ αB× R+.(3.6)

Since gi : Rn × Rq → R, i = 1, . . . ,m are continuous functions, by Proposition 2.4,
the inclusion (3.6) can be written as

(0,−α∥x̄∥+ ϵ− f(x̄)) ∈ epi f∗ +
m∑
i=1

epi (λ̄igi(·, v̄i))∗ + αB× R+.

Furthermore, it follows from Proposition 2.3 that there exist ϵi ≥ 0, i = 0, 1, . . . ,m
such that

(0,−α∥x̄∥+ ϵ− f(x̄) ) ∈
⋃
ϵ0≥0

{(ξ0, ⟨ξ0, x̄⟩+ ϵ0 − f(x̄)) : ξ0 ∈ ∂ϵ0f(x̄)}

+
m∑
i=1

⋃
ϵi≥0

{
(ξi, ⟨ξi, x̄⟩+ ϵi − λ̄igi(x̄, v̄i)) : ξi ∈ ∂ϵi λ̄igi(·, v̄i)(x̄)

}
+ αB× R+.

It means that there exist v̄i ∈ Vi, λ̄i ≥ 0, ξ̄0 ∈ ∂ϵ̄0f(x̄), ξ̄i ∈ ∂ϵ̄i λ̄igi(·, v̄i)(x̄),
i = 1, . . . ,m, b ∈ B, r ∈ R+ and ϵ̄i ≥ 0, i = 0, 1, . . . ,m, such that

(0,−α∥x̄∥+ ϵ− f(x̄)) = (ξ̄0, ⟨ξ̄0, x̄⟩+ ϵ̄0 − f(x̄))

+

m∑
i=1

(ξ̄i, ⟨ξ̄i, x̄⟩+ ϵ̄i − λ̄igi(x̄, v̄i)) + (αb, r),

which is equivalent to say that{
0 =

∑m
i=0 ξ̄i + αb∑m

i=0 ϵ̄i − ϵ ≤ α∥x̄∥ − α⟨b, x̄⟩ − ϵ+
∑m

i=0 ϵ̄i + r =
∑m

i=1 λ̄igi(x̄, v̄i) ≤ 0.

Thus, [(ii) ⇒ (iii)] follows.

Now, we claim that [(iii) ⇒ (i)], this implication is known as “sufficient con-
dition”. Assume that (iii) holds, i.e., there exist ϵ̄0 ≥ 0, ϵ̄i ≥ 0, v̄i ∈ Vi and
λ̄i ≥ 0, i = 1, . . . ,m such that (3.4) and (3.5) hold. Then, there exist ξ̄0 ∈ ∂ϵ̄0f(x̄),
ξ̄i ∈ ∂ϵ̄i λ̄igi(·, v̄i)(x̄), i = 1, . . . ,m and b ∈ B such that

0 = ξ̄0 +

m∑
i=1

ξ̄i + αb.(3.7)

Since ξ̄0 ∈ ∂ϵ̄0f(x̄) and ξ̄i ∈ ∂ϵ̄i λ̄igi(·, v̄i)(x̄), i = 1, . . . ,m, then

f(x)− f(x̄) ≥ ⟨ξ̄0, x− x̄⟩ − ϵ̄0(3.8)

λ̄igi(x, v̄i)− λ̄igi(x̄, v̄i) ≥ ⟨ξ̄i, x− x̄⟩ − ϵ̄i, i = 1, . . . ,m.(3.9)

Along with (3.5) and (3.7), summing (3.8) and (3.9) yields that

f(x)− f(x̄) ≥ −
m∑
i=1

[
λ̄igi(x, v̄i)− λ̄igi(x̄, v̄i)

]
+ ⟨ξ̄0, x− x̄⟩ − ϵ̄0

+
m∑
i=1

(
⟨ξ̄i, x− x̄⟩ − ϵ̄i

)
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≥
m∑
i=0

λ̄igi(x̄, v̄i) +

〈
m∑
i=0

ξ̄i, x− x̄

〉
−

m∑
i=0

ϵ̄i

≥ ⟨−αb, x− x̄⟩ − ϵ

≥ −α∥x− x̄∥ − ϵ.

