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ON THE DYNAMICS OF A DISCRETE RICCATI EQUATION
WITH PERTURBATION

AHMED MOHAMMED AHMED EL-SAYED, SANAA MOUSSA SALMAN,
AND MOSTAFA IBRAHIM

ABSTRACT. In this paper, we discuss the new concept of a perturbation. As a
simple example, we will study a discrete Riccati equation with perturbation to
illustrate this concept. Analyses of the local stability of the fixed points and
Neimark-Sacker bifurcation are presented. We use numerical simulations to draw
out the results, as bifurcation diagrams, Lyapunov exponents, time series, and
phase diagrams. This helps us confirm our research and unearth more complex
dynamics.

1. INTRODUCTION

Dynamical systems theory is a mathematical framework that studies the behavior
of systems as they evolve over time. It provides a powerful tool for modeling and un-
derstanding complex phenomena in various scientific disciplines, including physics,
biology, economics, and engineering. Dynamical systems theory enables us to ana-
lyze the dynamic behavior of systems through differential equations, bifurcations,
chaos theory, and stability analysis [10,15,16,19,21-25].

Chaos theory is a fascinating aspect of dynamical systems, focusing on systems
that appear to exhibit random and unpredictable behavior. Chaos theory explores
the underlying order and patterns in seemingly chaotic systems, emphasizing their
sensitivity to initial conditions. It has profound implications for understanding com-
plex systems in nature and society, such as weather patterns, population dynamics,
and financial markets.

Bifurcation, a key concept in dynamical systems theory, refers to the qualitative
change in the behavior of a system as a parameter is varied. Bifurcations can lead
to the emergence of complex behavior, such as chaos, periodic orbits, or stable
equilibria. Understanding bifurcations is essential for predicting and controlling
system dynamics and exploring the boundaries between order and chaos.

By studying dynamical systems, chaos theory, and bifurcation, researchers and
scientists can gain valuable insights into the intricate dynamics of natural and arti-
ficial systems. These concepts help us unravel the underlying principles governing
complex phenomena and provide a deeper understanding of the world around us.

The discrete Riccati equation reads

Tpg1 =1— px%,l, n=12,..
(1.1)
.T(O) = Zo, .1‘(—1) =T-1,
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where p > 0.
We can write equation (1.1) as a discrete system as follows

Tpt1 =1-— pyrzu
(1.2) Yn+1 = Tn,
z(0) = o, y(0) = x0
Let there exists a preturbation as
Yn+1 = ATn + €Yp.
The discrete Riccati equation with perturbation can considered as
Tpt1 =1-— pyr2u
(1.3) Yn41 = ATp + €Yn,
z(0) = 2o , y(0) = o,
where 0 < €,a < 1.

2. LOCAL STABILITY ANALYSIS

The local stability of the fixed points of (1.3) will be studied. The fixed points

of the model can be acquired by solving the following system

x=1-py’,
(2.1)
Y = axr + €y.

Then, it is easy to see that the system has two fixed points (z7,y7) and (23, y3)

where

7} = 5 ,
L2+ ap()
U = 2/) )
L 4
Lo = — 2p )
o (2 ap()

Yo = — 2

The Jacobian matrix associated to the system (2.1) is given by

I(z,y) = [O ‘QF’?J} .

a €

What follows is a stability analysis of fixed points.
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2.1. Stability analysis at (z7,y]). The Jacobian matrix calculated at (z7,y}) is
given by

a €

J(x1,y7) = [ pyl] .
J(x7,y7) has a characteristic equation given by
PA) =X —ed+ [(e— 1)+ /(1 — €)% +4pa] = 0.

To determine the local stability of the system (2.1) at the fixed point (z7,y7),
the following lemmas is a useful tools.

Lemma 2.1. Let F(A\) = A2+ PA+Q be the characteristic equation of eigen values
associated to the Jacobin matriz evaluated at a fized point(z*,y*) then (z*,y*) is
1. a sink if Ay <1 and Ao < 1. That is a sink is locally stable,
2. a source if Ay > 1 and Ao > 1. That is a source is locally unstable,
3. asaddle if \y >1 and da <1 or (A <1 and Xy > 1),
4. a non hyperbolic if either Ay =1 or Ao = 1.

Lemma 2.2. Let F(\) = A2 + PX + Q suppose that F(1) > 0 and F()\) = 0) has
two roots A1 and M. then

1. F(—=1) >0 and Q < 1 if and only if \1 <1 and A2 < 1,

2. F(—=1)<0idfand only if \i <1 and Ay >1 or (A1 > 1 and X2 < 1),

3. F(—=1) >0 and Q > 1 if and only if \y > 1 and \g > 1.

Depending on those lemmas, we find the following.

Theorem 2.3. The fized point (z3,y7) is stable if 0 < p < 3&26 and unstable if

3—2¢
P> a7

Proof.

J(x1,97) = [ pyl] .

a €
The characteristic equation given by
A2 — e\ + 2apy; =0,

—I-\/ )2 +4p(=2)
)\2—6)\+2ap[ },

A2 —eX+ [(e— 1)+ /(1 — €)% + 4pa?] =0,
by applying lemmas [2.1, 2.2] we get
[(e—1)+ /(1 —€)?+4pa?] <1,

(1—€)2+4pa? <2 —c¢,

3 — 2¢
4a?

