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NUMERICAL INSIGHTS AND ALGORITHMIC ADVANCES FOR
DEMICONTRACTIVE MAPPING PROBLEMS

SAEED HASHEMI SABABE

ABSTRACT. This article presents a hybrid inertial self-adaptive algorithm de-
signed to tackle the split feasibility problem and the fixed point problem within
the context of demicontractive mappings. The proposed results are extensive,
broadening several existing findings in the literature related to nonexpansive and
quasi-nonexpansive mappings, thereby encompassing a larger class of demicon-
tractive mappings. To illustrate the effectiveness of these new analytical results,
numerical examples are provided, demonstrating the practical applications and
advantages of the proposed algorithm.

1. INTRODUCTION

Let Hy and Hs represent real Hilbert spaces, with C' and ) as nonempty, convex
closed subsets of these spaces, respectively. The split feasibility problem (SFP)
seeks to identify a point x in C' such that Az € @), where A : H; — Hs is a bounded
linear operator. If the SFP is consistent, meaning it has solutions, we denote the
solution set by

(1.1) SFP(C,Q) ={x e C| Az € Q}.

The SFP encompasses various significant problems in nonlinear analysis, which
model a range of real-world inverse problems, such as signal processing, X-ray
tomography, and statistical learning. This broad applicability has motivated re-
searchers to develop robust and efficient iterative algorithms to solve the SFP.

One such algorithm, known as the (CQ) algorithm, was introduced by Byrne [4],
based on the equivalence of the SFP to a fixed point problem given by:

(1.2) x=Po((I+~A"(Pp—1)A)x), z¢€C,

where Po and Pg denote the orthogonal projections onto sets C' and @, respectively,
1 is the identity operator, v is a positive constant, and A* represents the adjoint of
A.

By applying the Picard iteration method to the fixed point problem (1.2), the
(CQ) algorithm is generated from an initial point 1 € Hj through the iterative
scheme:

(1.3) Tnt1 = Po (I + 1A (Po — )A)zn), n =0,

with step size v, € (0, W)
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Considering the function defined as
1
(1.4) f(@) = 5 - Po)Aa?
its gradient is given by
(1.5) Vf(x) = A1 — Pg)Ax,
indicating that (1.3) aligns with a gradient projection algorithm.

This is further generalized in the case of a Fr il chet differentiable function f :
C — R, leading to a minimization problem expressed as:

(1.6) find le’lelél fx).

By reformulating this as a fixed point problem:

(L.7) 2= Po(z— 4V (),

one derives the gradient-projection algorithm:

(1.8) Tny1 = Po (v =7V f(zn)), n >0,

which reduces to (1.3) when f is specified as in (1.4).
It is established that when the iteration mapping

Po (I +~A%(Pg — 1)A)

is nonexpansive, the (CQ) algorithm converges strongly to a fixed point, thus pro-
viding a solution to the SFP [4].

However, practical implementations of the algorithm (1.3) encounter at least two
significant challenges:

(1) The choice of step size relies on the operator norm, which is often difficult
to compute.

(2) Executing the projections Pc and Pg may be complex or infeasible, depend-
ing on the geometrical properties of sets C' and Q.

To address these computational hurdles, researchers have proposed various strate-
gies to avoid calculating ||A||. For instance, Lopez et al. [7] suggested an alternative
method for determining the step size sequence ,:

_ paf(zy)
R 7N

where p,, is a sequence of positive reals in the interval (0,4).
Additionally, Qin et al. [8] introduced a viscosity-type algorithm to tackle the
SFP in the realm of nonexpansive mappings, described as:

(1.9)

x1 € C arbitrary
(1.10) yn = Po (1 — 6n)xy — 1 A*(I — Pg)Axy,) + 0pSxy,
Tnt1 = ang(Tn) + BnTn + YnYn, 1 >1,
where g : C' — C is a Banach contraction, T : C' — C' is a nonexpansive mapping

with Fiz(T) # 0, and {an}, {Bn}, {n}, {0n}, and 7, are sequences in (0,1) that
meet specific criteria labeled as (C1)—(Cs).
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Under these conditions, it was demonstrated that the sequence {x,} generated
by algorithm (1.10) converges strongly to some z* € Fiz(T) N SFP(C,Q), which
uniquely solves the variational inequality:

(1.11) (x —a*,g(x*) —2*) <0, Voe Fiz(T)NSFP(C,Q).

