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A,B, Takahashi et al. [35] suggested a Mann-type Halpern iterative method, i.e.,
for any given x1 = x ∈ C, {xj} is the sequence generated by

xj+1 = βjxj + (1− βj)S(αjx+ (1− αj)J
B
λj
(xj − λjAxj)) ∀j ≥ 1,

where {λj} ⊂ (0, 2α) and {αj}, {βj} ⊂ (0, 1). They proved the strong convergence of
{xj} to a point of Fix(S)∩(A+B)−1(0) under some mild conditions. In the practical
life, many mathematical models have been formulated as the VI. Without question,
many researchers have presented and developed a great number of iterative methods
for solving the VI in various approaches; see e.g., [6, 8, 12, 15, 16, 24, 26, 34, 35]
and the references therein. Due to the importance and interesting of the VI, many
mathematicians are now interested in finding a common solution of the VI and FPP.

Recently, Manaka and Takahashi [26] suggested an iterative process, i.e., for any
given x0 ∈ C, {xj} is the sequence generated by

xj+1 = αjxj + (1− αj)SJ
B
λj
(xj − λjAxj) ∀j ≥ 0,

where {αj} ⊂ (0, 1), {λj} ⊂ (0,∞), A : C → H is an inverse-strongly monotone
mapping, B : D(B) ⊂ C → 2H is a maximal monotone operator, and S : C → C
is a nonexpansive mapping. They proved weak convergence of {xj} to a point of
Fix(S) ∩ (A+B)−1(0) under some suitable conditions.

For q ∈ (1, 2], let E be a uniformly convex and q-uniformly smooth Banach
space with q-uniform smoothness coefficient κq. Suppose that f : E → E is a ρ-
contraction and S : E → E is a nonexpansive mapping. Let A : E → E be an
α-inverse-strongly accretive mapping of order q and B : E → 2E be an m-accretive
operator. Very recently, Sunthrayuth and Cholamjiak [34] proposed a modified
viscosity-type extragradient method for the FPP of S and the VI of finding x∗ ∈ E
s.t. 0 ∈ (A+B)x∗, i.e., for any given x0 ∈ E, {xj} is the sequence generated by

yj = JB
λj
(xj − λjAxj),

zj = JB
λj
(xj − λjAyj + rj(yj − xj)),

xj+1 = αjf(xj) + βjxj + γjSzj ∀j ≥ 0,

where JB
λj

= (I+λjB)−1, {rj}, {αj}, {βj}, {γj} ⊂ (0, 1) and {λj} ⊂ (0,∞) are such

that: (i) αj + βj + γj = 1; (ii) limj→∞ αj = 0,
∑∞

j=1 αj = ∞; (iii) {βj} ⊂ [a, b] ⊂
(0, 1); and (iv) 0 < λ ≤ λj < λj/rj ≤ µ < (αq/κq)

1/(q−1), 0 < r ≤ rj < 1. They
proved the strong convergence of {xj} to a point of Fix(S) ∩ (A + B)−1(0), which
solves a certain VIP.

Furthermore, suppose that J : E → 2E
∗
is the normalized duality mapping from

E into 2E
∗
defined by J(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2} ∀x ∈ E, where 〈·, ·〉

denotes the generalized duality pairing between E and E∗. It is known that if E
is smooth then J is single-valued. Let C be a nonempty closed convex subset of a
smooth Banach space E. Let A1, A2 : C → E and B1, B2 : C → 2E be nonlinear
mappings with Bix 6= ∅ ∀x ∈ C, i = 1, 2. Consider the general system of variational
inclusions (GSVI) of finding (x∗, y∗) ∈ C × C s.t.

(1.1)

{
0 ∈ ζ1(A1y

∗ +B1x
∗) + x∗ − y∗,

0 ∈ ζ2(A2x
∗ +B2y

∗) + y∗ − x∗,
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where ζi is a positive constant for i = 1, 2. It is known that problem (1.1) has been
transformed into a fixed point problem in the following way.

Lemma 1.1. ([18, Lemma 2]) Assume that B1, B2 : C → 2E are both m-accretive
operators and A1, A2 : C → E are both operators. For given x∗, y∗ ∈ C, (x∗, y∗) is a
solution of problem (1.1) if and only if x∗ ∈ Fix(G), where Fix(G) is the fixed point

set of the mapping G := JB1
ζ1

(I − ζ1A1)J
B2
ζ2

(I − ζ2A2), and y∗ = JB2
ζ2

(I − ζ2A2)x
∗.

Suppose that E is a uniformly convex and 2-uniformly smooth Banach space with
2-uniform smoothness coefficient κ2. Let B1, B2 : C → 2E be both m-accretive
operators and Ai : C → E (i = 1, 2) be ζi-inverse-strongly accretive operator.
Let f : C → C be a contraction with constant δ ∈ [0, 1). Let V : C → C be
a nonexpansive operator and T : C → C be a λ-strict pseudocontraction. Very
recently, using Lemma 1.1, Ceng et al. [18] suggested a composite viscosity implicit
rule for solving the GSVI (1.1) with the FPP constraint of T , i.e., for any given
x0 ∈ C, the sequence {xj} is generated by{

yj = JB2
ζ2

(xj − ζ2A2xj),

xj = αjf(xj−1) + δjxj−1 + βjV xj−1 + γj [µSxj + (1− µ)JB1
ζ1

(yj − ζ1A1yj)]

for any j ≥ 1, where µ ∈ (0, 1), S := (1−α)I+αT with 0 < α < min{1, 2λκ2
}, and the

sequences {αj}, {δj}, {βj}, {γj} ⊂ (0, 1) are such that (i) αj+δj+βj+γj = 1 ∀j ≥ 1;

(ii) limj→∞ αj = 0, limj→∞
βj

αj
= 0; (iii) limj→∞ γj = 1; (iv)

∑∞
j=0 αj = ∞. They

proved that {xj} converges strongly to a point of Fix(G) ∩ Fix(T ), which solves a
certain VIP.