Observe that x̄ is a quasi (α, ϵ)-solution to problem (RCP), and (i) holds. Thus,
the proof is completed. □

Remark 3.5. We mention here that Theorem 3.4 is still true if the robust Slater
condition, i.e., {x ∈ Rm : gi(x0, vi) < 0, ∀vi ∈ Vi, i = 1, . . . ,m} ̸= ∅, holds. Further-
more, Theorem 3.4 also covers [22, Theorem 2.2] and [21, Theorem 2] if α = 0 and
ϵ = 0, respectively.

4. Approximate duality theorems

In this section, we focus on the study of duality relations between the primal
problem (RCP) and its dual model. To this end, we now formulate the ε-Wolfe
type dual model problem for the primal problem (RCP).

max
(y,v,λ)

L(y, v, λ) subject to (y, v, λ) ∈ FD,(WRD)

where L(y, v, λ) := f(y)+
∑m

i=1 λigi(y, vi), which is essentially the Lagrangian func-
tion, and FD is the feasible set of (WRD), which is given by

FD :=
{
(y, v, λ) ∈ Rn × V × Rm

+ : 0 ∈ ∂ϵ0f(y) +
m∑
i=1

∂ϵi(λigi(·, vi))(y) + αB,

λi ≥ 0, vi ∈ Vi, i = 1, . . . ,m, α ≥ 0,
m∑
i=0

ϵi ≥ ϵ, ϵi ≥ 0, i = 0, 1, . . . ,m
}
.

Note that v := (v1, . . . , vm), and V := V1 × · · · × Vm; moreover, v ∈ V stands for
(v1, . . . , vm) ∈ V1 × · · · × Vm.

Definition 4.1. Let α ≥ 0 and ϵ ≥ 0 be given, then (ȳ, v̄, λ̄) is called a quasi
(α, ϵ)-solution to (WRD) if for any (y, v, λ) ∈ FD,

f(ȳ) +

m∑
i=1

λ̄igi(ȳ, v̄i) ≥ f(y) +

m∑
i=1

λigi(y, vi)− α∥ȳ − y∥ − ϵ.

The following theorem shows the approximate weak duality relationship be-
tween (RCP) and (WRD).

Theorem 4.2 (Approximate Weak Duality). Let x and (y, v, λ) be any feasible
solutions of (RCP) and (WRD), respectively. Then,

f(x) ≥ f(y) +
m∑
i=1

λigi(y, vi)− α∥x− y∥ − ϵ.
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Proof. Let (y, v, λ) be any feasible solution to (WRD). Then, there exist α ≥ 0,
ϵ0 ≥ 0, ϵi ≥ 0, ξ̄0 ∈ ∂ϵ0f(y), ξ̄i ∈ ∂ϵi(λigi(·, vi))(y), i = 1, . . . ,m with

∑m
i=0 ϵi ≤ ϵ,

and b ∈ B such that
m∑
i=0

ξ̄i + αb = 0.

Now, along with ξ̄0 ∈ ∂ϵ0f(y), ξ̄i ∈ ∂ϵi(λigi(·, vi))(y), i = 1, . . . ,m, we have

f(x)−

(
f(y) +

m∑
i=1

λigi(y, vi)

)
≥ ⟨ξ̄0, x− y⟩ − ϵ0 −

m∑
i=1

λigi(y, vi)

= −

〈
m∑
i=1

ξ̄i + αb, x− y

〉
− ϵ0 −

m∑
i=1

λigi(y, vi)

≥ −
m∑
i=1

λi

(
gi(x, vi)− gi(y, vi)

)
− ⟨αb, x− y⟩

−
m∑
i=0

ϵi −
m∑
i=1

λigi(y, vi)

≥ −
m∑
i=1

λigi(x, vi)− α∥b∥ · ∥x− y∥ − ϵ

≥ −α∥x− y∥ − ϵ.

Hence, the conclusion follows. □
In what follows, we investigate the approximate strong duality relationship be-

tween (RCP) and (WRD).

Theorem 4.3 (Approximate Strong Duality). Consider problems (RCP) and
(WRD). Suppose that the (RCCCQ) holds. If x̄ is a quasi (α, ϵ)-solution to prob-
lem (RCP), then there exist λ̄ ∈ Rm

+ and v̄ ∈ Rq such that (x̄, v̄, λ̄) is a quasi
(α, 2ϵ)-solution to problem (WRD).

