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where ρ > 0.
We can write equation (1.1) as a discrete system as follows

xn+1 = 1− ρy2n,

yn+1 = xn,

x(0) = x0, y(0) = x0

(1.2)

Let there exists a preturbation as

yn+1 = axn + ϵyn.

The discrete Riccati equation with perturbation can considered as

xn+1 = 1− ρy2n,

yn+1 = axn + ϵyn,

x(0) = x0 , y(0) = x0,

(1.3)

where 0 < ϵ, a < 1.

2. Local stability analysis

The local stability of the fixed points of (1.3) will be studied. The fixed points
of the model can be acquired by solving the following system

x = 1− ρy2,

y = ax+ ϵy.
(2.1)

Then, it is easy to see that the system has two fixed points (x∗1, y
∗
1) and (x∗2, y

∗
2)

where

x∗1 = −
(1−ϵ

a )2 +
√
(1−ϵ

a )4 + 4ρ(1−ϵ
a )

2ρ
,

y∗1 = −
(1−ϵ

a ) +
√
(1−ϵ

a )2 + 4ρ(1−ϵ
a )

2ρ
,

x∗2 = −
(1−ϵ

a )2 −
√
(1−ϵ

a )4 + 4ρ(1−ϵ
a )

2ρ
,

y∗2 = −
(1−ϵ

a )−
√
(1−ϵ

a )2 + 4ρ(1−ϵ
a )

2ρ
.

The Jacobian matrix associated to the system (2.1) is given by

J(x, y) =

[
0 −2ρy
a ϵ

]
.

What follows is a stability analysis of fixed points.
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2.1. Stability analysis at (x∗1, y
∗
1). The Jacobian matrix calculated at (x∗1, y

∗
1) is

given by

J(x∗1, y
∗
1) =

[
0 −2ρy∗1
a ϵ

]
.

J(x∗1, y
∗
1) has a characteristic equation given by

P (λ) ≡ λ2 − ϵλ+
[
(ϵ− 1) +

√
(1− ϵ)2 + 4ρa2

]
= 0.

To determine the local stability of the system (2.1) at the fixed point (x∗1, y
∗
1),

the following lemmas is a useful tools.

Lemma 2.1. Let F (λ) = λ2+Pλ+Q be the characteristic equation of eigen values
associated to the Jacobin matrix evaluated at a fixed point(x∗, y∗) then (x∗, y∗) is

1. a sink if λ1 < 1 and λ2 < 1. That is a sink is locally stable,
2. a source if λ1 > 1 and λ2 > 1. That is a source is locally unstable,
3. a saddle if λ1 > 1 and λ2 < 1 or ( λ1 < 1 and λ2 > 1),
4. a non hyperbolic if either λ1 = 1 or λ2 = 1.

Lemma 2.2. Let F (λ) = λ2 + Pλ + Q suppose that F (1) > 0 and F (λ) = 0) has
two roots λ1 and λ2. then

1. F (−1) > 0 and Q < 1 if and only if λ1 < 1 and λ2 < 1,
2. F (−1) < 0 if and only if λ1 < 1 and λ2 > 1 or ( λ1 > 1 and λ2 < 1),
3. F (−1) > 0 and Q > 1 if and only if λ1 > 1 and λ2 > 1.

Depending on those lemmas, we find the following.

Theorem 2.3. The fixed point (x∗1, y
∗
1) is stable if 0 < ρ < 3−2ϵ

4a2
and unstable if

ρ > 3−2ϵ
4a2

.

Proof.

J(x∗1, y
∗
1) =

[
0 −2ρy∗1
a ϵ

]
.

The characteristic equation given by

λ2 − ϵλ+ 2aρy∗1 = 0,

λ2 − ϵλ+ 2aρ

[
−

(1−ϵ
a ) +

√
(1−ϵ

a )2 + 4ρ(1−ϵ
a )

2ρ

]
,

λ2 − ϵλ+
[
(ϵ− 1) +

√
(1− ϵ)2 + 4ρa2

]
= 0,

by applying lemmas [2.1, 2.2] we get[
(ϵ− 1) +

√
(1− ϵ)2 + 4ρa2

]
< 1,√

(1− ϵ)2 + 4ρa2 < 2− ϵ,

ρ <
3− 2ϵ

4a2
.

The fixed point (x∗1, y
∗
1) is stable if 0 < ρ < 3−2ϵ

4a2
and unstable if ρ > 3−2ϵ

4a2
. □
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2.1.1. Numerical simulations. In this part, to validate our studies we use numerical
experiments to draw out the theoretical results and show that changes in a and
ϵ affect the dynamical behaviour of the dynamical system (2.1). We have been
experimenting with different values of a and ϵ and then plotting bifurcation diagrams
as a function of ρ. Moreover, the maximal Lyapunov exponent corresponding to
each bifurcation diagram is introduced below it. In Figure (1a) we start with the
initial point (0.5, 0.4) at a = 0.7, ϵ = 0.1 the system undergoes bifurcation at
ρ ≃ 1.42. In Figure (1b) we start with the initial point (0.5, 0.4) at a = 0.7, ϵ = 0.3
the system undergoes bifurcation at ρ ≃ 1.18. In Figure (1e) we start with the
initial point (0.5, 0.4) at a = 0.7, ϵ = 0.0003 the bifurcation occurs in the system at
ρ ≃ 1.5. Figure (1f) illustrates that the bifurcation occurs in the system at ρ ≃ 0.74
with initial point (0.5, 0.4) and a = 0.9999, ϵ = 0.00001.