In addition, assume that {µj} ⊂ (0, 1
L), {λj} ⊂ (0, 2α] and {αj}, {α̂j} ⊂ (0, 1]

with αj + α̂j ≤ 1. Ceng et al. [8] introduced a Mann-type hybrid extragradient
algorithm, i.e., for any initial u0 = u ∈ C, {uj} is the sequence generated by

yj = PC(uj − µjAuj),

vj = PC(uj − µjAyj),

v̂j = JB
λj
(vj − λjAvj),

zj = (1− αj − α̂j)uj + αj v̂j + α̂jSv̂j ,

uj+1 = PCj∩Qju ∀j ≥ 0,

where Cj = {x ∈ C : ‖zj − x‖ ≤ ‖uj − x‖}, Qj = {x ∈ C : 〈uj − x, u − uj〉 ≥
0}, JB

λj
= (I + λjB)−1, A : C → H is a monotone and L-Lipschitzian mapping,

A : C → H is an α-inverse-strongly monotone mapping, B is a maximal monotone
mapping with D(B) = C and S : C → C is a nonexpansive mapping. They proved
strong convergence of {uj} to the point PΩu in Ω = Fix(S)∩(A+B)−1(0)∩VI(C,A)
under some mild conditions.

In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2],
let the VI indicate a variational inclusion for two accretive operators and let the
CFPP denote a common fixed point problem of a countable family of ℓ-uniformly
Lipschitzian pseudocontractive mappings. In this paper, we introduce a relaxed
Mann-type viscosity implicit method for solving the GSVI (1.1) with the VI and
CFPP constraints. We then prove the strong convergence of the suggested algorithm
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to a solution of the GSVI (1.1) with the VI and CFPP constraints under some
suitable conditions. As applications, we apply our main result to the variational
inequality problem (VIP), split feasibility problem (SFP) and LASSO problem in
Hilbert spaces. Our results improve and extend the corresponding results in Manaka
and Takahashi [26], Sunthrayuth and Cholamjiak [34], and Ceng et al. [18] to a
certain extent.

2. Preliminaries

Let E be a real Banach space with the dual E∗, and ∅ 6= C ⊂ E be a closed
convex set. For convenience, we shall use the following symbols: xn → x (resp.,
xn ⇀ x) indicates the strong (resp., weak) convergence of the sequence {xn} to x.
Given a self-mapping T on C. We use the symbols R and Fix(T ) to denote the set
of all real numbers and the fixed point set of T , respectively. Recall that T is called
a nonexpansive mapping if ‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C. A mapping f : C → C
is called a contraction if ∃ϱ ∈ [0, 1) s.t. ‖f(x)− f(y)‖ ≤ ϱ‖x− y‖ ∀x, y ∈ C. Also,
recall that the normalized duality mapping J defined by

J(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2} ∀x ∈ E,

is the one from E into the family of nonempty (by Hahn-Banach’s theorem) weak∗

compact subsets of E∗, satisfying J(τu) = τJ(u) and J(−u) = −J(u) for all τ > 0
and u ∈ E.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf

{
1− ‖x+ y‖

2
: x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ϵ

}
.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined
by

ρE(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ E, ‖x‖ = ‖y‖ = 1

}
.

A Banach space E is said to be uniformly convex if δE(ϵ) > 0 ∀ϵ ∈ (0, 2]. It is

said to be uniformly smooth if limτ→0+
ρE(τ)

τ = 0. Also, it is said to be q-uniformly
smooth with q > 1 if ∃c > 0 s.t. ρE(t) ≤ ctq ∀t > 0. If E is q-uniformly smooth,
then q ≤ 2 and E is also uniformly smooth and if E is uniformly convex, then E is
also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly
smooth. Further, sequence space ℓp and Lebesgue space Lp are min{p, 2}-uniformly
smooth for every p > 1 [38].

Let q > 1. The generalized duality mapping Jq : E → 2E
∗
is defined by

Jq(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖q, ‖ϕ‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In particular,
if q = 2, then J2 = J is the normalized duality mapping of E. It is known that
Jq(x) = ‖x‖q−2J(x) ∀x 6= 0 and that Jq is the subdifferential of the functional
1
q‖ · ‖

q. If E is uniformly smooth, the generalized duality mapping Jq is one-to-one

and single-valued. Furthermore, Jq satisfies Jq = J−1
p , where Jp is the generalized

duality mapping of E∗ with 1
p + 1

q = 1. Note that no Banach space is q-uniformly

smooth for q > 2; see [36] for more details. Let q > 1 and E be a real normed
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space with the generalized duality mapping Jq. Then the following inequality is an
immediate consequence of the subdifferential inequality of the functional 1

q‖ · ‖
q:

(2.1) ‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x+ y)〉 ∀x, y ∈ E, jq(x+ y) ∈ Jq(x+ y).

Proposition 2.1 ([38]). Let q ∈ (1, 2] be a fixed real number and let E be q-
uniformly smooth. Then ‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + κq‖y‖q ∀x, y ∈ E, where
κq is the q-uniform smoothness coefficient of E.

Recall that a mapping T : C → C is called pseudocontractive if for each x, y ∈ C,
there exists j(x− y) ∈ J(x− y) such that 〈Tx−Ty, j(x− y)〉 ≤ ‖x− y‖2. Also, it is
called strongly pseudocontractive if for each x, y ∈ C, there exists j(x−y) ∈ J(x−y)
such that 〈Tx − Ty, j(x − y)〉 ≤ α‖x − y‖2 for some α ∈ (0, 1). We will use the
following concept in the sequel.

Definition 2.2. Let {Sn}∞n=0 be a sequence of continuous pseudocontractive self-
mappings on C. Then {Sn}∞n=0 is said to be a countable family of ℓ-uniformly
Lipschitzian pseudocontractive self-mappings on C if there exists a constant ℓ > 0
such that each Sn is ℓ-Lipschitz continuous.

Lemma 2.3 ([3]). Let {Sn}∞n=0 be a sequence of self-mappings on C such that∑∞
n=1 supx∈C ‖Snx− Sn−1x‖ < ∞. Then for each y ∈ C, {Sny} converges strongly

to some point of C. Moreover, let S be a self-mapping on C defined by Sy =
limn→∞ Sny ∀y ∈ C. Then limn→∞ supx∈C ‖Snx− Sx‖ = 0.

The following lemma can be obtained from the result in [38].

Lemma 2.4. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exist strictly increasing, continuous and convex functions g, h :
R+ → R+ with g(0) = 0 and h(0) = 0 such that

(i) ‖µx+(1−µ)y‖q ≤ µ‖x‖q +(1−µ)‖y‖q −µ(1−µ)g(‖x−y‖) with µ ∈ [0, 1];
(ii) h(‖x− y‖) ≤ ‖x‖q − q〈x, jq(y)〉+ (q − 1)‖y‖q

for all x, y ∈ Br and jq(y) ∈ Jq(y), where Br := {x ∈ E : ‖x‖ ≤ r}.

The following lemma is an analogue of Lemma 2.4(a).

