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has been essential in understanding phenomena like optical bistability and chaos
[21].

In engineering, DDEs are pivotal in control theory, where delays often arise due
to signal transmission times in feedback loops. Researchers like Richard, Jean-
Pierre [25] have explored the impact of these delays on system stability and control,
proposing methods for designing controllers that can compensate for delays and
maintain system performance.

In economics, DDEs are used to model dynamic systems where past decisions
influence current economic variables. For example, Bianca and et al. [4] investigated
the time delays’ effects on the qualitative behavior of an economic growth model,
while Bischi et al.[5] analyzed the stability of delayed differential game models in
oligopolistic competition.

The concept of distributed delay in Delay Differential Equations (DDEs) extends
the idea of a discrete delay by considering a delay that is spread over a range of times
rather than occurring at a single fixed point. This approach is particularly valuable
when modeling systems where the influence of past states is not instantaneous but
rather distributed over a continuum of past times [27].

In recent years, there has been a growing interest in the application of distributed
delay models in various fields. For example, in ecological modeling, Zhang et al. [32]
explored how distributed delays can affect the stability of predator-prey systems,
demonstrating that such delays can lead to complex dynamics, including oscillations
and chaos. In economics, authors like Guerrini et al. [14] have studied the effects of
fixed and continuously distributed delays in a monopoly model with constant price
elasticity.

The objective of this paper is to investigate the dynamic properties of α−distributed
delay Riccati differential equations and provide a comprehensive analysis of their
stability, bifurcation behavior, and chaotic dynamics. We aim to elucidate the im-
pact of distributed delays on the qualitative behavior of DD-RDEs.

El-Sayed et al.[12,13] studied the perturbed delay Riccati equation as in the form

(1.1)
dx(t)

dt
= 1− ρx(t)x(t− r).

The delayed Riccati differential equation is given by (1.1) is studied in [12,13]. In
this paper, rather than focusing on the discrete delay in equation (1.1), we examine
the following Ricatti equation with an α−distributed delay as

(1.2)
dx(t)

dt
= 1− ρ

[∫ t

0
K(t− s)x(s)ds

]2
,

where ρ > 0 and K(t) is called the (Tempered delay) delay kernel [26, 30].
Consider the weak kernel

K(t) = e−αt, α > 0.

Then (1.2) can be rewritten as:

dx

dt
= 1− ρ

[∫ t

0
e−α(t−s)x(s)ds

]2
, t ∈ (0, T ],(1.3)
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x(t) = x0.

Assuming

y(t) =

∫ t

0
e−α(t−s)x(s)ds,

and using the linear chain trick [28], we obtain the following system

dx(t)

dt
= 1− ρy2(t), x(0) = x0,

dx(t)

dt
= x(t)− αy(t), y(0) = 0.(1.4)

The structure of the paper is as follows. Section (2) presents the stability analysis
of the continuous time model (1.4). We discretized the system (1.4) by applying
the piecewise continuous arguments method and discuss bifurcation analysis of the
discretized system in Section (3). Section (4) offers a numerical simulation to explain
the theoretical analysis. In Section (5), we apply the method chaos control for the
considered system.

2. The Continuous-time model of (1.4)

Stability analysis aims to determine under what conditions the solutions of the
Riccati equation converge or diverge. Stability criteria involve examining the eigen-
values of the associated characteristic equation, which is derived from linearizing
the system around its equilibrium points.

2.1. The fixed points and stability analysis. In this section, we investigate the
local stability analysis of a continuous model denoted as (1.4). The equilibrium
points of problem (1.4) can be obtained by solving the following equations:

1− ρy2 = 0,

x− αy = 0.

The system (4) possesses two equilibrium points, namely (x∗1, y
∗
1) = ( α√

ρ ,
1√
ρ) and

(x∗2, y
∗
2) = (− α√

ρ ,−
1√
ρ). Next, we discuss the local stability of these equilibrium

points by linearizing the system around them. This process involves approximating
the nonlinear system with a linear one in the vicinity of the equilibrium point. The
determination of stability behavior relies on the eigenvalues of the Jacobian matrix
associated with the system.

To analyze the stability of dynamic continuous systems, the trace-determined
method [18, 22] is applied. This method serves as a simple yet powerful tool for
assessing the stability of such systems. To determine the stability of these points,
we linearize the system around the equilibrium points, the Jacobian matrix of the
system is given by

(2.1) J(x∗, y∗) =

[
0 −2ρy∗

1 −α

]
.
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The characteristic polynomial of the Jacobian matrix has trace τ = −α and de-
tereminant d = 2ρy∗.

