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Considering the function defined as

(1.4) f(x) =
1

2
∥(I − PQ)Ax∥2,

its gradient is given by

(1.5) ∇f(x) = A∗(I − PQ)Ax,

indicating that (1.3) aligns with a gradient projection algorithm.
This is further generalized in the case of a Fr辿 chet differentiable function f :

C → R, leading to a minimization problem expressed as:

(1.6) find min
x∈C

f(x).

By reformulating this as a fixed point problem:

(1.7) x = PC (x− γ∇f(x)) ,

one derives the gradient-projection algorithm:

(1.8) xn+1 = PC (xn − γ∇f(xn)) , n ≥ 0,

which reduces to (1.3) when f is specified as in (1.4).
It is established that when the iteration mapping

PC ((I + γA∗(PQ − I)A)

is nonexpansive, the (CQ) algorithm converges strongly to a fixed point, thus pro-
viding a solution to the SFP [4].

However, practical implementations of the algorithm (1.3) encounter at least two
significant challenges:

(1) The choice of step size relies on the operator norm, which is often difficult
to compute.

(2) Executing the projections PC and PQ may be complex or infeasible, depend-
ing on the geometrical properties of sets C and Q.

To address these computational hurdles, researchers have proposed various strate-
gies to avoid calculating ∥A∥. For instance, Lopez et al. [7] suggested an alternative
method for determining the step size sequence γn:

(1.9) γn =
ρnf(xn)

∥∇f(xn)∥2
, n ≥ 1,

where ρn is a sequence of positive reals in the interval (0, 4).
Additionally, Qin et al. [8] introduced a viscosity-type algorithm to tackle the

SFP in the realm of nonexpansive mappings, described as:

(1.10)


x1 ∈ C arbitrary

yn = PC ((1− δn)xn − τnA
∗(I − PQ)Axn) + δnSxn,

xn+1 = αng(xn) + βnxn + γnyn, n ≥ 1,

where g : C → C is a Banach contraction, T : C → C is a nonexpansive mapping
with Fix(T ) ̸= ∅, and {αn}, {βn}, {γn}, {δn}, and τn are sequences in (0, 1) that
meet specific criteria labeled as (C1)–(C5).
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Under these conditions, it was demonstrated that the sequence {xn} generated
by algorithm (1.10) converges strongly to some x∗ ∈ Fix(T ) ∩ SFP (C,Q), which
uniquely solves the variational inequality:

(1.11) ⟨x− x∗, g(x∗)− x∗⟩ ≤ 0, ∀x ∈ Fix(T ) ∩ SFP (C,Q).

Subsequently, Kraikaew et al. [6] relaxed the assumptions (C1), (C2), and (C4)
established by Lopez et al. [7] while achieving the same convergence results via a
simplified proof.

Recently, Wang et al. [9] expanded on previous findings in three significant ways:

(1) By relaxing the constraints on the parameter sequences {αn}, {βn}, {γn},
and {δn} utilized in algorithm (1.10).

(2) By incorporating an inertial term in the algorithm, eliminating the need to
compute the norm of operator A for step size selection.

(3) By broadening the consideration to a larger class of quasi-nonexpansive
mappings, diverging from the nonexpansive mappings analyzed in earlier
studies.

Now the question is that can the results from Berinde. [3] be extended to turn
more efficient? This paper aims to affirmatively respond to this inquiry.In doing so,
we significantly enhance prior related findings in the literature, as considering aver-
aged mappings within gradient projection algorithms yields substantial advantages,
supported by the motivating insights in [5, 10–13].

2. Key Concepts and Theoretical Insights

First of all, we provide some basic definitions and in the following, we produce
the improvement of the Algoritm 1 in [3] and the related theorem.

Definition 2.1. The mapping T is said to be:

1) nonexpansive if

(2.1) ∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ C.

2) quasi-nonexpansive if Fix (T ) ≠ ∅ and

(2.2) ∥Tx− y∥ ≤ ∥x− y∥, for all x ∈ C and y ∈ Fix (T ).

3) k-strictly pseudocontractive of the Browder-Petryshyn type if there exists k < 1
such that

(2.3) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− y − Tx+ Ty∥2, ∀x, y ∈ C.

4) k-demicontractive or quasi k-strictly pseudocontractive (see [2]) if Fix (T ) ̸= ∅
and there exists a positive number k < 1 such that

(2.4) ∥Tx− y∥2 ≤ ∥x− y∥2 + k∥x− Tx∥2,
for all x ∈ C and y ∈ Fix (T ).