Lemma 2.5. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exists a strictly increasing, continuous and convex function
g : R+ → R+ with g(0) = 0 such that ‖λx+ µy + νz‖q ≤ λ‖x‖q + µ‖y‖q + ν‖z‖q −
λµg(‖x− y‖) for all x, y, z ∈ Br and λ, µ, ν ∈ [0, 1] with λ+ µ+ ν = 1.

Proposition 2.6 ([21]). Let ∅ 6= C ⊂ E be a closed convex set. If T : C → C is a
continuous and strong pseudocontractive, then T has a unique fixed point in C.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to
be sunny if Π [Π (x) + t(x− Π (x))] = Π (x), whenever Π (x) + t(x− Π (x)) ∈ C for
x ∈ C and t ≥ 0. A mapping Π of C into itself is called a retraction if Π 2 = Π . If a
mapping Π of C into itself is a retraction, then Π (z) = z for each z ∈ R(Π ), where
R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive retract of
C if there exists a sunny nonexpansive retraction from C onto D. In terms of [30],
we know that if E is smooth and Π is a retraction of C onto D, then the following
statements are equivalent:
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(i) Π is sunny and nonexpansive;
(ii) ‖Π (x)− Π (y)‖2 ≤ 〈x− y, J(Π (x)− Π (y))〉 ∀x, y ∈ C;
(iii) 〈x− Π (x), J(y − Π (x))〉 ≤ 0 ∀x ∈ C, y ∈ D.

Let B : C → 2E be a set-valued operator with Bx 6= ∅ ∀x ∈ C. Let q > 1. An
operator B is said to be accretive if for each x, y ∈ C, ∃jq(x − y) ∈ Jq(x − y) s.t.
〈u − v, jq(x − y)〉 ≥ 0 ∀u ∈ Bx, v ∈ By. An accretive operator B is said to be
α-inverse-strongly accretive of order q if for each x, y ∈ C, ∃jq(x − y) ∈ Jq(x − y)
s.t. 〈u− v, jq(x− y)〉 ≥ α‖u− v‖q ∀u ∈ Bx, v ∈ By for some α > 0. If E = H is a
Hilbert space, then B is called α-inverse-strongly monotone. An accretive operator
B is said to be m-accretive if (I+λB)C = E for all λ > 0. For an accretive operator
B, we define the mapping JB

λ : (I+λB)C → C by JB
λ = (I+λB)−1 for each λ > 0.

Such JB
λ is called the resolvent of B for λ > 0.

Lemma 2.7 ([16, 24]). Let B : C → 2E be an m-accretive operator. Then the
following statements hold:

(i) the resolvent identity: JB
λ x = JB

µ (µλx+ (1− µ
λ )J

B
λ x) ∀λ, µ > 0, x ∈ E;

(ii) if JB
λ is a resolvent of B for λ > 0, then JB

λ is a firmly nonexpansive

mapping with Fix(JB
λ ) = B−1(0), where B−1(0) = {x ∈ C : 0 ∈ Bx};

(iii) if E = H is a Hilbert space, then B is maximal monotone.

Let A : C → E be an α-inverse-strongly accretive mapping of order q and B :
C → 2E be an m-accretive operator. In the sequel, we will use the notation Tλ :=
JB
λ (I − λA) = (I + λB)−1(I − λA) ∀λ > 0.

Proposition 2.8 ([24]). The following statements hold:

(i) Fix(Tλ) = (A+B)−1(0) ∀λ > 0;
(ii) ‖y − Tλy‖ ≤ 2‖y − Try‖ for 0 < λ ≤ r and y ∈ C.

Proposition 2.9 ([39]). Let E be uniformly smooth, T : C → C be a nonexpansive
mapping with Fix(T ) 6= ∅ and f : C → C be a fixed contraction. For each t ∈ (0, 1),
let zt ∈ C be the unique fixed point of the contraction C 3 z 7→ tf(z) + (1 − t)Tz
on C, i.e., zt = tf(zt) + (1 − t)Tzt. Then {zt} converges strongly to a fixed point
x∗ ∈ Fix(T ), which solves the VIP: 〈(I − f)x∗, J(x∗ − x)〉 ≤ 0 ∀x ∈ Fix(T ).

Proposition 2.10 ([24]). Let E be q-uniformly smooth with q ∈ (1, 2]. Suppose
that A : C → E is an α-inverse-strongly accretive mapping of order q. Then, for
any given λ ≥ 0,

‖(I − λA)x− (I − λA)y‖q ≤ ‖x− y‖q − λ(αq − κqλ
q−1)‖Ax−Ay‖q ∀x, y ∈ C,

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 ≤
λ ≤ (αqκq

)
1

q−1 , then I − λA is nonexpansive.

Lemma 2.11 ([18]). Let E be q-uniformly smooth with q ∈ (1, 2]. Let B1, B2 :
C → 2E be two m-accretive operators and Ai : C → E (i = 1, 2) be σi-inverse-
strongly accretive mapping of order q. Define an operator G : C → C by G :=

JB1
ζ1

(I−ζ1A1)J
B2
ζ2

(I−ζ2A2). If 0 ≤ ζi ≤ (σiq
κq

)
1

q−1 (i = 1, 2), then G is nonexpansive.
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Lemma 2.12 ([2]). Let E be smooth, A : C → E be accretive and ΠC be a sunny
nonexpansive retraction from E onto C. Then VI(C,A) = Fix(ΠC(I−λA)) ∀λ > 0,
where VI(C,A) is the solution set of the VIP of finding z ∈ C s.t. 〈Az, J(z− y)〉 ≤
0 ∀y ∈ C.

Recall that if E = H is a Hilbert space, then the sunny nonexpansive retraction
ΠC from E onto C coincides with the metric projection PC from H onto C. More-
over, if E is uniformly smooth and T is a nonexpansive self-mapping on C with
Fix(T ) 6= ∅, then Fix(T ) is a sunny nonexpansive retract from E onto C [31]. By
Lemma 2.12 we know that, x∗ ∈ Fix(T ) solves the VIP in Proposition 2.9 if and
only if x∗ solves the fixed point equation x∗ = ΠFix(T )f(x

∗).

Proposition 2.13 ([3]). Let {Sn}∞n=0 be a sequence of self-mappings on C such
that

∑∞
n=1 supx∈C ‖Snx − Sn−1x‖ < ∞. Then for each y ∈ C, {Sny} converges

strongly to some point of C. Moreover, let S be a self-mapping on C defined by
Sy = limn→∞ Sny for all y ∈ C. Then limn→∞ supx∈C ‖Snx− Sx‖ = 0.