The eigenvalues of (2.1) are

λ1,2 =
1

2
(τ ±

√
∆),

where ∆ = τ2 − 4d.

Lemma 2.1 ([23]). The fixed points (x∗, y∗)

(1) If ∆ > 0, d > 0 and τ < 0 the fixed point is stable node.
(2) If ∆ > 0, d > 0 and τ > 0 the fixed point is unstable node.
(3) If ∆ < 0, d > 0 and τ < 0 the fixed point is stable spiral.
(4) If ∆ < 0, d > 0 and τ > 0 the fixed point is unstable.

For the first equilibrium point (x∗1, y
∗
1) , we calculate the Jacobian at the fixed

point:

(2.2) J(x∗, y∗) =

[
0 −2

√
ρ

1 −α

]
.

τ = −α, d = 2
√
rho

Proposition 2.2. (1) If α2 < 8
√
rho the eigenvalues for the first equilibrium

point are complex conjugates with negative real parts, indicating it is a stable
spiral (stable focus).

(2) If α2 > 8
√
rho the eigenvalues for the first equilibrium point are negative

real indicating, it is a stable node.
(3) if α2 = 8

√
rho the eigenvalues are real and equal for the first equilibrium

point, suggesting a degenerate node (either stable or unstable depending on
the direction of perturbation).

For the second equilibrium point (x∗2, y
∗
2), the trace and determinant of the Jaco-

bian given by
τ = −α, d = −2

√
ρ

The fixed point (x∗2, y
∗
2) is unstable saddle node.

The phase diagram will show trajectories in the x-y plane. In Figure (1) shown
that the precise dynamics can be visualized effectively with the phase diagram,
which helps in understanding the flow of trajectories in the system’s state space.

3. The discrete time model of (1.4)

We can convert the system (1.4) to discrete time system using piecewise constant
arguments method [1, 11,12] as follows:

dx(t)

dt
= (1− ρ(y(r[

t

r
]))2), t ∈ (0, T ]

dy(t)

dt
= x(r[

t

r
])− αy(r[

t

r
])(3.1)

x(0) = x0, y(0) = y0,

where [.] denotes the greatest integer function and r is a constant argument.
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Figure 1. The trajectories about the fixed points at α = 1 and α = 5.

(1) let t ∈ [0, r) then, [
t

r
] = 0,

dx(t)

dt
= (1− ρy20), t ∈ [0, r)

and the solution is given by

x(t) = x0 + (1− ρy20)

∫ t

0
1dt

= x0 + (1− ρy20)t.

similarly,

y(t) = y0 + (x0 − αy0)

∫ t

0
1dt

= y0 + (x0 − αy0)t.

when t → r, x(r) = x1 , we get

x1 = x0 + r(x0 − αy0),

y1 = y0 + r(x0 − αy0).

(2) let t = [r, 2r) then, [
t

r
] = 1,

dx(t)

dt
= (1− ρy21), t ∈ [r, 2r).

and the solution of is given by

x(t) = x(r) + (1− ρy(r))2
∫ t

r
1ds

= x(r) + (1− ρy(r)2)(t− r),
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also,

y(t) = y(r) + (x(r)− αy(r))(t− r).

When t → 2r and x(r) = x1, y(r) = y1 we get

x2 = x1 + r(1− ρy21),

y2 = y1 + r(x1 − αy1).

repeated this procedure for n iterations to get the following discrete time system:

xn+1(t) = x(nr) + (t− nr)(1− ρy(nr)2), t ∈ [nr, (n+ 1)r),

yn+1(t) = y(nr) + (t− nr)(x(nr) + αy(nr)).

let t → (n+ 1)r, we obtain the discretization as follows:

xn+1 = xn + r(1− ρy2n),

yn+1 = yn + r(xn − αyn),(3.2)

where α, ρ > 0.

3.1. 3.1 The fixed points and stability analysis of (3.2). In this section, we
discuss the stability analysis of the discrete model. Now, we study the stability of
the fixed points. The Jacobian matrix of the system (3.2) is given by

(3.3) J(x, y) =

[
1 −2rρy∗

r 1− αr

]
.

The characteristic equation of the Jacobian matrix can be written as

(3.4) F (λ) = |J − λI| = λ2 + Pλ+Q = 0,

where

P = −tr(J) = αr − 2,

and

Q = det(J) = (1− αr) + 2ρr2y∗.

