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modified the M-iterative process for a multivalued version as follows: let K be a
nonempty convex subset of E, αn ∈ (0, 1).

x1 ∈ K,

xn+1 = ln,

wn = on,

mn = (1− αn)xn + αnun,

(1.1)

where un ∈ PT (xn), on ∈ PT (mn) and ln ∈ PT (wn).
This scheme was employed for finding fixed points of multivalued generalized (α,β)-
nonexpansive mappings. They also gave an example to guarantee that M-iterative
scheme converges faster than the iteration of Noor [17], Picard-Mann hybrid [12],
Abbas and Nazir [1] and of Picard-S [9].

Motivated by the research going on in this direction, we instigate a new modified
algorithm for approximating common fixed points of two multivalued generalized
(α,β)-nonexpansive mappings. Moreover, a numerical example is provided to show
that our algorithm leads to a faster convergence comparing to a number of existing
iteration processes.

2. Preliminaries

Let T and S be two multivalued mappings defined on a nonempty subset K of a
Banach space E. The set of fixed points of T is denoted by

F (T ) = {x ∈ K : x ∈ Tx}.
A mapping T is said to satisfy the endpoint condition [7, 19] if Tp = {p} for any
p ∈ F (T ). The set of common fixed points of T and S is denoted by

CF (T, S) = {x ∈ K : x ∈ F (T ) and x ∈ F (S)}.
We call K a proximinal if for each x ∈ E, there exists an element k ∈ K such

that

||x− k|| = inf{||x− y|| : y ∈ K} = d(x,K).

It can be seen that set of all proximinal includes weakly compact and convex subsets
of a Banach space and closed convex subsets of a reflexive Banach space. Let CB(K)
be the class of all nonempty bounded and closed subsets of K. It is not difficult to
show that every proximinal subset K of E is closed. Hence, P (K) ⊆ CB(K). The
Hausdorff metric on CB(E) is defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for every A,B ∈ CB(E), where d(x,B) = infb∈B ||x − b||. A multivalued mapping
T : K → P (K) is said to be nonexpansive if

H(Tx, Ty) ≤ ||x− y||,
for all x, y ∈ K. If F (T ) ̸= ∅ and

H(Tx, Tp) ≤ ||x− p||,
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for all x ∈ K and p ∈ F (T ), then T is said to be quasi-nonexpansive.

Definition 2.1 ([37]). Consider a multivalued mapping T : K → 2K . Then, T is
called generalized (α,β)-nonexpansive if there exist two positive real constants α,β
with α+ β < 1 and for all x, y ∈ K, we have

1

2
d(x, Tx) ≤||x− y|| implies that

H(Tx, Ty) ≤αd(x, Ty) + αd(y, Tx) + βd(x, Tx)

+ βd(y, Ty) + (1− 2α− 2β)||x− y||.

Lemma 2.2 ([37]). Suppose a Banach space E and ∅ ̸= K ⊂ E and also consider a
multivalued mapping T : K → CB(K). If T is generalized (α,β)-nonexpansive with
F (T ) ̸= ∅ and satisfies the endpoint condition, then T is quasi-nonexpansive.

Lemma 2.3 ( [37]). Let K be a nonempty subset of a Banach space E and let
T : K → CB(K) be a generalized (α,β)-nonexpansive multivalued mapping. Then,

d(x, Ty) ≤
(
3 + α+ β

1− α− β

)
d(x, Tx) + ||x− y||, for x, y ∈ K.

The following results are necessary for proving our main theorems.

Proposition 2.4 ([25]). Let K be a nonempty subset of a metric space E and T :
K → P (K) be a multivalued mapping. Then the following conditions are equivalent:

(i) x ∈ F (T ), that is, x ∈ Tx,
(ii) PT (x) = {x}, that is, x = y for each y ∈ PT (x),
(iii) x ∈ F (PT ), that is, x ∈ PT (x).

Further, F (T ) = F (PT ).

By Proposition 2.4, it is clear that PT satisfies the endpoint condition. The
following results also play essential roles in this paper.