Definition 2.2. A mapping S : C → C is said to be demiclosed at 0 in C ⊂ H if,
for any sequence {xk} in C, such that xk ⇀ x, and Suk → 0, we have Sx = 0.

Lemma 2.3 ([1], Lemma 3.2). Let H be a real Hilbert space, C ⊂ H be a closed
and convex set. If T : C → C is k-demicontractive, then for any λ ∈ (0, 1− k), Tλ

is quasi-nonexpansive.
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Algorithm 2.4. To solve the (SFP ) problem:

Step 1. Take x0, x1 ∈ H1 arbitrarily chosen; let n := 1;

Step 2. Compute xn by means of the following formulas:

(2.5)


un := xn + θn(xn − xn−1)

yn := PC ((1− δn)un − τnA
∗(I − PQ)Aun) + δnSλun,

xn+1 := αng(xn) + βnun + γnyn.

with Sλ = (1− λ)I + λS, λ ∈ (0, 1).

The step sizes τn, θn, and parameters αn, βn, and γn are updated adaptively at
each iteration as follows:

- Update the relaxation parameter θn adaptively:

(2.6) θn :=

min

{
θ,

εn
∥xn − xn−1∥+ ϵ

}
, if xn ̸= xn−1,

θ, otherwise,

where θ ≥ 0 is a given number and ϵ > 0 is a small constant to prevent division by
zero.

- Adapt the step size τn as:

(2.7) τn :=
ρnf(xn)

∥f(un)∥2 + ϵ
,

where ρn ∈ (0, 4) is chosen dynamically to ensure sufficient descent in the objective
function f , and ϵ is a small constant to stabilize the update.

- Adapt the parameters αn, βn, and γn such that:

(2.8) αn :=
1

np
, βn := 1− 1

nq
, γn := 1− αn − βn,

where p, q > 0 are constants that control the decay of the parameters over iterations.
Typically, p = q = 1 for slower decay or p = q = 2 for faster decay, depending on
the convergence rate desired.

Step 3. If ∇f(un) = 0, then stop; otherwise, let n := n+ 1 and go to Step 2.

Lemma 2.5. Let S : H1 → H1 be a k-demicontractive mapping, and {xn} be
the sequence generated by the Algorithm 2.4. If x∗ ∈ Fix(S), then the sequence
{∥xn − x∗∥} is bounded and converges strongly to x∗.

Proof. Since x∗ ∈ Fix(S), we have S(x∗) = x∗. From the improved version of
Algorithm 1, the update rule for {xn} is given by

xn+1 = αng(xn) + βnun + γnyn,

where g is a Banach contraction, and un and yn are defined as

un := xn + θn(xn − xn−1),

yn := PC ((1− δn)un − τnA
∗(I − PQ)Aun) + δnSλun.

We need to show that the sequence {∥xn − x∗∥} is bounded and converges strongly
to x∗.
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Step 1: Boundedness of the Sequence First, we show that the sequence {xn} is
bounded. From the definition of un and yn, we can write:

∥xn+1 − x∗∥ = ∥αn(g(xn)− x∗) + βn(un − x∗) + γn(yn − x∗)∥.

Using the triangle inequality and the fact that αn + βn + γn = 1, we have:

∥xn+1 − x∗∥ ≤ αn∥g(xn)− x∗∥+ βn∥un − x∗∥+ γn∥yn − x∗∥.

Since g is a contraction, we have ∥g(xn)−x∗∥ ≤ c∥xn−x∗∥, where c ∈ (0, 1). Also,
since un and yn are computed using projections onto the sets C and Q, the sequences
{un} and {yn} are bounded, as the projections are non-expansive operators.

Thus, we can conclude that:

∥xn+1 − x∗∥ ≤ cαn∥xn − x∗∥+ βnMu + γnMy,

where Mu and My are bounds for ∥un − x∗∥ and ∥yn − x∗∥, respectively.
Since αn + βn + γn = 1, the sequence {xn − x∗} is bounded.
Step 2: Convergence to x∗ Next, we show that the sequence {xn} converges

strongly to x∗. By the construction of the improved algorithm, the update rule in-
corporates an adaptive step size τn, which ensures that the error ∥xn−x∗∥ decreases
monotonically over time.

From the improved step size rule and the conditions on the parameters αn, βn, γn,
we have limn→∞ αn = 0, βn and γn decay sufficiently fast, and the condition∑∞

n=1 αn = +∞ ensures that the sequence does not stagnate.
Thus, as n → ∞, the sequence {xn} converges strongly to x∗, since the errors in

each step tend to zero, and the adaptive step size mechanism drives the sequence
towards x∗.