Subsequently, Kraikaew et al. [6] relaxed the assumptions (C1), (C2), and (Cy)
established by Lopez et al. [7] while achieving the same convergence results via a
simplified proof.

Recently, Wang et al. [9] expanded on previous findings in three significant ways:

(1) By relaxing the constraints on the parameter sequences {an}, {8n}, {7},
and {d,} utilized in algorithm (1.10).

(2) By incorporating an inertial term in the algorithm, eliminating the need to
compute the norm of operator A for step size selection.

(3) By broadening the consideration to a larger class of quasi-nonexpansive
mappings, diverging from the nonexpansive mappings analyzed in earlier
studies.

Now the question is that can the results from Berinde. [3] be extended to turn
more efficient? This paper aims to affirmatively respond to this inquiry.In doing so,
we significantly enhance prior related findings in the literature, as considering aver-
aged mappings within gradient projection algorithms yields substantial advantages,
supported by the motivating insights in [5,10-13].

2. KEY CONCEPTS AND THEORETICAL INSIGHTS

First of all, we provide some basic definitions and in the following, we produce
the improvement of the Algoritm 1 in [3] and the related theorem.

Definition 2.1. The mapping T is said to be:

1) nonezxpansive if

(2.1) [Tz —Ty|| < [lz —yl|, forallz,yeC.
2) quasi-nonezpansive if Fix (T) # () and
(2.2) Tz —y|| < ||z —y|, forall z € C and y € Fix (T).

3) k-strictly pseudocontractive of the Browder-Petryshyn type if there exists k < 1
such that

(2.3) 1Tz = Ty|* < |z — yl* + kllz —y — Tz + Ty|*, o,y € C.
4) k-demicontractive or quasi k-strictly pseudocontractive (see [2]) if Fix (T) # 0
and there exists a positive number k£ < 1 such that
(2.4) 1Tz —y|I” < ||z = y|* + kllz — T=|?,
for all z € C and y € Fiz (T).

Definition 2.2. A mapping S : C — C is said to be demiclosed at 0 in C C H if],
for any sequence {z} in C, such that xj — x, and Suy — 0, we have Sz = 0.

Lemma 2.3 ([1], Lemma 3.2). Let H be a real Hilbert space, C C H be a closed
and convex set. If T : C' — C is k-demicontractive, then for any X € (0,1 — k), T
1S qUAs-NoONeTpansive.
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Algorithm 2.4. To solve the (SF'P) problem:

Step 1. Take xg,x1 € Hy arbitrarily chosen; let n :=1;
Step 2. Compute z, by means of the following formulas:
Up = Ty + Op(Ty, — Tp—1)
(2.5) yn = Po (1 — 0p)up — 1A (I — Pg)Auy) + 5,S)\un,
Tt = ang(Tn) + Brnln + YnYn.
with Sy = (1 =X\ I+ AS, A € (0,1).
The step sizes 7,, 0y, and parameters a,, [B,, and v, are updated adaptively at
each iteration as follows:
- Update the relaxation parameter 6,, adaptively:

. En .
min < 6, ,ifx Tpn_1,
(2.6) 0, = { |xn — Tp-1]| + e} n 7 oo
f, otherwise,

where 6 > 0 is a given number and € > 0 is a small constant to prevent division by
ZEro.

- Adapt the step size 7, as:

prf(@n)
(2.7) Tn 1=
)l €
where p,, € (0,4) is chosen dynamically to ensure sufficient descent in the objective
function f, and € is a small constant to stabilize the update.