Lemma 2.5 ([23]). Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤
q < 1 for all n ∈ N. Suppose that {xn} and {yn} are two sequences of E such that
lim supn→∞ ||xn|| ≤ r, lim supn→∞ ||yn|| ≤ r and limn→∞ ||(1 − tn)xn + tnyn|| = r
hold for some r ≥ 0. Then limn→∞ ||xn − yn|| = 0.

Definition 2.6 ([18]). Let E be a Banach space. The space E is said to be endowed
with Opial’s condition if for any sequence {xn} ⊂ E, with xn ⇀ x, it follows that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||,

where y ∈ E and y ̸= x.

Definition 2.7 ([37]). Amultivalued mapping T : K → CB(K) is called demiclosed
at y ∈ K if for any sequence {xn} in K that is xn ⇀ x for some x ∈ K and
yn ∈ T (xn), n ∈ N, which converges strongly to y then we have y ∈ T (x).
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3. Main results

We begin this section by modifying the iteration process given by (1.1) to ap-
proximate common fixed points of two mappings, i.e., let K be a nonempty convex
subset of E and T, S : K → P (K) be two multivalued mappings and αn, βn ∈ [0, 1].
Let {xn} be a sequence defined as:

x1 ∈ K,

xn+1 = ln,

mn = (1− αn)xn + αnun,

sn = (1− βn)mn + βnvn,

wn = on,

(3.1)

where un ∈ PT (xn), vn ∈ PS(mn), on ∈ PT (sn) and ln ∈ PS(wn).

Note that our algorithm can be reduce to M-iteration when PT = PS and βn = 0,
for all n ∈ N.

Lemma 3.1. Let K be a nonempty closed convex subset of uniformly convex Ba-
nach space E and let T, S : K → P (K) be two multivalued mappings such that
CF (T, S) ̸= ∅. Assume that PT , PS are generalized (α,β)-nonexpansive mappings.
Suppose that {xn} is a sequence defined by (3.1) such that 0 < a ≤ αn, βn ≤ b < 1.
Then, for p ∈ CF (T, S), limn→∞ ||xn − p|| exists and limn→∞ d(xn, PT (xn)) = 0 =
limn→∞ d(xn, PS(xn)).

Proof. If p ∈ CF (T, S), then by Proposition 2.4 and Lemma 2.2, we have

||mn − p|| ≤ (1− αn)||xn − p||+ αn||un − p||
≤ (1− αn)||xn − p||+ αnH(PT (xn), PT (p))

≤ (1− αn)||xn − p||+ αn||xn − p||
= ||xn − p||.(3.2)

By the same token, we obtain

||sn − p|| ≤ (1− βn)||mn − p||+ βn||vn − p||
≤ (1− βn)||mn − p||+ βnH(PS(mn), PS(p))

≤ (1− βn)||mn − p||+ βn||mn − p||
= ||mn − p||.(3.3)

Furthermore,

||wn − p|| = ||on − p||
≤ H(PT (sn), PT (p))

≤ ||sn − p||.(3.4)

By (3.2), (3.3) and (3.4),

||xn+1 − p|| = ||ln − p||
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≤ H(PS(wn), PS(p))

≤ ||wn − p||
≤ ||sn − p||(3.5)

≤ ||mn − p||(3.6)

≤ ||xn − p||(3.7)

By (3.7), we have {||xn−p||} is bounded and nonincreasing, limn→∞ ||xn−p|| exists
for p ∈ CF (T, S). Suppose that

lim
n→∞

||xn − p|| = c.(3.8)

Then,

lim sup
n→∞

||xn − p|| ≤ c.

Since

||un − p|| ≤ H(PT (xn), PT (p)) ≤ ||xn − p||,
we obtain

lim sup
n→∞

||un − p|| ≤ c.

By (3.6) and (3.8), we have

c = lim
n→∞

||xn+1 − p||

≤ lim
n→∞

||mn − p||

= lim
n→∞

||(1− αn)(xn − p) + αn(un − p)||

≤ c.