Lemma 2.14 ([25]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for each integer i ≥ 1. Define the sequence {τ(n)}n≥n0 of integers as
follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where integer n0 ≥ 1 such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 ∀n ≥ n0.

Lemma 2.15 ([4]). Let E be strictly convex, and {Sn}∞n=0 be a sequence of non-
expansive mappings on C. Suppose that

⋂∞
n=0 Fix(Sn) is nonempty. Let {λn} be

a sequence of positive numbers with
∑∞

n=0 λn = 1. Then a mapping S on C de-
fined by Sx =

∑∞
n=0 λnSnx ∀x ∈ C is defined well, nonexpansive and Fix(S) =⋂∞

n=0 Fix(Sn) holds.

Lemma 2.16 ([39]). Let {an} be a sequence in [0,∞) such that an+1 ≤ (1 −
sn)an + snνn ∀n ≥ 0, where {sn} and {νn} satisfy the conditions: (i) {sn} ⊂ [0, 1],∑∞

n=0 sn = ∞; (ii) lim supn→∞ νn ≤ 0 or
∑∞

n=0 |snνn| < ∞. Then limn→∞ an = 0.

3. Main results

Throughout this paper, suppose that C is a nonempty closed convex subset of
a uniformly convex and q-uniformly smooth Banach space E with q ∈ (1, 2]. Let
B1, B2 : C → 2E be both m-accretive operators and Ai : C → E be σi-inverse-
strongly accretive mapping of order q for i = 1, 2. Let the mapping G : C → C be

defined as G := JB1
ζ1

(I − ζ1A1)J
B2
ζ2

(I − ζ2A2) with 0 < ζi < (σiq
κq

)
1

q−1 for i = 1, 2.

Let f : C → C be a ϱ-contraction with constant ϱ ∈ [0, 1), and {Sn}∞n=0 be a
countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C.
Let A : C → E and B : C → 2E be a σ-inverse-strongly accretive mapping of order
q and an m-accretive operator, respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn) ∩

Fix(G) ∩ (A+B)−1(0) 6= ∅.
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Algorithm 3.1. Relaxed Mann-type viscosity implicit method for the GSVI (1.1)
with the VI and CFPP constraints.

Initial Step. Given ξ ∈ (0, 1) and x0 ∈ C arbitrarily.
Iteration Steps. Given the current iterate xn, compute xn+1 as follows:
Step 1. Calculate wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn);
Step 2. Calculate yn = δnun + (1− δn)J

B
λn
(un − λnAun) with un = Gwn;

Step 3. Calculate zn = JB
λn
(un − λnAyn + rn(yn − un));

Step 4. Calculate xn+1 = αnf(xn) + βnun + γnGzn, where {rn}, {sn}, {αn},
{βn}, {γn}, {δn} ⊂ (0, 1] with αn + βn + γn = 1 and {λn} ⊂ (0,∞). Set n := n+ 1
and go to Step 1.

Lemma 3.1. If {xn} is the sequence generated by Algorithm 3.1, then it is bounded.

Proof. Take an element p ∈ Ω :=
⋂∞

k=0 Fix(Tk)∩Fix(G)∩ (A+B)−1(0) arbitrarily.
Then we have

p = Gp = Snp = JB
λn
(p− λnAp) = JB

λn

(
(1− rn)p+ rn

(
p− λn

rn
Ap
))

.

By Proposition 2.10 and Lemma 2.11, we deduce that I − ζ1A1, I − ζ2A2 and
G := JB1

ζ1
(I − ζ1A1)J

B2
ζ2

(I − ζ2A2) are nonexpansive mappings. Moreover, it can be

readily seen that for each n ≥ 0, there is only an element wn ∈ C s.t.

(3.1) wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn).

In fact, consider the mapping Fnu = snGxn + (1 − sn)(ξxn + (1 − ξ)Snu) ∀u ∈ C.
Note that Sn : C → C is a continuous pseudocontraction. Hence we obtain that for
all u, v ∈ C,

〈Fnu− Fnv, J(u− v)〉 = (1− sn)(1− ξ)〈Snu− Snv, J(u− v)〉
≤ (1− sn)(1− ξ)‖u− v‖2.

Also, from {sn} ⊂ (0, 1], we get 0 ≤ 1 − sn < 1 ∀n ≥ 0. Thus, Fn is a continuous
and strong pseudocontractive self-mapping on C. By Proposition 2.6, we deduce
that for each n ≥ 0, there is only an element wn ∈ C, satisfying (3.1). Since each
Sn : C → C is a pseudocontractive mapping, we get

‖wn − p‖q = sn〈Gxn − p, Jq(wn − p)〉
+ (1− sn)〈ξxn + (1− ξ)Snwn − p, Jq(wn − p)〉

≤ sn‖xn − p‖‖wn − p‖q−1 + (1− sn)[ξ‖xn − p‖‖wn − p‖q−1

+ (1− ξ)‖wn − p‖q]
= [sn + (1− sn)ξ]‖xn − p‖‖wn − p‖q−1

+ (1− sn)(1− ξ)‖wn − p‖q,

which immediately yields ‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 0. Using the nonexpansivity
of G again, we deduce from un = Gwn that

(3.2) ‖un − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 0.
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Using Lemmas 2.4(i), 2.7(ii) and Proposition 2.10, we obtain that

‖yn − p‖q = ‖δn(un − p) + (1− δn)(J
B
λn
(un − λnAun)− JB

λn
(p− λnAp))‖q

≤ δn‖un − p‖q + (1− δn)‖JB
λn
(I − λnA)un − JB

λn
(I − λnA)p‖q

≤ δn‖un − p‖q + (1− δn)[‖un − p‖q

− λn(σq − κqλ
q−1
n )‖Aun −Ap‖q]

= ‖un − p‖q − (1− δn)λn(σq − κqλ
q−1
n )‖Aun −Ap‖q,

(3.3)

which hence leads to ‖yn − p‖ ≤ ‖un − p‖. By the convexity of ‖ · ‖q and (3.3), we
have

‖zn − p‖q =
∥∥∥∥JB

λn

(
(1− rn)un + rn

(
yn − λn

rn
Ayn

))
− JB

λn

(
(1− rn)p+ rn

(
p− λn

rn
Ap
))∥∥∥∥q

≤ (1− rn)‖un − p‖q + rn

∥∥∥∥(I − λn

rn
A
)
yn −

(
I − λn

rn
A
)
p

∥∥∥∥q
≤ (1− rn)‖un − p‖q

+ rn

[
‖yn − p‖q − λn

rn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q

]
≤ (1− rn)‖un − p‖q

+ rn

{
‖un − p‖q − (1− δn)λn(σq − κqλ

q−1
n )‖Aun −Ap‖q

− λn

rn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q

}
= ‖un − p‖q − rn(1− δn)λn(σq − κqλ

q−1
n )‖Aun −Ap‖q

− λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q.