- Adapt the parameters oy, 8,, and 7, such that:
1 1
(2'8) Qp 1= ﬁa ﬁn =1~ E;
where p, ¢ > 0 are constants that control the decay of the parameters over iterations.
Typically, p = ¢ = 1 for slower decay or p = q¢ = 2 for faster decay, depending on

the convergence rate desired.

Step 3. If Vf(u,) = 0, then stop; otherwise, let n :=n 4+ 1 and go to Step 2.

Tn =1— oy — By,

Lemma 2.5. Let S : Hi — H; be a k-demicontractive mapping, and {x,} be
the sequence generated by the Algorithm 2.4. If o* € Fix(S), then the sequence
{||zn, — z*||} is bounded and converges strongly to x*.

Proof. Since z* € Fixz(S), we have S(z*) = z*. From the improved version of
Algorithm 1, the update rule for {z,} is given by

Tnt1 = ang(Tn) + Bntn + VnYns
where ¢ is a Banach contraction, and u,, and y, are defined as
Up = Ty + Op(Ty — Tp—1),
Yn = Po (1 — 0p)un — 7 A" (I — Pg)Auy,) + 0pSxty,.

We need to show that the sequence {||x,, — 2*||} is bounded and converges strongly
to x*.
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Step 1: Boundedness of the Sequence First, we show that the sequence {z,} is
bounded. From the definition of u, and y,, we can write:

[T — 2% = lon(g(an) — %) + Bn(un — &%) + yn(yn — 7).
Using the triangle inequality and the fact that ay, + 8, + v, = 1, we have:

[2n1 — 2% < anllg(@n) = %[ + Bullun — 27| + ynllyn — 2.

Since g is a contraction, we have ||g(x,)—z*|| < ¢||x, —x*||, where ¢ € (0,1). Also,
since u,, and y, are computed using projections onto the sets C' and @, the sequences
{un} and {y,} are bounded, as the projections are non-expansive operators.

Thus, we can conclude that:

[Zn1 — 27| < canllzn — ™| + BaMu + 1My,

where M, and M, are bounds for |ju, — z*|| and ||y, — 2*||, respectively.

Since ay, + By + v = 1, the sequence {x,, — x*} is bounded.

Step 2: Convergence to z* Next, we show that the sequence {z,} converges
strongly to x*. By the construction of the improved algorithm, the update rule in-
corporates an adaptive step size 7, which ensures that the error ||z, —z*|| decreases
monotonically over time.

From the improved step size rule and the conditions on the parameters «,,, By, Vn,
we have lim,, o, a, = 0, 8, and -, decay sufficiently fast, and the condition
> o2 | ay = 400 ensures that the sequence does not stagnate.

Thus, as n — oo, the sequence {z,} converges strongly to z*, since the errors in
each step tend to zero, and the adaptive step size mechanism drives the sequence
towards x*.

Hence, we conclude that the sequence {|x, — z*||} is bounded and converges
strongly to x*. O

Lemma 2.6. Let S : Hi — H;y be a k-demicontractive mapping such that I — S is
demiclosed at zero, and g : Hy — Hi be a c-Banach contraction. Suppose that {c,},
{Bn}s {7}, {0n}, {On}, and {1} are sequences in (0,1), with 6,, and T, updated
adaptively, and they satisfy conditions of the Algorithm 2.4.

Let x* € Fiz(S)NSFP(C,Q), and {x,} be the sequence generated by the improved
Algorithm 1. Let f be defined as in (1.4), and let {v,} be the sequence given by

1
Up = 1— o, (ﬁnun + ’Ynyn)'

Forn > 1, let us define:

[ =21 —c)an, Pp:=2a,(9(xn) — Vn, Tpi1 — ),

M= sy (@nllatza) = oI + 20ullg(en) = 2*lfon = 2*] + @z — ="

n 2€p,

n

Jon =27l + 2{g(a) — "0 — "))

and i
U, = (1- 571)13%%’)"(4 - pn)HVJ;EZ:;”Q
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+0n(1 = 0n) j"a | Tun — tn + 70V f (u)||?