From Lemma 2.5, we get

lim
n→∞

||xn − un|| = 0.(3.9)

Hence,

lim
n→∞

d(xn, PT (xn)) = 0.

By (3.9) and 0 < a ≤ αn ≤ b < 1, we have

lim
n→∞

||xn −mn|| = lim
n→∞

||xn − (1− αn)xn − αnun||

≤ lim
n→∞

αn||xn − un||

= 0.(3.10)

From (3.2), we get

lim sup
n→∞

||mn − p|| ≤ lim sup
n→∞

||xn − p|| ≤ c.

Since

||vn − p|| ≤ H(PS(mn), PS(p)) ≤ ||mn − p||,
we obtain

lim sup
n→∞

||vn − p|| ≤ c.
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By (3.5), we have

c = lim
n→∞

||xn+1 − p||

≤ lim
n→∞

||sn − p||

= lim
n→∞

||(1− βn)(mn − p) + βn(vn − p)||

≤ c.

From Lemma 2.5, we get

lim
n→∞

||mn − vn|| = 0.

Hence,

lim
n→∞

d(mn, PS(mn)) = 0.(3.11)

From (3.10) and (3.11), we can conclude that limn→∞ d(xn, PS(xn)) = 0. □

Theorem 3.2. Let E be a uniformly convex Banach space and K be a nonempty
compact and convex subset of E. Let T, S : K → P (K) be two multivalued mappings
such that CF (T, S) ̸= ∅. Assume that PT , PS are generalized (α,β)-nonexpansive
mappings. Let {xn} be a sequence defined by (3.1) such that 0 < a ≤ αn, βn ≤ b < 1.
Then, {xn} converges strongly to a common fixed point of T and S.

Proof. By Lemma 3.1,

lim
n→∞

d(xn, PT (xn)) = 0 and lim
n→∞

d(xn, PS(xn)) = 0.

Since K is compact, there exists a subsequence {xni} of {xn} that converges to
p ∈ K. By Lemma 2.3, it follows that

d(xni , PT (p)) ≤
(
3 + αT + βT
1− αT − βT

)
d(xni , PT (xni)) + ||xni − p||,

and

d(xni , PS(p)) ≤
(
3 + αS + βS
1− αS − βS

)
d(xni , PS(xni)) + ||xni − p||.

Letting i → ∞, we derive p ∈ F (PT ) ∩ F (PS). By Proposition 2.4, CF (T, S) =
F (PT ) ∩ F (PS). Therefore, {xn} converges strongly to p ∈ CF (T, S). □

Theorem 3.3. Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. Let T, S : K → P (K) be two multivalued mappings
such that CF (T, S) ̸= ∅. Assume that PT , PS are generalized (α,β)-nonexpansive
mappings. Let {xn} be a sequence defined by (3.1) such that 0 < a ≤ αn, βn ≤ b < 1.
Then, {xn} converges strongly to a common fixed point of T and S if and only if
lim infn→∞ d(xn, CF (T, S)) = 0.

Proof. If the sequence {xn} converges to p ∈ CF (T, S), then limn→∞ ||xn− p|| = 0.
Since 0 ≤ d(xn, CF (T, S)) ≤ ||xn − p||, we have lim infn→∞ d(xn, CF (T, S)) = 0.
Conversely, assume that lim infn→∞ d(xn, CF (T, S)) = 0.
By Lemma 3.1,

d(xn+1, CF (T, S)) ≤ d(xn, CF (T, S)).
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Thus, {d(xn, CF (T, S))} is a nonincreasing sequence which is bounded below imply-
ing that limn→∞ d(xn, CF (T, S)) exists. By hypothesis, limn→∞ d(xn, CF (T, S)) =
0.

Next, we want to show {xn} is Cauchy. Let m,n ∈ N and m > n. From (3.7), it
follows that

||xn+1 − p|| ≤ ||xn − p|| for all p ∈ CF (T, S).

Then,

||xm − xn|| ≤ ||xm − p||+ ||xn − p|| ≤ 2||xn − p||.