Proof. Let x̄ ∈ F be a quasi (α, ϵ)-solution to problem (RCP). It follows from
Theorem 3.4 that there exist α ≥ 0, ϵ0 ≥ 0, ϵi ≥ 0, v̄i ∈ Vi and λ̄i ≥ 0, i = 1, . . . ,m,
such that (3.4) and (3.5) hold. This implies that (x̄, v̄, λ̄) is a feasible solution to
problem (WRD). According to Theorem 4.2, for any feasible solution (y, v, λ) to
problem (WRD),(

f(x̄) +

m∑
i=1

λ̄igi(x̄, v̄i)

)
−

(
f(y) +

m∑
i=1

λigi(y, vi)

)
≥ −α∥x̄− y∥ − ϵ

+
m∑
i=1

λ̄igi(x̄, v̄i)

≥ −α∥x̄− y∥ − ϵ

+
m∑
i=0

ϵi − ϵ

≥ −α∥x̄− y∥ − 2ϵ.
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Thus (x̄, v̄, λ̄) is a quasi (α, 2ϵ)-solution to problem (WRD). □

We close this section by designing an example, which is motivated by [21, Example
2], to illustrate the approximate duality theorems.

Example 4.4. Consider the following convex optimization problem with data un-
certainty:

min |x1|+ x22 subject to x21 − 2v1x1 ≤ 0, v1 ∈ [−1, 1].(RCP1)

Let f(x1, x2) = |x1|+x22 and g1((x1, x2), v1) = x21− 2v1x1. Then the robust feasible
set of (RCP1) is F 1 := {(x1, x2) ∈ R2 : x1 = 0, x2 ∈ R}, and the robust quasi
(α, ϵ)-solution set of (RCP1) is S1

F := {(x1, x2) ∈ R2 : x1 = 0, −
√
ϵ − α

2 ≤ x2 ≤√
ϵ + α

2 }. Clearly, the Slater condition fails for (RCP1). Moreover, it follows from
[21, Example 2] that the cone

⋃
v1∈[−1,1]

λ1≥0
epi (λ1g1(·, vi))∗ is closed and convex.

Below, we formulate the ε-Wolfe type dual model problem for the primal problem
(RCP1).

max(
(y1,y2),v1,λ1

) L
(
(y1, y2), v1, λ1

)
s.t.

(
(y1, y2), v1, λ1

)
∈ F ∗

D,(WRD1)

where L
(
(y1, y2), v, λ

)
= f(y1, y2)+λ1g1

(
(y1, y2), v1

)
, and F ∗

D is the set of all robust
feasible solutions to problem (WRD1), which is given by

F ∗
D :=

{(
(y1, y2), v1, λ1

)
∈ R2 × [−1, 1]× R+ : 0 ∈ ∂ϵ0f(y1, y2) +

∂ϵ1(λ1g1(·, v1))(y1, y2) + αB,
ϵ1 ≥ 0, ϵ2 ≥ 0, ϵ1 + ϵ2 ≤ ϵ

}
.

It is worth mentioning that the feasible set F ∗
D of the ε-Wolfe type dual model

problem (WRD1) contains the one in [21, Example 2], since the solution type (quasi
(α, ϵ)-solutions) studying here is different to the one (quasi α-solutions) in [21,
Example 2]. Now, we calculate the set F ∗

D = F a
D ∪ F b

D ∪ F c
D, where

F a
D = {((0, y2), v1, λ1) : (0, 0) ∈ ∂ϵ0f(0, y2) + ∂ϵ1(λ1g1(·, v1))(0, y2) + αB,

λ1 ≥ 0, v1 ∈ [−1, 1], ϵ1 ≥ 0, ϵ2 ≥ 0, ϵ1 + ϵ2 ≤ ϵ}

=

{
((0, y2), v1, λ1) :

∣∣∣∣y2 + αb2
2

∣∣∣∣ ≤ √
ϵ0, |2v1λ1 − αb1| ≤ 1 +

√
λ1ϵ1,

b21 + b22 ≤ 1, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ

}
,

F b
D = {((y1, y2), v1, λ1) : y1 > 0, (0, 0) ∈ ∂ϵ0f(y1, y2) + ∂ϵ1(λ1g1(·, v1))(y1, y2)