In order to study the modulus of eigenvalues of the characteristic equation (lo-
cal stability), we first know the following lemma [16], which is the relations between
roots and coefficients of the quadratic equation.

Lemma 3.1. [19] let F (λ) = λ2 + Pλ + Q = 0. Suppose that F (1) > 0, λ1,2

are two roots of F (λ) = 0, then

• |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and Q < 1.
• |λ1| > 1 and |λ2| < 1 or (|λ1| < 1 and |λ2| > 1) if and only if F (−1) < 0.
• |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and Q > 1.
• λ1 = −1 and λ2 ̸= 1 if and only if F (−1) = 0 and P ̸= 0, 2.
• λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if P 2 − 4Q < 0 and
Q = 1.
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For the positive fixed point (x∗1, y
∗
1) = ( α√

ρ ,
1√
ρ). The Jacobian matrix be

(3.5) J(x, y) =

[
1 −2r

√
ρ

r 1− αr

]
.

The P and Q of the characteristic equation of the Jacobian matrix at the first fixed
point can be written as

P = −2 + rα,

and
Q = 1− rα+ 2r2

√
ρ.

Proposition 3.2. The first fixed point (x∗1, y
∗
1)

(1) It is called sink (asymptotically stable) if 2r
√
ρ < α <

2+r2
√
ρ

r .

(2) It is called source if α > max (2r
√
ρ,

2+r2
√
ρ

r ).

(3) It is called saddle if α >
2+r2

√
ρ

r .
(4) It is a non hyperbolic if the one of the conditions holds:

• α > 8
√
ρ and α =

2+r2
√
ρ

r where, α ̸= 2
r ,

4
r .

• α < 8
√
ρ and α = 2r

√
ρ.

Proposition 3.3. The negative fixed point (x∗2, y
∗
2) is unstable.

3.2. The Bifurcation analysis. A Neimark-Sacker bifurcation occurs when a sta-
ble fixed point transitions to instability at a specific critical value of the system’s
bifurcation parameter. This transition leads to the appearance of either an attract-
ing closed invariant curve or the emergence of a repelling closed invariant curve
as the parameter values cross this critical threshold. If the bifurcation results in
the appearance of an attracting closed invariant curve, it is termed a supercritical
Neimark-Sacker bifurcation; conversely, if it leads to the emergence of a repelling
closed invariant curve, it is termed a subcritical Neimark-Sacker bifurcation. In both
scenarios, such a bifurcation is associated with discrete systems whose eigenvalues
are complex conjugates with a modulus of one.

Theorem 3.4. [19] Consider the family of Cr maps (r ≥ 5), Fµ : R2 × R → R2

such that the following conditions hold:

• Fµ(0) = 0, i.e., the origin is a fixed point of Fµ.

• DFµ(0) has two complex conjugate eigenvalues λ1,2(µ) = r(µ)e±iθ(µ), where
r(0) = 1, r′(0) ̸= 1, θ(0) = θ0, and |λ(0)| = 1.

• eikθ0 ̸= 1 for k = 1, 2, 3, 4, 5, . . . (absence of strong resonances condition).

If, in addition, a ̸= 0 where

a = −Re

[
(1− 2λ)λ

2
ζ11ζ20

1− λ

]
− 1

2
|ζ11|2 − |ζ02|2 + Re(λζ21),

with a called the first Lyapunov coefficient, then for sufficiently small µ, Fµ there
exists a unique invariant closed curve enclosing that bifurcates from the origin as µ
passes through 0. If a > 0, we have a supercritical Neimark-Sacker bifurcation. If
a < 0, we have a subcritical Neimark-Sacker bifurcation.
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After simple calculation:

|λ1,2| = 1 if α2 < 8
√
ρ at α = 2r

√
ρ.

|Q| = λ1λ2 = 1

λ1,2(α) =
1

2

(
αr − 2± ir

√
8
√
ρ− α2

)
,

λ2 = λ1,

|λ1(α)| = |λ2(α)| =
√
Q(α) =

√
1− αr + 2r2

√
ρ,∣∣∣∣d|λ1(α)|

dα

∣∣∣∣
α=0

=

∣∣∣∣d|λ2(α)|
dα

∣∣∣∣
α=0

= − r

2
√
1 + 2r2

√
ρ
< 0.