Taking infimum all over p ∈ CF (T, S) on both sides, we obtain

||xm − xn|| ≤ 2 inf{||xn − p|| : p ∈ CF (T, S)} = 2d(xn, CF (T, S)).

Since limn→∞ d(xn, CF (T, S)) = 0, we can conclude that limn→∞ ||xm − xn|| = 0.
Therefore, {xn} is a Cauchy sequence in E. As a result, there exists z ∈ E such
that limn→∞ ||xn − z|| = 0. Next, we will show that z ∈ CF (T, S). Consider,

d(z, PT (z)) ≤ ||z − xn||+ d(xn, PT (xn)) +H(PT (xn), PT (z))

≤ ||z − xn||+ d(xn, PT (xn)) + ||xn − z||,

and

d(z, PS(z)) ≤ ||z − xn||+ d(xn, PS(xn)) +H(PS(xn), PS(z))

≤ ||z − xn||+ d(xn, PS(xn)) + ||xn − z||.

By Lemma 3.1 and taking n → ∞ on both sides, we infer that

d(z, PT (z)) = 0 and d(z, PS(z)) = 0.

Then,

PT (z) = {z} and PS(z) = {z}.

By Proposition 2.4, z ∈ CF (T, S). Therefore, {xn} converges strongly to z ∈
CF (T, S). □

Definition 3.4. Let ∅ ̸= K ⊆ E, where E is a Banach space. Then T, S : K →
P (K) be two multivalued mappings with CF (T, S) ̸= ∅. Then, T and S are said to
satisfy condition (I ′). If there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(r) > 0 for all r > 0 such that

f(d(x,CF (T, S))) ≤ d(x, Tx) or f(d(x,CF (T, S))) ≤ d(x, Sx),

for all x ∈ K.

Theorem 3.5. Let E be a uniformly convex Banach space and K be a nonempty
closed convex subset of E. Let T, S : K → P (K) be two multivalued mappings
satisfying condition (I ′) and CF (T, S) ̸= ∅. Assume that PT , PS are generalized
(α,β)-nonexpansive mappings. Let {xn} be a sequence defined by (3.1) such that
0 < a ≤ αn, βn ≤ b < 1. Then, {xn} converges strongly to a common fixed point of
T and S.
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Proof. Let the sequence {xn} be iteratively generated as in (3.1). By Lemma 3.1,

lim
n→∞

d(xn, PT (xn)) = 0 = lim
n→∞

d(xn, PS(xn)),

which imply that

lim
n→∞

d(xn, T (xn)) = 0 = lim
n→∞

d(xn, S(xn)).

Consider,

||xn+1 − p|| ≤ ||xn − p||
inf{||xn+1 − p|| : p ∈ CF (T, S)} ≤ inf{||xn − p|| : p ∈ CF (T, S)}

d(xn+1, CF (T, S)) ≤ d(xn, CF (T, S)).

Thus, {d(xn, CF (T, S))} is a nonincreasing sequence which is bounded below,
limn→∞ d(xn, CF (T, S)) exists. Since T and S satisfy condition (I ′), we obtain
that there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that

f(d(xn, CF (T, S))) ≤ d(xn, Txn) or f(d(xn, CF (T, S))) ≤ d(xn, Sxn).

It follows that

0 ≤ lim
n→∞

f(d(xn, CF (T, S))) ≤ lim
n→∞

d(xn, Txn) = 0,

or
0 ≤ lim

n→∞
f(d(xn, CF (T, S))) ≤ lim

n→∞
d(xn, Sxn) = 0.

Thus,
lim
n→∞

f(d(xn, CF (T, S))) = 0.

Due to the nondecreasing function of f and f(0) = 0, we get

lim
n→∞

d(xn, CF (T, S)) = 0.

Therefore, {xn} converges strongly to p ∈ CF (T, S). □
Theorem 3.6. Let K be a nonempty closed convex subset of a uniformly convex
Banach space E which satisfies Opial’s condition. Assume that T, S : K → P (K)
be two multivalued mappings such that CF (T, S) ̸= ∅ and PT , PS are generalized
(α,β)-nonexpansive mappings. Let {xn} be a sequence defined by (3.1) such that
0 < a ≤ αn, βn ≤ b < 1. Let I − PT and I − PS be two demiclosed at zero, then
{xn} converges weakly to a common fixed point of T and S.