+αB, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ}

=

{
((y1, y2), v1, λ1) : y1 > 0, 1 + 2λ1y1 − 2λ1v1 − 2

√
λ1ϵ1 + αb1 ≤ 0 ≤ 1

+2λ1y1 − 2λ1v1 + 2
√
λ1ϵ1 + αb1,

∣∣∣∣y2 + αb2
2

∣∣∣∣ ≤ √
ϵ0,

b21 + b22 ≤ 1, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ

}
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=

{
((y1, y2), v1, λ1) : y1 > 0,

∣∣∣∣y2 + αb2
2

∣∣∣∣ ≤ √
ϵ0, λ1y

2
1 − 2

√
λ1ϵ1y1 + αb1y1

≤ −λ1y
2
1 − (1− 2λ1v1)y1 ≤ λ1y

2
1 + 2

√
λ1ϵ1y1 + αb1y1,

b21 + b22 ≤ 1, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ

}
,

F c
D = {((y1, y2), v1, λ1) : y1 < 0, (0, 0) ∈ ∂ϵ0f(y1, y2) + ∂ϵ1(λ1g1(·, v1))(y1, y2)

+αB, λ1 ≥ 0, αB, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ}

=

{
((y1, y2), v1, λ1) : y1 < 0, −1 + 2λ1y1 − 2λ1v1 − 2

√
λ1ϵ1 + αb1 ≤ 0 ≤

−1 + 2λ1y1 − 2λ1v1 + 2
√
λ1ϵ1 + αb1,

∣∣∣∣y2 + αb2
2

∣∣∣∣ ≤ √
ϵ0,

b21 + b22 ≤ 1, λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ

}
=

{
((y1, y2), v1, λ1) : y1 < 0,

∣∣∣∣y2 + αb2
2

∣∣∣∣ ≤ √
ϵ0, λ1y

2
1 − 2

√
λ1ϵ1y1 + αb1y1

≤ −λ1y
2
1 + (1 + 2λ1v1)y1 ≤ λ1y

2
1 + 2

√
λ1ϵ1y1 + αb1y1, b21 + b22 ≤ 1,

λ1 ≥ 0, v1 ∈ [−1, 1], ϵ0 ≥ 0, ϵ1 ≥ 0, ϵ0 + ϵ1 ≤ ϵ

}
.

Then, for any (x1, x2) ∈ F 1 and any
(
(y1, y2), v1, λ1

)
∈ F a

D,

f(x1, x2)− [f(y1, y2) + λ1g1(y1, y2, v1)− α∥(x1, x2)− (y1, y2)∥ − ϵ]

= x22 − y22 + α|x2 − y2|+ ϵ

≥
(
x22 +

αb2
2

)2

− αb2x2 + αb2y2 + α|x2 − y2|+ ϵ1

≥ −αb2(x2 − y2) + α|x2 − y2|+ ϵ1

≥ −α|b2||x2 − y2|+ α|x2 − y2|+ ϵ1

≥ −α|x2 − y2|+ α|x2 − y2|+ ϵ1 ≥ 0.

Moreover, for any (x1, x2) ∈ F 1 and any
(
(y1, y2), v1, λ1

)
∈ F b

D, if λ1 = 0, then

f(x1, x2)− [f(y1, y2) + λ1g1(y1, y2, v1)− α∥(x1, x2)− (y1, y2)∥ − ϵ]

= x22 − y1 − y22 + α
√

y21 + (x2 − y2)2 + ϵ

≥ x22 − y1 + αb2y2 +
α2b22
4

+ α
√
y21 + (x2 − y2)2 + ϵ1

≥ −y1 − αb2x2 + αb2y2 + α
√

y21 + (x2 − y2)2 + ϵ1

= αb1y1 − αb2x2 + αb2y2 + α
√
y21 + (x2 − y2)2 + ϵ1

≥ −α
√
b21 + b22

√
y21 + (x2 − y2)2 + α

√
y21 + (x2 − y2)2 + ϵ1
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≥ −α
√
y21 + (x2 − y2)2 + α

√
y21 + (x2 − y2)2 + ϵ1

= ϵ1 ≥ 0.