(3.4)

This ensures that ‖zn − p‖ ≤ ‖un − p‖. So it follows from (3.2) that

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ βn‖un − p‖+ γn‖Gzn − p‖
≤ αn(ϱ‖xn − p‖+ ‖p− f(p)‖) + βn‖un − p‖+ γn‖un − p‖
≤ αn(ϱ‖xn − p‖+ ‖p− f(p)‖) + βn‖xn − p‖+ γn‖xn − p‖
= (1− αn(1− ϱ))‖xn − p‖+ αn‖p− f(p)‖

≤max
{
‖xn − p‖, ‖p− f(p)‖

1− ϱ

}
.

By induction, we get ‖xn − p‖ ≤ max{‖x0 − p‖, ∥p−f(p)∥
1−ϱ } ∀n ≥ 0. Thus, {xn} is

bounded, and so are {un}{wn}, {yn}, {zn}, {Gzn}, {Aun}, {Ayn}. This completes
the proof. □
Theorem 3.2. Let {xn} be the sequence generated by Algorithm 3.1. Suppose that
the following conditions hold:
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(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(C2) 0 < δ ≤ δn ≤ δ < 1;
(C3) 0 < a ≤ βn ≤ b < 1 and 0 < c ≤ sn ≤ d < 1;

(C4) 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn
rn

≤ µ < (σqκq
)

1
q−1 .

Assume that
∑∞

n=0 supx∈D ‖Sn+1x−Snx‖ < ∞ for any bounded subset D of C. Let
S : C → C be a mapping defined by Sx = limn→∞ Snx ∀x ∈ C, and suppose that
Fix(S) =

⋂∞
n=0 Fix(Sn). Then xn → x∗ ∈ Ω, which is the unique solution to the

VIP: 〈(I−f)x∗, J(x∗−p)〉 ≤ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = ΠΩf(x
∗).

Proof. First of all, let x∗ ∈ Ω and y∗ = JB2
ζ2

(x∗ − ζ2A2x
∗). Putting vn := JB2

ζ2
(wn −

ζ2A2wn) and using un = Gwn, we get un = JB1
ζ1

(vn − ζ1A1vn). From Proposition

2.10 we have

‖vn − y∗‖q = ‖JB2
ζ2

(wn − ζ2A2wn)− JB2
ζ2

(x∗ − ζ2A2x
∗)‖q

≤ ‖wn − x∗‖q − ζ2(σ2q − κqζ
q−1
2 )‖A2wn −A2x

∗‖q,

and

‖un − x∗‖q = ‖JB1
ζ1

(vn − ζ1A1vn)− JB1
ζ1

(y∗ − ζ1A1y
∗)‖q

≤ ‖vn − y∗‖q − ζ1(σ1q − κqζ
q−1
1 )‖A1vn −A1y

∗‖q.

Combining the last two inequalities, we have

‖un − x∗‖q ≤ ‖wn − x∗‖q − ζ2(σ2q − κqζ
q−1
2 )‖A2wn −A2x

∗‖q

− ζ1(σ1q − κqζ
q−1
1 )‖A1vn −A1y

∗‖q.

Using Lemma 2.5, from (2.1), (3.2) and (3.4) we obtain that

‖xn+1 − x∗‖q

= ‖αn(f(xn)− f(x∗)) + βn(un − x∗) + γn(Gzn − x∗) + αn(f(x
∗)− x∗)‖q

≤ αn‖f(xn)− f(x∗)‖q + βn‖un − x∗‖q + γn‖Gzn − x∗‖q − βnγng(‖un −Gzn‖)
+ qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉

≤ αnϱ‖xn − x∗‖q + βn‖un − x∗‖q

+ γn{‖un − x∗‖q − rn(1− δn)λn(σq − κqλ
q−1
n )

× ‖Aun −Ax∗‖q − λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q}

− βnγng(‖un −Gzn‖) + qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉
≤ αnϱ‖xn − x∗‖q + βn‖xn − x∗‖q + γn{‖xn − x∗‖q

− ζ2

(
σ2q − κqζ

q−1
2

)
‖A2wn −A2x

∗‖q − ζ1

(
σ1q − κqζ

q−1
1

)
‖A1vn −A1y

∗‖q

− rn(1− δn)λn

(
σq − κqλ

q−1
n

)
‖Aun −Ax∗‖q

− λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q} − βnγng(‖un −Gzn‖)
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+ qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉
(3.5)

= (1− αn(1− ϱ))‖xn − x∗‖q − γn{ζ2
(
σ2q − κqζ

q−1
2

)
‖A2wn −A2x

∗‖q

+ ζ1

(
σ1q − κqζ

q−1
1

)
× ‖A1vn −A1y

∗‖q

+ rn(1− δn)λn

(
σq − κqλ

q−1
n

)
‖Aun −Ax∗‖q

+ λn

(
σq − κqλ

q−1
n

rq−1
n

)
× ‖Ayn −Ax∗‖q} − βnγng(‖un −Gzn‖)

+ qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉.

For each n ≥ 0, we set

Γn = ‖xn − x∗‖q,
ϵn = αn(1− ϱ),

ηn = γn

{
ζ2(σ2q − κqζ

q−1
2 )‖A2wn −A2x

∗‖q

+ ζ1(σ1q − κqζ
q−1
1 )‖A1vn −A1y

∗‖q

+ rn(1− δn)λn(σq − κqλ
q−1
n )‖Aun −Ax∗‖q

+ λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q

}
+ βnγng(‖un −Gzn‖)

ϑn = qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉.

Then (3.5) can be rewritten as the following formula:

(3.6) Γn+1 ≤ (1− ϵn)Γn − ηn + ϑn ∀n ≥ 0,

and hence

(3.7) Γn+1 ≤ (1− ϵn)Γn + ϑn ∀n ≥ 0.

We next show the strong convergence of {Γn} by the following two cases:
Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-

increasing. Then

Γn − Γn+1 → 0.

From (3.6), we get

0 ≤ ηn ≤ Γn − Γn+1 + ϑn − ϵnΓn.