Moreover, it is evident that λm
1,2(0) ̸= 1 for all m = 1, 2, 3, 4 for b ̸= 2. Thus, all

conditions for the Neimark-Sacker bifurcation to occur are satisfied.
Define new variables u and v as perturbations from the fixed point: u = x−x∗ and

v = y − y∗, and take α as a bifurcation parameter. Consider a small perturbation
of the parameter δ as follows α = α− δ.

Substituting into the original system, we transform the fixed point (x∗, y∗) into
(0, 0). The system now has the form:(

un
vn

)
→
(
0 −2ρy∗

1 −α+ δ

)(
un
vn

)
+

(
2ρv2n
0

)
.

Next, define a1 =
αr−2

2 and a2 =
r
√

8
√
ρ−α2

2 . These coefficients represent the real
and imaginary parts of λ1,2. Upon finding the eigenvectors associated with these
eigenvalues, we construct the following invertible matrix:

T =

(
2ρy∗ 0
−a1 a2

)
,

T−1 =
1

2ρy∗a2

(
a2 0
a1 2ρy∗

)
.

Consider the transformation: (
un
vn

)
= T

(
Xn

Yn

)
,(

Xn

Yn

)
=

(
a1 −a2

a21+2ρy∗+a1(α−δ)
a2

−a1 − α+ δ

)(
Xn

Yn

)
+

(
F (Xn, Yn)
G(Xn, Yn)

)
,

where

F (Xn, Yn) =
1

y∗
(a2Yn − a1Xn)

2,

G(Xn, Yn) =
a1
a2y∗

(a2Yn − a1Xn)
2.

Next, we compute:

FXX =
2a21
y∗

, FXXX = 0, FXY = FY X = −2a1a2
y∗

, FY Y =
2a22
y∗

, FY Y Y = 0,

GXX =
2a31
a2y∗

, GXXX = 0,
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GXY = −2a21
y∗

, GY X =
2a1a2
y∗

, GY Y =
2a21
y∗

, GY Y Y = 0.

Then, we calculate:

a = −Re
[(1− 2λ)λ†ζ11ζ20

1− λ

]
− 1

2
|ζ11|2 − |ζ02|2 +Re(λ†ζ21),

where

ζ20 =
1

8
(FXX − FY Y + 2GXY ) + i(GXX −GY Y − 2FXY ),

ζ20 =
1

8
√
ρ

[
−2a21 − 2a22 + i

(
2a31
a2

+ 2a1a2

)]
,

ζ02 =
1

8
(FXX − FY Y − 2GXY ) + i(GXX −GY Y + 2FXY ),

ζ02 =
1

8
√
ρ

[
6a21 − 2a22 + i

(
2a31
a2

− 6a1a2

)]
,

ζ11 =
1

4
[FXX + FY Y + i(GXX +GY Y )] ,

ζ11 =
1

4
√
ρ

[
2a21 + 2a22 + i

(
2a31
a2

+ 2a1a2

)]
,

ζ21 = 0.

Summarizing the above analysis, we have the following consequence.

Theorem 3.5. The system (3.2) undergoes a Neimark–Sacker bifurcation at the
positive fixed point (x∗1, y

∗
1), when the parameter α varies in a small neighborhood δ.

4. Numerical results

Here, we use numerical simulation to show the bifurcation diagrams, phase por-
traits, and Lyapunov exponents of the system (3.2) in order to confirm the earlier
findings and to show some more interesting complex dynamical behaviors that arise
in systems. It is well known that maximum Lyapunov exponents, which are fre-
quently used to denote chaotic behavior, quantify the exponential divergence of
originally close state-space paths. We consider the initial point to be (0.2,0.2) and
select the parameter r, α as a bifurcation parameter (varied parameter), taking the
other parameters as fixed parameters. The bifurcation parameters are considered
as:

For Case 1, the bifurcation and maximal Lyapunov exponent diagrams of the
system are shown in Figure (2). From Figures (2a), (2c), and (2e), we note that
varying the value of α affects the bifurcation diagrams. In these figures, the fixed
point loses stability at r = 0.115 for Figure (2a), r = 0.28 for Figure (2c), and
r = 0.35 for Figure (2e), with ρ fixed at 50. The maximal Lyapunov exponent is a
useful tool for detecting chaos in the system. As observed in Figure (2b), the system
is chaotic for r > 0.17. However, Figures (2d) and (2f) show that for r > 0.38, some
Lyapunov exponents are greater than 0 and some are less than 0, indicating the
presence of stable fixed points or stable periodic windows within the chaotic region.