Otherwise, if λ > 0, then

f(x1, x2)− [f(y1, y2) + λ1g1(y1, y2, v1)− α∥(x1, x2)− (y1, y2)∥ − ϵ]

= x22 − y1 − y22 − λ1y
2
1 + 2λ1v1y1 + α

√
y21 + (x2 − y2)2 + ϵ

≥ x22 + αb2y2 +
α2b22
4

− λ1y
2
1 + (2λ1v1 − 1)y1 + α

√
y21 + (x2 − y2)2 + ϵ1

≥ x22 + αb2y2 +
α2b22
4

+ λ1y
2
1 − 2

√
λ1ϵ1y1 + αb1y1 + α

√
y21 + (x2 − y2)2 + ϵ1

≥ α(b1y1 − b2x2 + b2y2) + α
√
y21 + (x2 − y2)2

≥ −α
√
b21 + b22

√
y21 + (x2 − y2)2 + α

√
y21 + (x2 − y2)2

≥ −α
√

y21 + (x2 − y2)2 + α
√

y21 + (x2 − y2)2

= 0.

Similarly, we can easily show that for any (x1, x2) ∈ F 1 and
(
(y1, y2), v1, λ1

)
∈ F c

D,

f(x1, x2) ≥ f(y1, y2) + λ1g1(y1, y2, v1)− α∥(x1, x2)− (y1, y2)∥ − ϵ.

The foregoing calculations imply that for any feasible solution (x1, x2) of (RCP1)
and any feasible solution ((y1, y2), v1, λ1) of (WRD1),

f(x1, x2) ≥ f(y1, y2) + λ1g1((y1, y2), v1)− α∥(x1, x2)− (y1, y2)∥ − ϵ,

that is, Theorem 4.2 (Approximate Weak Duality) holds.
Furthermore, let (x̄1, x̄2) ∈ S1

F be a quasi (α, ϵ)-solution of (RCP1). Then x̄1 = 0
and −

√
ϵ − α

2 ≤ x̄2 ≤
√
ϵ + α

2 . Let λ̄1 = α
2 , v̄1 = b1. Then, we can easily check

that there exist suitable ϵ0 ≥ 0, ϵ1 ≥ 0 with ϵ0 + ϵ1 ≤ ϵ and (b1, b2) ∈ B and
((x̄1, x̄2), v̄1, λ̄1) ∈ F 1

D. Moreover, for any ((y1, y2), v1, λ1) ∈ F 1
D,

[f(x̄1, x̄2) + λ̄1g((x̄1, x̄2), v̄1)]− [f(y1, y2) + λ1g((y1, y2), v1)]

≥ −ϵ− α∥(x̄1, x̄2)− (y1, y2)∥+ λ̄1g((x̄1, x̄2), v̄1)(4.1)

≥ −2ϵ− α∥(x̄1, x̄2)− (y1, y2)∥,(4.2)

where (4.1) is from Theorem 4.2 (Approximate Weak Duality), and (4.2) is based
on the condition −ϵ ≤ λ̄1g1((x̄1, x̄2), v̄1). This means ((x̄1, x̄2), v̄1, λ̄1) is a quasi
(α, 2ϵ)-solution of (WRD1), and thus Theorem 4.3 (Approximate Strong Duality)
holds.

5. Approximate saddle point results

Let α ≥ 0 be given. The α-Lagrangian function (with respective to a reference
point ȳ ∈ Rn) associated to problem (RCP), denoted by Lα : Rn × V × Rm

+ → R is

Lα(y, v, λ) := f(y) +
m∑
i=1

λigi(y, vi) + α∥y − ȳ∥.
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In what follows, we give the definition of the so-called quasi (α, ϵ)-saddle point
to the α-Lagrangian function Lα.

Definition 5.1. Let ϵ ≥ 0 be given. A point (ȳ, v̄, λ̄) ∈ Rn × V × Rm
+ is said to

be a quasi (α, ϵ)-saddle point to the α-Lagrangian function Lα if for any (y, v, λ) ∈
Rn × V × Rm

+ ,

Lα(ȳ, v, λ)− ϵ ≤ Lα(ȳ, v̄, λ̄) ≤ Lα(y, v̄, λ̄) + ϵ.

The following results are approximate saddle point theorems, which tell us the
necessary and sufficient relationships between a quasi (α, ϵ)-solution to problem (RCP)
and a quasi (α, ϵ)-saddle point to the α-Lagrangian function Lα.