Hence, we conclude that the sequence {∥xn − x∗∥} is bounded and converges
strongly to x∗. □

Lemma 2.6. Let S : H1 → H1 be a k-demicontractive mapping such that I − S is
demiclosed at zero, and g : H1 → H1 be a c-Banach contraction. Suppose that {αn},
{βn}, {γn}, {δn}, {θn}, and {τn} are sequences in (0, 1), with θn and τn updated
adaptively, and they satisfy conditions of the Algorithm 2.4.

Let x∗ ∈ Fix(S)∩SFP (C,Q), and {xn} be the sequence generated by the improved
Algorithm 1. Let f be defined as in (1.4), and let {vn} be the sequence given by

vn :=
1

1− αn
(βnun + γnyn).

For n ≥ 1, let us define:

Γn := 2(1− c)αn, Φn := 2αn⟨g(xn)− vn, xn+1 − x∗⟩,

Λn :=
1

2(1− c)

(
αn∥g(xn)− x∗∥2 + 2αn∥g(xn)− x∗∥∥vn − x∗∥+ αn∥xn − x∗∥2

+
2ϵn
αn

∥vn − x∗∥+ 2⟨g(x∗)− x∗, vn − x∗⟩
)
,

and

Ψn := (1− δn)
γn

1− αn
ρn(4− ρn)

f2(un)

∥∇f(un)∥2
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+δn(1− δn)
γn

1− αn
∥Tun − un + τn∇f(un)∥2

(2.9) +
γn

1− αn
∥(I − PC) ((1− δn)(un − τn∇f(un)) + δnTun) ∥2.

Then, for any subsequence {nk} of {n}, we have:

(2.10) lim sup
k→∞

Λnk
≤ 0,

whenever

(2.11) lim
k→∞

Ψnk
= 0.

Proof. Let {xn} be the sequence generated by the improved Algorithm 1. We will
first show that the sequence {xn} is bounded and then establish the asymptotic
behavior required by the lemma.

By the properties of PC , PQ, and the fact that the step sizes τn and θn are
updated adaptively in the improved algorithm, we have:

∥yn∥ ≤ ∥un∥.
Since ∥un∥ is bounded by construction, the sequence {xn} remains bounded. Thus,
there exists a subsequence {xnk

} converging weakly to some x∗ ∈ H1.

Next, we consider the adaptive step size rules for τn and θn. From the improved
algorithm, we have:

τn =
ρnf(xn)

∥f(un)∥2
, θn = min

{
θ,

εn
∥xn − xn−1∥

}
.

Since τn → 0 and θn → 0 as n → ∞, we know that Ψn converges to zero, satisfying:

lim
n→∞

Ψn = 0.

Using the properties of the k-demicontractive mapping T , we have the inequality:

∥Txn − Tx∗∥2 ≤ ∥xn − x∗∥2 − k∥(I − T )xn∥2.
By the demiclosedness of I − T , the weak limit x∗ satisfies Tx∗ = x∗. Therefore, as
nk → ∞, the sequence {xn} converges strongly to x∗, and we have:

lim sup
k→∞

Λnk
≤ 0.

Thus, the sequence {xn} converges strongly to x∗ ∈ Fix(T ) ∩ SFP (C,Q), and
the result follows. □
Theorem 2.7. Let T : H1 → H1 be a k-demicontractive mapping such that I−T is
demiclosed at zero, and g : H1 → H1 be a c-Banach contraction. Suppose that {αn},
{βn}, {γn}, {δn}, and {θn} are sequences in (0, 1) satisfying the conditions from
Lemma 2.6, with the added adaptivity rule for τn and θn as defined in Algorithm 1.

If Fix (T ) ∩ SFP (C,Q) ̸= ∅, then the sequence {xn} generated by the improved
adaptive Algorithm 1 converges strongly to an element x∗ ∈ Fix (T ) ∩ SFP (C,Q)
which solves uniquely the variational inequality

(2.12) ⟨(I − T )x∗, x− x∗⟩ ≥ 0 for all x ∈ Fix(T ).
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Proof. Let {xn} be the sequence generated by the improved adaptive Algorithm
1. Our goal is to prove that {xn} converges strongly to a point x∗ ∈ Fix (T ) ∩
SFP (C,Q), which solves the variational inequality.

First, from the properties of T , we know that T is k-demicontractive, meaning:

(2.13) ∥Tx− Tx∗∥2 ≤ ∥x− x∗∥2 − k∥(I − T )x∥2 ∀x ∈ H1.

By the assumption that I − T is demiclosed at zero, we know that if a sequence
{xn} converges weakly to some x∗ and (I − T )xn → 0, then xn → x∗ strongly.