The fixed point (z7,y7) is stable if 0 < p < 34_636 and unstable if p > 3 26 O

p <
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2.1.1. Numerical simulations. In this part, to validate our studies we use numerical
experiments to draw out the theoretical results and show that changes in a and
e affect the dynamical behaviour of the dynamical system (2.1). We have been
experimenting with different values of a and € and then plotting bifurcation diagrams
as a function of p. Moreover, the maximal Lyapunov exponent corresponding to
each bifurcation diagram is introduced below it. In Figure (1a) we start with the
initial point (0.5,0.4) at a = 0.7, € = 0.1 the system undergoes bifurcation at
p ~ 1.42. In Figure (1b) we start with the initial point (0.5,0.4) at a = 0.7, ¢ = 0.3
the system undergoes bifurcation at p ~ 1.18. In Figure (le) we start with the
initial point (0.5,0.4) at a = 0.7, € = 0.0003 the bifurcation occurs in the system at
p =~ 1.5. Figure (1f) illustrates that the bifurcation occurs in the system at p ~ 0.74
with initial point (0.5,0.4) and a = 0.9999, e = 0.00001.

Also, we introduce some phase diagrams by taking a = 0.7, ¢ = 0.1, and initial
point (0.5,0.4) as in Figure (2). Through the increase in the value of p, the curve
rotates clockwise and a period-4 orbit appears and the Lyapunov exponent becomes
negative, as shown in Figures (2a)—(2g). The fixed point loses its stability and the
curve turns into a limit cycle with an increase in radius and the Lyapunov exponent
changes between negative and positive as in Figures (2h)—(2n). In Figure (20) the
limit cycle breaks down and a period-8 orbit appears and the Lyapunov exponent
changes between negative and positive. The system becomes more chaotic and the
Lyapunov exponent becomes positive as in Figure (2p).

Moreover, we introduce time series at the initial point (0.5,0.4) with the same
values of a and € in Figure (3)

2.2. Stability analysis at (23, y5). The Jacobian matrix calculated at (z3,y3) is
given by

* ok 0 —2pys
J(x5,y3) = [a epr] .

J(x%,y5) has a characteristic equation given by

(559) = /(3592 + 4p(159)
\/ 2p ] -0

P(\) EA2—6A+2ap[—

To determine the local stability of the system (2.1) at the fixed point (x3,v3),
Depending on previous lemmas, we find the following.

Theorem 2.4. The fized point (x3,y3) is stable if 0 < p < 34_(1%6 and unstable if
p> 25
Proof.

J(x3,95)

[0 —2py§] .
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The characteristic equation given by
M — e+ 2apys =0,

(16) = /(55992 + 4p(159)
2p

)

/\2—6)\+2ap[—

M—ed+[—(1—€ —(1—e2+4pa?] =0,
by applying lemmas [2.1, 2.2] we get
—[(1 =€) = /(1 —€)?+4pa?] <1,

V(1 —€)?2+4pa? < 2 —e,

< 3 — 2
p 4a2
The fixed point (z3,y3) is stable if 0 < p < 3;135 and unstable if p > 31;126. O

2.2.1. Numerical simulations. In this part, to validate our studies we use numerical
experiments to draw out the theoretical results and show that changes in a and
e affect the dynamical behaviour of the dynamical system (2.1). We have been
experimenting with different values of a and € and then plotting bifurcation diagrams
as a function of p. Moreover, the maximal Lyapunov exponent corresponding to
each bifurcation diagram is introduced below it. In Figure (4a) we start with the
initial point (0.2,0.2) at a = 0.7, ¢ = 0.1 the system undergoes bifurcation at
p ~ 1.42. In Figure (4b) we start with the initial point (0.2,0.2) at a = 0.7, ¢ = 0.3
the system undergoes bifurcation at p ~ 1.18. In Figure (4e) we start with the
initial point (0.2,0.2) at a = 0.7, € = 0.0003 the bifurcation occurs in the system at
p =~ 1.5. Figure (4f) illustrates that the bifurcation occurs in the system at p >~ 0.74
with initial point (0.2,0.2) and a = 0.9999, € = 0.00001.

Also, we introduce some phase diagrams by taking a = 0.7, ¢ = 0.1, and initial
point (0.2,0.2) as in Figure (5). Through the increase in the value of p, the curve
rotates clockwise and a period-4 orbit appears and the Lyapunov exponent becomes
negative, as shown in Figures (5a)—(5f). The fixed point loses its stability and the
curve turns into a limit cycle with an increase in radius and the Lyapunov exponent
changes between negative and positive as in Figures (5g)—(5n). In Figure (50) the
limit cycle breaks down and a period-8 orbit appears and the Lyapunov exponent
changes between negative and positive. The system becomes more chaotic and the
Lyapunov exponent becomes positive as in Figure (5p).

Moreover, we introduce time series at the initial point (0.2,0.2) with the same
values of a and e in Figure (5).

3. CONCLUSION

In this study, a Riccati equation with a perturbation parameters was studied.
We looked at both the solution’s existence and its continuous dependence on the
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initial conditions. Analyses of Hopf bifurcations and fixed points’ local stability
were presented.. local stability of fixed points were studied. We validated our
results using numerical simulations that generated bifurcation diagrams, Lyapunov
exponents, time series, and phase diagrams to better understand the underlying
complicated dynamics, it has been shown that, when the perturbation parameters
is increased, chaos is advanced in the system’s dynamics
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