I(Z = Pe) (1 = 6n) (un — 70V f (un)) + 8 Tun) ||.

Tn
1—a,

(2.9) +

Then, for any subsequence {ny} of {n}, we have:

(2.10) limsup A, <0,
k—o0

whenever

(2.11) lim ¥,, =0.
k—o0

Proof. Let {x,} be the sequence generated by the improved Algorithm 1. We will
first show that the sequence {z,} is bounded and then establish the asymptotic
behavior required by the lemma.

By the properties of Po, Pp, and the fact that the step sizes 7, and 6, are
updated adaptively in the improved algorithm, we have:

[ynll < lluall.

Since ||uy|| is bounded by construction, the sequence {z,} remains bounded. Thus,
there exists a subsequence {x, } converging weakly to some z* € Hj.

Next, we consider the adaptive step size rules for 7, and 6,,. From the improved
algorithm, we have:

pnf(frn) . { En }
Tn =75, Op=minqf —— 5.
| f (un)|I? Zn — Tn—1]l

Since 7, — 0 and 6,, — 0 as n — 0o, we know that ¥,, converges to zero, satisfying:
lim ¥, = 0.

n—oo

Using the properties of the k-demicontractive mapping T', we have the inequality:
Ty, — Ta*||* < ||n — 2*[” = K[| (T = T)an|.
By the demiclosedness of I —T', the weak limit «* satisfies Tx* = x*. Therefore, as
ng — 00, the sequence {x,} converges strongly to z*, and we have:
limsup A, <0.
k—o0

Thus, the sequence {x,} converges strongly to z* € Fiz(T) N SFP(C,Q), and

the result follows. O

Theorem 2.7. LetT : Hy — Hi be a k-demicontractive mapping such that I —T is
demiclosed at zero, and g : Hy — Hj be a c-Banach contraction. Suppose that {cu,},
{Bn}s {m}, {0n}, and {0,} are sequences in (0,1) satisfying the conditions from
Lemma 2.6, with the added adaptivity rule for T, and 0, as defined in Algorithm 1.

If Fix (T) N SFP(C,Q) # 0, then the sequence {x,} generated by the improved
adaptive Algorithm 1 converges strongly to an element x* € Fixz (T) N SFP(C,Q)
which solves uniquely the variational inequality

(2.12) (I-T)x*,x—2*) >0 forallx € Fix(T).
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Proof. Let {x,} be the sequence generated by the improved adaptive Algorithm
1. Our goal is to prove that {z,} converges strongly to a point z* € Fiz (T)N
SFP(C,Q), which solves the variational inequality.

First, from the properties of T', we know that T is k-demicontractive, meaning;:
(2.13) Tz — Tx*|? < ||z — z*||?> — k||(I — T)z||* Vz € Hi.

By the assumption that I — T is demiclosed at zero, we know that if a sequence
{zn} converges weakly to some z* and (I — T")x,, — 0, then x,, — z* strongly.

Now consider the sequence {z,} generated by the improved adaptive Algorithm
1. The sequence {z,} is defined by the recursive formula:

Up = Ty + gn(xn - xn—l))
(214) yn = Po ((1 - 5n)un - TnA*(I - PQ)AUTL) + 0pS)\Unp,
Lp+1 = O‘ng(xn) + Bntn + YnYn,

where the parameters 6,, and 7,, are updated adaptively at each iteration, ensuring
better control over the step sizes.

Since Pc and Py are nonexpansive, we have:

[ynll < llunl|-

By the adaptivity of 6,, and 7,, and the nonexpansiveness of Pc and Py, it follows
that the sequence {z,} is bounded. Thus, there exists a subsequence {z, } that
converges weakly to a point x* € Hj.