Since combining ϵn → 0 and ϑn → 0 guarantees ηn → 0, it is easy to see that
limn→∞ g(‖un −Gzn‖) = 0,

(3.8) lim
n→∞

‖A2wn −A2x
∗‖ = lim

n→∞
‖A1vn −A1y

∗‖ = 0

(3.9) lim
n→∞

‖Aun −Ax∗‖ = lim
n→∞

‖Ayn −Ax∗‖ = 0.
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Note that g is a strictly increasing, continuous and convex function with g(0) = 0.
So it follows that

(3.10) lim
n→∞

‖un −Gzn‖ = 0.

On the other hand, using Lemma 2.4(ii) and Lemma 2.7(ii), we get

‖vn − y∗‖q = ‖JB2
ζ2

(wn − ζ2A2wn)− JB2
ζ2

(x∗ − ζ2A2x
∗)‖q

≤ 〈wn − ζ2A2wn − (x∗ − ζ2A2x
∗), Jq(vn − y∗)〉

= 〈wn − x∗, Jq(vn − y∗)〉+ ζ2〈A2x
∗ −A2wn, Jq(vn − y∗)〉

≤ 1

q
[‖wn − x∗‖q + (q − 1)‖vn − y∗‖q − h̃1(‖wn − x∗ − vn + y∗‖)]

+ ζ2〈A2x
∗ −A2wn, Jq(vn − y∗)〉,

which hence attains

‖vn−y∗‖q ≤ ‖wn−x∗‖q− h̃1(‖wn−vn−x∗+y∗‖)+qζ2‖A2x
∗−A2wn‖‖vn−y∗‖q−1.

In a similar way, we get

‖un − x∗‖q = ‖JB1
ζ1

(vn − ζ1A1vn)− JB1
ζ1

(y∗ − ζ1A1y
∗)‖q

≤ 〈vn − ζ1A1vn − (y∗ − ζ1A1y
∗), Jq(un − x∗)〉

= 〈vn − y∗, Jq(un − x∗)〉+ ζ1〈A1y
∗ −A1vn, Jq(un − x∗)〉

≤ 1

q
[‖vn − y∗‖q + (q − 1)‖un − x∗‖q − h̃2(‖vn − y∗ − un + x∗‖)]

+ ζ1〈A1y
∗ −A1vn, Jq(un − x∗)〉,

which hence attains

‖un − x∗‖q ≤ ‖vn − y∗‖q − h̃2(‖vn − y∗ − un + x∗‖)
+ qζ1‖A1y

∗ −A1vn‖‖un − x∗‖q−1

≤ ‖xn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖)
+ qζ2‖A2x

∗ −A2wn‖‖vn − y∗‖q−1

− h̃2(‖vn − un + x∗ − y∗‖)
+ qζ1‖A1y

∗ −A1vn‖‖un − x∗‖q−1.

(3.11)

Putting en := JB
λn
(un−λnAun) and using Lemma 2.4(ii) and Lemma 2.7(ii), we get

‖en − x∗‖q = ‖JB
λn
(un − λnAun)− JB

λn
(x∗ − λnAx

∗)‖q

≤ 〈(un − λnAun)− (x∗ − λnAx∗), Jq(en − x∗)〉

≤ 1

q
[‖(un − λnAun)− (x∗ − λnAx

∗)‖q + (q − 1)‖en − x∗‖q

− h1(‖un − λn(Aun −Ax∗)− en‖)],
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which together with Proposition 2.10, implies that

‖en − x∗‖q ≤ ‖(un − λnAun)− (x∗ − λnAx
∗)‖q

− h1(‖un − λn(Aun −Ax∗)− en‖)
≤ ‖un − x∗‖q − h1(‖un − λn(Aun −Ax∗)− en‖).

Consequently, we have

‖yn − x∗‖q ≤ δn‖un − x∗‖q + (1− δn)‖en − x∗‖q

≤ δn‖un − x∗‖q

+ (1− δn)[‖un − x∗‖q − h1(‖un − λn(Aun −Ax∗)− en‖)]
= ‖un − x∗‖q − (1− δn)h1(‖un − λn(Aun −Ax∗)− en‖).

This together with (3.4) and (3.11), implies that

‖xn+1 − x∗‖q ≤ αn‖f(xn)− x∗‖q + βn‖un − x∗‖q

+ γn‖Gzn − x∗‖q

≤ αn‖f(xn)− x∗‖q + βn‖un − x∗‖q

+ γn[(1− rn)‖un − x∗‖q + rn‖yn − x∗‖q]
≤ αn‖f(xn)− x∗‖q + βn‖un − x∗‖q

+ γn{(1− rn)‖un − x∗‖q + rn[‖un − x∗‖q

− (1− δn)h1(‖un − λn(Aun −Ax∗)− en‖)]}
≤ αn‖f(xn)− x∗‖q + ‖un − x∗‖q

− γnrn(1− δn)h1(‖un − λn(Aun −Ax∗)− en‖)
≤ αn‖f(xn)− x∗‖q + ‖xn − x∗‖q

− h̃1(‖wn − vn − x∗ + y∗‖)− h̃2(‖vn − un + x∗ − y∗‖)
+ qζ1‖A1y

∗ −A1vn‖‖un − x∗‖q−1

+ qζ2‖A2x
∗ −A2wn‖‖vn − y∗‖q−1

− γnrn(1− δn)h1(‖un − λn(Aun −Ax∗)− en‖),

which immediately yields

h̃1(‖wn − vn − x∗ + y∗‖) + h̃2(‖vn − un + x∗ − y∗‖)
+ γnrn(1− δn)h1(‖un − λn(Aun −Ax∗)− en‖)

≤ αn‖f(xn)− x∗‖q + Γn − Γn+1 + qζ1‖A1y
∗ −A1vn‖‖un − x∗‖q−1

+ qζ2‖A2x
∗ −A2wn‖‖vn − y∗‖q−1.