Proof. Let p ∈ CF (T, S). Then, limn→∞ ||xn − p|| exists as proved in Lemma
3.1. Now, we prove that {xn} has a unique weak subsequential limit in CF (T, S).
Since E is uniformly convex, it is reflexive. Therefore, there exist subsequences
{xni} and {xnj} of {xn} converge weakly to some z1 and z2 in K, respectively.
By Lemma 3.1, limn→∞ d(xn, PT (xn)) = 0 and I − PT is demiclosed at zero, then
z1 ∈ F (PT ) = F (T ). Similarly, z2 ∈ F (PT ) = F (T ). In the same way, we can prove
that z1 ∈ F (PS) = F (S) and z2 ∈ F (PS) = F (S). Therefore, z1, z2 ∈ CF (T, S).
Next, we prove the uniqueness. To this end, suppose that z1 ̸= z2. Then by Opial’s
condition, we have

lim sup
n→∞

||xn − z1|| = lim sup
i→∞

||xni − z1||
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< lim sup
i→∞

||xni − z2||

= lim sup
n→∞

||xn − z2||

= lim sup
j→∞

||xnj − z2||

< lim sup
j→∞

||xnj − z1||

= lim sup
n→∞

||xn − z1||,

which is a contradiction. Therefore, {xn} converges weakly to a common fixed point
of T and S. □

Now, we employ the following example to confirm that our convergence result is
effective.

Example 3.7. Let E = R, K = [0,∞) and let T, S : K → P (K) be two multivalued
mappings defined by,

T (x) =


{0}, if x ∈ [0, 1

2000 ],

[0, x6 ], if x ∈ ( 1
2000 ,∞)− {4

5},
[0, 7

20 ], if x ∈ {4
5},

and,

S(x) =

{
{0}, if x ∈ [0, 1

1000 ],

[0, x4 ], if x ∈ ( 1
1000 ,∞).

Then, PT and PS are generalized (α, β)-nonexpansive mappings.

Proof. Let α = β = 1
4 and we have

PT (x) =


{0}, if x ∈ [0, 1

2000 ],

{x
6}, if x ∈ ( 1

2000 ,∞)− {4
5},

{ 7
20}, if x ∈ {4

5},

and,

PS(x) =

{
{0}, if x ∈ [0, 1

1000 ],

{x
4}, if x ∈ ( 1

1000 ,∞).

Now, we will prove that PT is a generalized (α, β)-nonexpansive mapping for α =
β = 1

4 .

Case(1) : If x, y ∈ [0, 1
2000 ], then

H(PT (x), PT (y)) = 0 ≤ 1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y))

+
(
1− 2

4
− 2

4

)
||x− y||.
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Case(2) : If x, y ∈ ( 1
2000 ,∞)− {4

5}, then

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣x− y

6

∣∣∣+ 1

4

∣∣∣y − x

6

∣∣∣+ 1

4

∣∣∣x− x

6

∣∣∣+ 1

4

∣∣∣y − y

6

∣∣∣
≥ 1

4

∣∣∣(x− y

6

)
−
(
y − x

6

)∣∣∣+ 1

4

∣∣∣(x− x

6

)
−
(
y − y

6

)∣∣∣
=

1

4

∣∣∣∣7x6 − 7y

6

∣∣∣∣+ 1

4

∣∣∣∣5x6 − 5y

6

∣∣∣∣
=

6

2

∣∣∣x
6
− y

6

∣∣∣
≥

∣∣∣x
6
− y

6

∣∣∣
= H(PT (x), PT (y)).