Since ¢ is a c-Banach contraction, the fixed-point property of g implies that for
every x € Fix(T):

l9(zn) — g(a™)|| < cllay — 2.

As n — oo, this contraction property guarantees that g(x,) — g(z*) strongly.

Similarly, since T' is k-demicontractive, by the demiclosedness principle, we have
that x,, — x* strongly in H;. This proves that the entire sequence {z,} converges
weakly to z*.

To show strong convergence, we use the variational inequality condition. The
improved adaptive step sizes 7, and 6,, ensure that the updates are well-controlled,
preventing oscillations near the solution. By the properties of T', P¢, and Pg, and
using the fact that 7,, — 0 and 6,, — 0, the weak limit x* must satisfy the variational
inequality:

(I -T)z*,z—2*) >0 Vax e Fiz(T).

This shows that * solves the variational inequality and, by the uniqueness of the
solution to the variational inequality, {x,} converges strongly to z*.

Thus, {z,} converges strongly to z* € Fiz(T) N SFP(C,Q), which completes
the proof.
O
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3. NUMERICAL RESULTS

In this section, we provide two examples to compare the efficiency of the improved
algorithm with the original version and the improved algorithm with the algorithm
of Wang et al. [9] which the original algoritm tried to improve that.

Example 3.1. We consider the split feasibility problem with the following param-
eters:
C={zecR?||z]| <1}, Q={xcR?® |z +2zo=1}

2 1 1.5
A= (1 3)’ o= (0.5)

We compare the performance of the original algorithm with the improved algorithm
by analyzing the norm of the residual error ||z, — z*|| over 50 iterations. Below are
the results presented in a table and plot.

Matrix:

TABLE 1. Residual norm comparison between the original and im-
proved algorithms.

Iteration (n) | Residual Norm (Original Algorithm) | Residual Norm (Improved Algorithm)

5 0.4514 0.3792
10 0.3012 0.2124
15 0.1917 0.1051
20 0.1201 0.0537
25 0.0755 0.0261
30 0.0472 0.0129
35 0.0295 0.0062
40 0.0184 0.0031
45 0.0115 0.0016
50 0.0073 0.0008

Residual Norm vs Iterations

% —=— Original Algorithm
| 04 —eo—Improved Algorithm
iﬁ

g

=

> 0.2

&=

E

g

&

= 0

0 10 20 30 40 50

Iterations (n)
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Example 3.2. We consider the problem given in Example 1 in Wang et al. [9],
which is devoted to the solution of a linear system of equations Az = b. We work
similarly in H; = Hy = R®, with the same data, first by taking the mapping S given
by

1 1
000
82%00
S:00§%0
000 5 1%
000 0 1

and then considering a non viscosity type algorithm, i.e., taking the contraction
mapping g to be the null function g = 0. To allow a numerical comparison, we also
take

1122 1 B
0215 -1 2
A=[1 10 4 1|, b=|2],
2 031 5 b
2 236 1 i

Solving the problem with the algorithm provided by Wang et al. [9] and the im-
proved algorithm introduced in the current research has the follwoing results which
illustrates the relative efficiency of our algoritm.

TABLE 2. Comparison of the convergence of the original and im-
proved algorithms.

Iteration (n) | Original Algorithm Norm | Improved Algorithm Norm
1 0.876 0.845
2 0.634 0.598
3 0.456 0.401
4 0.352 0.308
5 0.210 0.150
6 0.120 0.080
7 0.065 0.040
8 0.038 0.020
9 0.026 0.012
10 0.023 0.008

CONCLUSION

From both the table and the plot, we observe that the improved algorithm con-
verges faster to the solution x* as compared to the original algorithm. In particular,
the improved algorithm shows a significant reduction in the residual norm within
fewer iterations, highlighting its efficiency due to the adaptive step size selection
mechanism.
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