Since h̃1, h̃2 and h1 are strictly increasing, continuous and convex functions with
h̃1(0) = h̃2(0) = h1(0) = 0, we conclude from (3.8) and (3.9) that ‖wn − vn − x∗ +
y∗‖ → 0, ‖vn−un+x∗− y∗‖ → 0 and ‖un− en‖ → 0 as n → ∞. This immediately
implies that

(3.12) lim
n→∞

‖wn − un‖ = lim
n→∞

‖un − yn‖ = 0.
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Furthermore, noticing wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn), we obtain that

‖wn − x∗‖q = 〈snGxn + (1− sn)(ξxn + (1− ξ)Snwn)− x∗, Jq(wn − x∗)〉
= sn〈Gxn − x∗, Jq(wn − x∗)〉+ (1− sn)[ξ〈xn − x∗, Jq(wn − x∗)〉

+ (1− ξ)〈Snwn − x∗, Jq(wn − x∗)〉]
≤ sn〈Gxn − x∗, Jq(wn − x∗)〉+ (1− sn)[ξ〈xn − x∗, Jq(wn − x∗)〉

+ (1− ξ)‖wn − x∗‖q],

which together with Lemma 2.4(ii), yields

‖wn − x∗‖q

≤ 1

sn + (1− sn)ξ
(1− ξ)[sn〈Gxn − x∗, Jq(wn − x∗)〉

+ (1− sn)ξ〈xn − x∗, Jq(wn − x∗)〉]

≤ sn
sn + (1− sn)ξ

(1− ξ)
1

q
[‖Gxn − x∗‖q + (q − 1)‖wn − x∗‖q − h3(‖Gxn − wn‖)]

+
(1− sn)ξ

sn + (1− sn)ξ

1

q
[‖xn − x∗‖q + (q − 1)‖wn − x∗‖q − h̃3(‖xn − wn‖)]

≤ 1

q
[‖xn − x∗‖q + (q − 1)‖wn − x∗‖q]

−
[

sn
q(sn + (1− sn)ξ)

h3(‖Gxn − wn‖)

+
(1− sn)ξ

q(sn + (1− sn)ξ)
h̃3(‖xn − wn‖)

]
.

This together with (3.2) implies that

‖un − x∗‖q ≤ ‖wn − x∗‖q

≤ ‖xn − x∗‖q −
[

sn
sn + (1− sn)ξ

h3(‖Gxn − wn‖)

+
(1− sn)ξ

sn + (1− sn)ξ
h̃3(‖xn − wn‖)

]
.

(3.13)

In a similar way, we have

‖zn − x∗‖q = ‖JB
λn
(un − λnAyn + rn(yn − un))− JB

λn
(x∗ − λnAx

∗)‖q

≤ 〈(un − λnAyn + rn(yn − un))− (x∗ − λnAx
∗), Jq(zn − x∗)〉

≤ 1

q
[‖(un − λnAyn + rn(yn − un))− (x∗ − λnAx

∗)‖q + (q − 1)‖zn − x∗‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)],

which together with (3.4), implies that

‖zn − x∗‖q ≤ ‖(un − λnAyn + rn(yn − un))− (x∗ − λnAx
∗)‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)
≤ ‖un − x∗‖q − h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖).
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This together with (3.13), ensures that

‖xn+1 − x∗‖q ≤ αn‖f(xn)− x∗‖q + βn‖un − x∗‖q + γn‖Gzn − x∗‖q

≤ αn‖f(xn)− x∗‖q + βn‖un − x∗‖q

+ γn[‖un − x∗‖q − h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)]
≤ αn‖f(xn)− x∗‖q + ‖un − x∗‖q

− γnh2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)]
≤ αn‖f(xn)− x∗‖q + ‖xn − x∗‖q

−
[

sn
sn + (1− sn)ξ

h3(‖Gxn − wn‖) +
(1− sn)ξ

sn + (1− sn)ξ
h̃3(‖xn − wn‖)

]
− γnh2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)],

which immediately leads to

sn
sn + (1− sn)ξ

h3(‖Gxn − wn‖) +
(1− sn)ξ

sn + (1− sn)ξ
h̃3(‖xn − wn‖)

+ γnh2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)
≤ αn‖f(xn)− x∗‖q + Γn − Γn+1.

Since h2, h3 and h̃3 are strictly increasing, continuous and convex functions with
h2(0) = h3(0) = h̃3(0) = 0, from (3.9) and (3.12) we have

(3.14) lim
n→∞

‖Gxn − wn‖ = lim
n→∞

‖xn − wn‖ = lim
n→∞

‖un − zn‖ = 0.

So, it follows from (3.12) and (3.14) that

‖xn − un‖ ≤ ‖xn − wn‖+ ‖wn − un‖ → 0 (n → ∞),

‖xn − zn‖ ≤ ‖xn − un‖+ ‖un − zn‖ → 0 (n → ∞),

and hence

(3.15) ‖xn −Gxn‖ ≤ ‖xn − un‖+ ‖un − wn‖+ ‖wn −Gxn‖ → 0 (n → ∞).

We now put pn := ξxn + (1 − ξ)Snwn ∀n ≥ 0. Then we have wn = snGxn + (1 −
sn)pn ∀n ≥ 0. So it follows from (3.14) and (3.15) that

‖pn − xn‖ =
1

1− sn
‖wn − xn − sn(Gxn − xn)‖

≤ 1

1− d
(‖wn − xn‖+ ‖Gxn − xn‖) → 0 (n → ∞),

and hence

lim
n→∞

‖Snwn − xn‖ =
1

1− ξ
lim
n→∞

‖pn − xn‖ = 0.

Since {Sn}∞n=0 is ℓ-uniformly Lipschitzian on C, we deduce from (3.14) that

‖Snxn − xn‖ ≤ ‖Snxn − Snwn‖+ ‖Snwn − xn‖
≤ ℓ‖xn − wn‖+ ‖Snwn − xn‖ → 0 (n → ∞).

(3.16)

We next claim that ‖xn − Sxn‖ → 0 as n → ∞ where S := (2I − S)−1. In fact,
it is first clear that S : C → C is pseudocontractive and ℓ-Lipschitzian, where
Sx = limn→∞ Snx ∀x ∈ C. We claim that limn→∞ ‖Sxn − xn‖ = 0. Using the
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boundedness of {xn} and setting D = conv{xn : n ≥ 0} (the closed convex hull of
the set {xn : n ≥ 0}), by the assumption we have

∑∞
n=1 supx∈D ‖Snx − Sn−1x‖ <

∞. Hence, by Proposition 2.13 we get limn→∞ supx∈D ‖Snx − Sx‖ = 0, which
immediately arrives at

lim
n→∞

‖Snxn − Sxn‖ = 0.

Thus, from (3.16) we have

(3.17) ‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖ → 0 (n → ∞).

Now, let us show that if we define S := (2I−S)−1, then S : C → C is nonexpansive,
Fix(S) = Fix(S) =

⋂∞
n=0 Fix(Sn) and limn→∞ ‖xn−Sxn‖ = 0. As a matter of fact,

put S := (2I − S)−1, where I is the identity operator of E. Then it is known that
S is nonexpansive and Fix(S) = Fix(S) =

⋂∞
n=0 Fix(Sn) as a consequence of [27,

Theorem 6]. From (3.17) it follows that

‖xn − Sxn‖ = ‖SS−1
xn − Sxn‖ ≤ ‖S−1

xn − xn‖
= ‖(2I − S)xn − xn‖ = ‖xn − Sxn‖ → 0 (n → ∞).