Also, we introduce some phase diagrams by taking a = 0.7, ϵ = 0.1, and initial
point (0.5, 0.4) as in Figure (2). Through the increase in the value of ρ, the curve
rotates clockwise and a period-4 orbit appears and the Lyapunov exponent becomes
negative, as shown in Figures (2a)–(2g). The fixed point loses its stability and the
curve turns into a limit cycle with an increase in radius and the Lyapunov exponent
changes between negative and positive as in Figures (2h)–(2n). In Figure (2o) the
limit cycle breaks down and a period-8 orbit appears and the Lyapunov exponent
changes between negative and positive. The system becomes more chaotic and the
Lyapunov exponent becomes positive as in Figure (2p).

Moreover, we introduce time series at the initial point (0.5, 0.4) with the same
values of a and ϵ in Figure (3)

2.2. Stability analysis at (x∗2, y
∗
2). The Jacobian matrix calculated at (x∗2, y

∗
2) is

given by

J(x∗2, y
∗
2) =

[
0 −2ρy∗2
a ϵ

]
.

J(x∗2, y
∗
2) has a characteristic equation given by

P (λ) ≡ λ2 − ϵλ+ 2aρ

[
−

(1−ϵ
a )−

√
(1−ϵ

a )2 + 4ρ(1−ϵ
a )

2ρ

]
= 0.

To determine the local stability of the system (2.1) at the fixed point (x∗2, y
∗
2),

Depending on previous lemmas, we find the following.

Theorem 2.4. The fixed point (x∗2, y
∗
2) is stable if 0 < ρ < 3−2ϵ

4a2
and unstable if

ρ > 3−2ϵ
4a2

.

Proof.

J(x∗2, y
∗
2) =

[
0 −2ρy∗2
a ϵ

]
.
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The characteristic equation given by

λ2 − ϵλ+ 2aρy∗2 = 0,

λ2 − ϵλ+ 2aρ

[
−

(1−ϵ
a )−

√
(1−ϵ

a )2 + 4ρ(1−ϵ
a )

2ρ

]
,

λ2 − ϵλ+
[
− (1− ϵ)−

√
(1− ϵ)2 + 4ρa2

]
= 0,

by applying lemmas [2.1, 2.2] we get

−
[
(1− ϵ)−

√
(1− ϵ)2 + 4ρa2

]
< 1,√

(1− ϵ)2 + 4ρa2 < 2− ϵ,

ρ <
3− 2ϵ

4a2
.

The fixed point (x∗2, y
∗
2) is stable if 0 < ρ < 3−2ϵ

4a2
and unstable if ρ > 3−2ϵ

4a2
. □

2.2.1. Numerical simulations. In this part, to validate our studies we use numerical
experiments to draw out the theoretical results and show that changes in a and
ϵ affect the dynamical behaviour of the dynamical system (2.1). We have been
experimenting with different values of a and ϵ and then plotting bifurcation diagrams
as a function of ρ. Moreover, the maximal Lyapunov exponent corresponding to
each bifurcation diagram is introduced below it. In Figure (4a) we start with the
initial point (0.2, 0.2) at a = 0.7, ϵ = 0.1 the system undergoes bifurcation at
ρ ≃ 1.42. In Figure (4b) we start with the initial point (0.2, 0.2) at a = 0.7, ϵ = 0.3
the system undergoes bifurcation at ρ ≃ 1.18. In Figure (4e) we start with the
initial point (0.2, 0.2) at a = 0.7, ϵ = 0.0003 the bifurcation occurs in the system at
ρ ≃ 1.5. Figure (4f) illustrates that the bifurcation occurs in the system at ρ ≃ 0.74
with initial point (0.2, 0.2) and a = 0.9999, ϵ = 0.00001.

Also, we introduce some phase diagrams by taking a = 0.7, ϵ = 0.1, and initial
point (0.2, 0.2) as in Figure (5). Through the increase in the value of ρ, the curve
rotates clockwise and a period-4 orbit appears and the Lyapunov exponent becomes
negative, as shown in Figures (5a)–(5f). The fixed point loses its stability and the
curve turns into a limit cycle with an increase in radius and the Lyapunov exponent
changes between negative and positive as in Figures (5g)–(5n). In Figure (5o) the
limit cycle breaks down and a period-8 orbit appears and the Lyapunov exponent
changes between negative and positive. The system becomes more chaotic and the
Lyapunov exponent becomes positive as in Figure (5p).

Moreover, we introduce time series at the initial point (0.2, 0.2) with the same
values of a and ϵ in Figure (5).

3. Conclusion

In this study, a Riccati equation with a perturbation parameters was studied.
We looked at both the solution’s existence and its continuous dependence on the
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initial conditions. Analyses of Hopf bifurcations and fixed points’ local stability
were presented.. local stability of fixed points were studied. We validated our
results using numerical simulations that generated bifurcation diagrams, Lyapunov
exponents, time series, and phase diagrams to better understand the underlying
complicated dynamics, it has been shown that, when the perturbation parameters
is increased, chaos is advanced in the system’s dynamics
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Figure 1. Bifurcation diagrams of a system (2.1) and its
accompanying maximum Lyapunov exponent
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Figure 2. Phase diagrams of system (2.1) with varying values of ρ
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Figure 3. Time series of system (2.1)
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Figure 4. Bifurcation diagrams of a system (2.1) and its
accompanying maximum Lyapunov exponent
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Figure 5. Phase diagrams of system (2.1)with varying values of ρ
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Figure 6. time series of system(2.1)