Case(3) : If x ∈ [0, 1
2000 ] and y ∈ ( 1

2000 ,∞)− {4
5}, then

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣x− y

6

∣∣∣+ 1

4
|y − 0|+ 1

4
|x− 0|+ 1

4

∣∣∣y − y

6

∣∣∣
=

1

4

∣∣∣x− y

6

∣∣∣+ 11y

24
+

x

4
.(3.12)

Consider two cases of |x− y
6 |,

|x− y

6
| =

{
x− y

6 , if x ≥ y
6 ,

y
6 − x, if x < y

6 .

For the first case (i.e., x ≥ y
6 ), from (3.12) implies that:

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
x

4
− y

24
+

11y

24
+

x

4

=
x

2
+

5y

12

>
2y

12
= H(PT (x), PT (y)).
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For the second case (i.e., x < y
6 ), from (3.12) implies that:

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
y

24
− x

4
+

11y

24
+

x

4

=
y

2

>
y

6
= H(PT (x), PT (y)).

Case(4) : If x ∈ [0, 1
2000 ] and y ∈ {4

5}, then

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣∣x− 7

20

∣∣∣∣+ 1

4

∣∣∣∣45 − 0

∣∣∣∣+ 1

4
|x− 0|+ 1

4

∣∣∣∣45 − 7

20

∣∣∣∣
=

1

4

∣∣∣∣x− 7

20

∣∣∣∣+ 1

5
+

x

4
+

9

80

=
7

80
− x

4
+

x

4
+

25

80

=
8

20

≥ 7

20
= H(PT (x), PT (y)).

Case(5) : If x ∈ ( 1
2000 ,∞)− {4

5} and y ∈ {4
5}, then

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣∣x− 7

20

∣∣∣∣+ 1

4

∣∣∣∣45 − x

6

∣∣∣∣+ 1

4

∣∣∣x− x

6

∣∣∣+ 1

4

∣∣∣∣45 − 7

20

∣∣∣∣
=

1

4

∣∣∣∣x− 7

20

∣∣∣∣+ 1

4

∣∣∣∣45 − x

6

∣∣∣∣+ 5x

24
+

9

80

≥ 1

4

∣∣∣∣(x− 7

20

)
+
(4
5
− x

6

)∣∣∣∣+ 5x

24
+

9

80

=
1

4

∣∣∣∣x6 +
9

20

∣∣∣∣+ 5x

24
+

9

80
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=
x

24
+

9

80
+

5x

24
+

9

80

=
x

4
+

9

40

>

∣∣∣∣x6 − 7

20

∣∣∣∣
= H(PT (x), PT (y)).

Case(6) : If x, y ∈ {4
5}, then

1

4
d(x, PT (y)) +

1

4
d(y, PT (x))

+
1

4
d(x, PT (x)) +

1

4
d(y, PT (y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣∣45 − 7

20

∣∣∣∣+ 1

4

∣∣∣∣45 − 7

20

∣∣∣∣+1

4

∣∣∣∣ 45 − 7

20

∣∣∣∣+ 1

4

∣∣∣∣45 − 7

20

∣∣∣∣
=

∣∣∣∣45 − 7

20

∣∣∣∣
≥ 0

= H(PT (x), PT (y)).

Therefore, PT is generalized (α, β)-nonexpansive. Moreover, PS is generalized
(α, β)-nonexpansive for α = β = 1

4 . Indeed,

Case(1) : If x, y ∈ [0, 1
1000 ], then

H(PS(x), PS(y)) = 0 ≤ 1

4
d(x, PS(y)) +

1

4
d(y, PS(x)) +

1

4
d(x, PS(x))

+
1

4
d(y, PS(y)) +

(
1− 2

4
− 2

4

)
||x− y||.