Theorem 5.2 (Necessity). Suppose that the (RCCCQ) holds. If ȳ ∈ F is a quasi
(α, ϵ)-solution to problem (RCP), then there exist v̄ ∈ V and λ̄ ∈ Rm

+ such that
(ȳ, v̄, λ̄) is a quasi (α, ϵ)-saddle point to the α-Lagrangian function Lα.

Proof. Let ȳ ∈ F be a quasi (α, ϵ)-solution to problem (RCP), then for all y ∈ F,

f(y) + α∥y − ȳ∥+ ϵ ≥ f(ȳ).

Since the (RCCCQ) holds, by Theorem 3.3, there exist λ̄i ≥ 0 and v̄i ∈ Vi, i =
1, . . . ,m such that

f(y) +

m∑
i=1

λ̄igi(y, v̄i) + α∥y − ȳ∥+ ϵ ≥ f(ȳ), ∀y ∈ Rn.(5.1)

Note that we always have λ̄igi(ȳ, v̄i) ≤ 0 since ȳ ∈ F and λ̄i ≥ 0, i = 1, . . . ,m.
It follows from (5.1) that

Lα(y, v̄, λ̄) + ϵ ≥ f(ȳ) +

m∑
i=1

λ̄igi(ȳ, v̄i) + α∥ȳ − ȳ∥(5.2)

= Lα(ȳ, v̄, λ̄).

Now, let y = ȳ in (5.1), we have
∑m

i=1 λ̄igi(ȳ, v̄i) + ϵ ≥ 0, then also

m∑
i=1

λ̄igi(ȳ, v̄i) ≥ −ϵ+
m∑
i=1

λigi(ȳ, vi),(5.3)

for any λi ≥ 0, vi ∈ Vi, i = 1, . . . ,m. Furthermore, along with (5.3), we have

Lα(ȳ, v, λ)− ϵ = f(ȳ) +

m∑
i=1

λigi(ȳ, vi) + α∥ȳ − ȳ∥ − ϵ

≤ f(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) + α∥ȳ − ȳ∥

= Lα(ȳ, v̄, λ̄).

This, together with (5.2), yields the desired result. □

Theorem 5.3 (Sufficiency). If (ȳ, v̄, λ̄) is a quasi (α, ϵ)-saddle point to the α-
Lagrangian function Lα, then ȳ is a quasi (α, 2ϵ)-solution to problem (RCP).
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Proof. let (ȳ, v̄, λ̄) be a quasi (α, ϵ)-saddle point to the α-Lagrangian function Lα.
Then it follows from the first inequality in Definition 5.1 that

m∑
i=1

λigi(ȳ, vi)− ϵ ≤
m∑
i=1

λ̄igi(ȳ, v̄i).

Particularly, if ȳ ∈ F, then the above inequality yields
m∑
i=1

λ̄igi(ȳ, v̄i) ≥
m∑
i=1

λigi(ȳ, vi)− ϵ ≥ −ϵ.(5.4)

On the other hand, from the second inequality in Definition 5.1, we have

f(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) ≤ f(y) +
m∑
i=1

λ̄igi(y, v̄i) + α∥ȳ − ȳ∥+ ϵ.(5.5)

Then, along with (5.4) and (5.5), for any y ∈ F,

f(y) + α∥y − ȳ∥+ ϵ ≥ f(y) + α∥y − ȳ∥+
m∑
i=1

λ̄igi(y, v̄i) + ϵ

≥ f(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i)

≥ f(ȳ)− ϵ.

Thus, f(ȳ) ≤ f(y) + α∥y − ȳ∥ + 2ϵ for any y ∈ F. Consequently, ȳ is a quasi
(α, 2ϵ)-solution to problem (RCP). □

6. Conclusions

In this paper, we studied approximate optimality theorems (both necessary and
sufficient) and approximate duality results for a quasi (α, ϵ)-solution to problem
(RCP). The results generalized the ones in [21, 22]. Besides, we explored some
approximate saddle point results to the α-Lagrangian function Lα associated to
problem (RCP). It will be also meaningful to examine some characterizations of a
quasi (α, ϵ)-solution in some other mathematical settings.
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