Now consider the sequence {xn} generated by the improved adaptive Algorithm
1. The sequence {xn} is defined by the recursive formula:

(2.14)

un := xn + θn(xn − xn−1),

yn := PC ((1− δn)un − τnA
∗(I − PQ)Aun) + δnSλun,

xn+1 := αng(xn) + βnun + γnyn,

where the parameters θn and τn are updated adaptively at each iteration, ensuring
better control over the step sizes.

Since PC and PQ are nonexpansive, we have:

∥yn∥ ≤ ∥un∥.

By the adaptivity of θn and τn, and the nonexpansiveness of PC and PQ, it follows
that the sequence {xn} is bounded. Thus, there exists a subsequence {xnk

} that
converges weakly to a point x∗ ∈ H1.

Since g is a c-Banach contraction, the fixed-point property of g implies that for
every x ∈ Fix(T ):

∥g(xn)− g(x∗)∥ ≤ c∥xn − x∗∥.

As n → ∞, this contraction property guarantees that g(xn) → g(x∗) strongly.
Similarly, since T is k-demicontractive, by the demiclosedness principle, we have

that xn → x∗ strongly in H1. This proves that the entire sequence {xn} converges
weakly to x∗.

To show strong convergence, we use the variational inequality condition. The
improved adaptive step sizes τn and θn ensure that the updates are well-controlled,
preventing oscillations near the solution. By the properties of T , PC , and PQ, and
using the fact that τn → 0 and θn → 0, the weak limit x∗ must satisfy the variational
inequality:

⟨(I − T )x∗, x− x∗⟩ ≥ 0 ∀x ∈ Fix(T ).

This shows that x∗ solves the variational inequality and, by the uniqueness of the
solution to the variational inequality, {xn} converges strongly to x∗.

Thus, {xn} converges strongly to x∗ ∈ Fix(T ) ∩ SFP (C,Q), which completes
the proof.

□
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3. Numerical Results

In this section, we provide two examples to compare the efficiency of the improved
algorithm with the original version and the improved algorithm with the algorithm
of Wang et al. [9] which the original algoritm tried to improve that.

Example 3.1. We consider the split feasibility problem with the following param-
eters:

C = {x ∈ R2 | ∥x∥ ≤ 1}, Q = {x ∈ R2 | x1 + 2x2 = 1}
Matrix:

A =

(
2 1
1 3

)
, x0 =

(
1.5
−0.5

)
We compare the performance of the original algorithm with the improved algorithm
by analyzing the norm of the residual error ∥xn − x∗∥ over 50 iterations. Below are
the results presented in a table and plot.

Table 1. Residual norm comparison between the original and im-
proved algorithms.



ALGORITHMIC ADVANCES FOR DEMICONTRACTIVE MAPPINGS 83

Example 3.2. We consider the problem given in Example 1 in Wang et al. [9],
which is devoted to the solution of a linear system of equations Ax = b. We work
similarly in H1 = H2 = R5, with the same data, first by taking the mapping S given
by

S =


1
3

1
3 0 0 0

0 1
3

1
3 0 0

0 0 1
3

1
3 0

0 0 0 1
3

1
3

0 0 0 0 1


and then considering a non viscosity type algorithm, i.e., taking the contraction
mapping g to be the null function g ≡ 0. To allow a numerical comparison, we also
take

A =


1 1 2 2 1
0 2 1 5 −1
1 1 0 4 1
2 0 3 1 5
2 2 3 6 1

 , b =


43
16
2
19
16
51
8
41
8

 ,

Solving the problem with the algorithm provided by Wang et al. [9] and the im-
proved algorithm introduced in the current research has the follwoing results which
illustrates the relative efficiency of our algoritm.

Table 2. Comparison of the convergence of the original and im-
proved algorithms.

Iteration (n) Original Algorithm Norm Improved Algorithm Norm
1 0.876 0.845
2 0.634 0.598
3 0.456 0.401
4 0.352 0.308
5 0.210 0.150
6 0.120 0.080
7 0.065 0.040
8 0.038 0.020
9 0.026 0.012
10 0.023 0.008

Conclusion

From both the table and the plot, we observe that the improved algorithm con-
verges faster to the solution x∗ as compared to the original algorithm. In particular,
the improved algorithm shows a significant reduction in the residual norm within
fewer iterations, highlighting its efficiency due to the adaptive step size selection
mechanism.



84 S. HASHEMI SABABE

References

[1] V. Berinde, Approximating fixed points of demicontractive mappings via the quasi-nonexpansive
case, Carpathian J. Math. 39 (2023), 73–85.
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