Case(2) : If x, y ∈ ( 1
1000 ,∞), then

1

4
d(x, PS(y)) +

1

4
d(y, PS(x)) +

1

4
d(x, PS(x))

+
1

4
d(y, PS(y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣x− y

4

∣∣∣+ 1

4

∣∣∣y − x

4

∣∣∣+ 1

4

∣∣∣∣x− x

4

∣∣∣∣+1

4

∣∣∣∣ y − y

4

∣∣∣∣
≥ 1

4

∣∣∣(x− y

4

)
−
(
y − x

4

)∣∣∣+ 1

4

∣∣∣(x− x

4

)
−
(
y − y

4

)∣∣∣
=

1

4

∣∣∣∣5x4 − 5y

4

∣∣∣∣+ 1

4

∣∣∣∣3x4 − 3y

4

∣∣∣∣
= 2

∣∣∣x
4
− y

4

∣∣∣
≥

∣∣∣x
4
− y

4

∣∣∣
= H(PS(x), PS(y)).
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Case(3) : If x ∈ [0, 1
1000 ] and y ∈ ( 1

1000 ,∞), then

1

4
d(x, PS(y)) +

1

4
d(y, PS(x))

+
1

4
d(x, PS(x)) +

1

4
d(y, PS(y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
1

4

∣∣∣x− y

4

∣∣∣+ 1

4
|y − 0|+ 1

4
|x− 0|+ 1

4

∣∣∣y − y

4

∣∣∣
=

1

4

∣∣∣x− y

4

∣∣∣+ 7y

16
+

x

4
.(3.13)

Consider two cases of |x− y
4 |,

|x− y

4
| =

{
x− y

4 , if x ≥ y
4 ,

y
4 − x, if x < y

4 .

For the first case (i.e., x ≥ y
4 ), from (3.13) implies that:

1

4
d(x, PS(y)) +

1

4
d(y, PS(x)) +

1

4
d(x, PS(x))

+
1

4
d(y, PS(y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
x

4
− y

16
+

7y

16
+

x

4
x

=
x

2
+

3y

8

>
2y

8
= H(PS(x), PS(y)).

For the second case (i.e., x < y
4 ), from (3.13) implies that:

1

4
d(x, PS(y)) +

1

4
d(y, PS(x)) +

1

4
d(x, PS(x))

+
1

4
d(y, PS(y)) +

(
1− 2

4
− 2

4

)
||x− y||

=
y

16
− x

4
+

7y

16
+

x

4

=
y

2

>
y

4
= H(PS(x), PS(y)).

Therefore, PS is a generalized (α, β)-nonexpansive mapping. Moreover, we can see
that 0 ∈ CF (T, S). Next, we give three different initial values x1 = 0.8, x1 = 1.0
and x1 = 10.0. Table 1 and Figure 1 illustrate the convergence behavior of {xn}.
We can see that the sequence generated by our algorithm converges to 0. □
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Table 1

Step when x1 = 0.8 when x1 = 1.0 when x1 = 10.0
1 0.8000000000000000 1.0000000000000000 10.00000000000000
2 0.0232747395833333 0.0268012152777777 0.268012152777777
3 0.0006237913061071 0.0007183051403658 0.007183051403658
4 0.0000000000000000 0.0000000000000000 0.000000000000000
5 0.0000000000000000 0.0000000000000000 0.000000000000000
6 0.0000000000000000 0.0000000000000000 0.000000000000000
7 0.0000000000000000 0.0000000000000000 0.000000000000000
8 0.0000000000000000 0.0000000000000000 0.000000000000000
9 0.0000000000000000 0.0000000000000000 0.000000000000000
10 0.0000000000000000 0.0000000000000000 0.000000000000000

Figure 1

Finally, Table 2 and Figure 2 show that the sequence generated by our algorithm
converges the fastest as compared to other algorithms by setting S = T with the
initial value 10.

Table 2

Step New Iteration M-Iteration Abbas Iteration Picard-Mann
1 10 10 10 10
2 1.7409× 10−1 2.1991× 10−1 5.2734× 10−1 1.3194
3 3.0308× 10−3 4.8359× 10−3 2.7809× 10−2 1.7409× 10−1

4 0 1.0635× 10−4 1.4665× 10−3 2.2971× 10−2

5 0 0 4.8374× 10−5 3.0308× 10−3

6 0 0 0 3.9990× 10−4

7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
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Figure 2

4. Conclusions

We have provided weak and strong convergence theorems of common fixed point
for two multivalued generalized (α, β)-nonexpansive mappings in uniformly convex
Banach spaces. We also presented a numerical example to support our main result.
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