In Figure 3, we discuss the bifurcation and chaotic behavior of the system with
respect to changes in r, as referenced in Case 2. In Figure (3a), the system undergoes
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bifurcation at r = 0.3 and, as r increases, the bifurcation decreases and the system
becomes more stable, as seen in (3c) and (3e). However, the maximal Lyapunov
exponent shown in Figures (3b), (3d), and (3f) indicates that the system becomes
more chaotic with increasing r.

Figure 2. The bifurcation diagrams and maximal Lyapunov expo-
nents of the considered systems with varying α.

The phase portrait is shown in the Figure (4), by taken r = 0.4 and ρ = 50
and the intial point is (0.1, 0.1), we note that When α exceeds 5.7, there appears
a trajectories tends to the fixed point and in the interval [5.2, 5.6] theres appear
a circular curve enclosing the fixed point (0.7636, 0.1414), and its radius becomes
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Figure 3. The bifurcation diagrams and maximal Lyapunov expo-
nents of the considered systems with varying α

larger with respect to the growth of α. when α > 5.7 the system be more stable as
in Figure (3).

In the next section, we study the chaos control to get a more stable fixed point.

5. Chaos control

In this section we discuss the chaos control method [8, 16, 23] for the feedback
control (3.2), to stabilize chaotic of an unstable fixed point of (3.2). Consider the
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Figure 4. The phase diagram of system (3.2) with varying α.

following controlled form of system (3.2):

xn+1 = xn + r(1− ρy2n) + un,

yn+1 = yn + r(xn − αyn).(5.1)

where, un = −k1(xn − x∗) − k2(yn − y∗) which is the control force, the jacobian
matrix of the new feedback control (5.1) is

(5.2) J(x∗, y∗) =

[
1− k1 −2ρry∗ − k2

r 1− αr

]
=

[
1− k1 −2r

√
ρ− k2

r 1− αr

]
,

then

(5.3) Trac(J) = λ1 + λ2 = 2− rα− k1.
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Figure 5. The bounded triangle for the stabilize the fixed point for
α = 3.9, r = 0.4, ρ = 50

(5.4) λ1λ2 = det(J) = (1− k1)(1− αr) + 2r2
√
ρ+ rk2.

The equations λ1 = ±1 and λ1λ2 = 1 must be solved in order to get the lines of
marginal stability. These requirements ensure that the modulus of the eigenvalues
λ1 and λ2 is smaller than 1. the three equations as follows: let λ1λ2 = 1

(5.5) l1 : (1− αr)k1 − rk2 = 2r2
√
ρ− αr.

let λ1 = 1 in (5.3) and (5.4)

(5.6) l2 : (αr)k1 − rk2 = 1 + 2r2
√
ρ.

let λ1 = −1 in (5.3) and (5.4)

(5.7) l3 : (2− αr)k1 − rk2 = 4− 2αr + 2r2
√
ρ.

then the stable eigenvalues lies in the triangular region bounded by l1, l2 and l3 in
Figure (5). To investigate how the state feedback control the unstable fixed point,
we have run a few numerical simulations, where the fixed parameter values are as
follows: α = 3.9, r = 0.4, ρ = 50. The feedback gain is k1 = 1.5, k2 = −6, and
the starting value is (0.4, 0.1). Figure (6) and (7) illustrates how a chaotic track is
brought to a stable point (0.5515, .1414).

6. Conclusion

In conclusion, our investigation into the dynamic properties of the Riccati differ-
ential equation with distributed delay has yielded several important findings and
implications. Through rigorous analysis and numerical simulations, we have un-
covered the complex behaviors exhibited by systems governed by this equation,
highlighting the intricate interplay between delay and dynamic phenomena.

Our study demonstrates that the distributed delay parameter significantly in-
fluences system stability. We observed notable instances of stability loss and the
emergence of Neimark-Sacker bifurcations as the delay varied. Additionally, the
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Figure 6. The effect of chaos control parameter at fixing parame-
ters α = 3.9, r = 0.4, ρ = 50.

Figure 7. The phase diagram for the controlled system with α =
3.9, r = 0.4, ρ = 50. for k1 = 1.5, k2 = −6

presence of distributed delay introduces a range of dynamic behaviors, including
amplitude and frequency modulation, which have substantial implications for real-
world applications in fields such as biological systems, population dynamics, and
control theory.

This work advances the understanding of distributed delay Riccati equations by
providing practical methods for discretization, stability analysis, and chaos control.
The insights gained contribute to the broader field of dynamic systems and lay the
groundwork for future research and application in various domains.
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