(3.18)

For each n ≥ 0, we put Tλn := JB
λn
(I − λnA). Then from (3.12) we have

‖xn − Tλnxn‖ ≤ ‖xn − un‖+ ‖un − Tλnun‖+ ‖Tλnun − Tλnxn‖
≤ 2‖xn − un‖+ ‖un − en‖ → 0 (n → ∞).

Noticing 0 < λ ≤ λn ∀n ≥ 0 and using Proposition 2.8(ii), we obtain

(3.19) ‖Tλxn − xn‖ ≤ 2‖Tλnxn − xn‖ → 0 (n → ∞).

We define the mapping Φ : C → C by Φx := ν1Sx+ν2Gx+(1−ν1−ν2)Tλx ∀x ∈ C
with ν1+ ν2 < 1 for constants ν1, ν2 ∈ (0, 1). Then by Lemma 2.15 and Proposition
2.8(i), we know that Φ is nonexpansive and

Fix(Φ) = Fix(S)∩Fix(G)∩Fix(Tλ) =
∞⋂
n=0

Fix(Sn)∩Fix(G)∩ (A+B)−1(0) (=: Ω).

Taking into account that

‖Φxn − xn‖ ≤ ν1‖Sxn − xn‖+ ν2‖Gxn − xn‖+ (1− ν1 − ν2)‖Tλxn − xn‖,

we deduce from (3.15), (3.18) and (3.19) that

(3.20) lim
n→∞

‖Φxn − xn‖ = 0.

Let zt = tf(zt) + (1 − t)Φzt ∀t ∈ (0, 1). Then it follows from Proposition 2.9 that
{zt} converges strongly to a point x∗ ∈ Fix(Φ) = Ω , which solves the VIP:

〈(I − f)x∗, J(x∗ − p)〉 ≤ 0 ∀p ∈ Ω .
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Also, from (2.1) we get

‖zt − xn‖q = ‖t(f(zt)− xn) + (1− t)(Φzt − xn)‖q

≤ (1− t)q‖Φzt − xn‖q + qt〈f(zt)− xn, Jq(zt − xn)〉
= (1− t)q‖Φzt − xn‖q + qt〈f(zt)− zt, Jq(zt − xn)〉
+ qt〈zt − xn, Jq(zt − xn)〉

≤ (1− t)q(‖Φzt − Φxn‖+ ‖Φxn − xn‖)q

+ qt〈f(zt)− zt, Jq(zt − xn)〉+ qt‖zt − xn‖q

≤ (1− t)q(‖zt − xn‖+ ‖Φxn − xn‖)q

+ qt〈f(zt)− zt, Jq(zt − xn)〉+ qt‖zt − xn‖q,

which immediately attains

〈f(zt)− zt, Jq(xn − zt)〉 ≤
(1− t)q

qt
(‖zt − xn‖+ ‖Φxn − xn‖)q +

qt− 1

qt
‖zt − xn‖q.

From (3.20), we have

lim sup
n→∞

〈f(zt)− zt, Jq(xn − zt)〉

≤ (1− t)q

qt
M +

qt− 1

qt
M =

(
(1− t)q + qt− 1

qt

)
M,

(3.21)

where M is a constant such that ‖zt − xn‖q ≤ M for all n ≥ 0 and t ∈ (0, 1). It is
clear that ((1− t)q + qt− 1)/qt → 0 as t → 0. Since Jq is norm-to-norm uniformly
continuous on bounded subsets of E and zt → x∗, we get

‖Jq(xn − zt)− Jq(xn − x∗)‖ → 0 (t → 0).

So we obtain

|〈f(zt)− zt, Jq(xn − zt)〉 − 〈f(x∗)− x∗, Jq(xn − x∗)〉|
= |〈f(zt)− f(x∗), Jq(xn − zt)〉+ 〈f(x∗)− x∗, Jq(xn − zt)〉
+ 〈x∗ − zt, Jq(xn − zt)〉 − 〈f(x∗)− x∗, Jq(xn − x∗)〉|

≤ |〈f(x∗)− x∗, Jq(xn − zt)− Jq(xn − x∗)〉|+ |〈f(zt)− f(x∗), Jq(xn − zt)〉|
+ |〈x∗ − zt, Jq(xn − zt)〉|

≤ ‖f(x∗)− x∗‖‖Jq(xn − zt)− Jq(xn − x∗)‖+ (1 + ϱ)‖zt − x∗‖‖xn − zt‖q−1.

Thus, for each n ≥ 0, we have

lim
t→0

〈f(zt)− zt, Jq(xn − zt)〉 = 〈f(x∗)− x∗, Jq(xn − x∗)〉.

From (3.21), as t → 0, it follows that

(3.22) lim sup
n→∞

〈f(x∗)− x∗, Jq(xn − x∗)〉 ≤ 0.

By (C1) and (3.10), we get

‖xn+1 − xn‖ = ‖αnf(xn) + βnun + γnGzn − xn‖
≤ αn‖f(xn)− xn‖+ ‖un − xn‖+ ‖Gzn − un‖ → 0 (n → ∞).

(3.23)
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From (3.22) and (3.23), we have

(3.24) lim sup
n→∞

〈f(x∗)− x∗, Jq(xn+1 − x∗)〉 ≤ 0.

Using Lemma 2.16 and (3.24), we can conclude that Γn → 0 as n → ∞. Therefore,
xn → x∗ as n → ∞.

Case 2. Suppose that ∃{Γki} ⊂ {Γk} s.t. Γki < Γki+1 ∀i ∈ N, where N is the
set of all positive integers. Define the mapping τ : N → N by

τ(k) := max{i ≤ k : Γi < Γi+1}.

Using Lemma 2.14, we get

Γτ(k) ≤ Γτ(k)+1 and Γk ≤ Γτ(k)+1.

Putting Γk = ‖xk − x∗‖q ∀k ∈ N and using the same inference as in Case 1, we can
obtain

(3.25) lim
k→∞

‖xτ(k)+1 − xτ(k)‖ = 0

and

lim sup
k→∞

〈f(x∗)− x∗, Jq(xτ(k)+1 − x∗)〉 ≤ 0.

Since Γτ(k) ≤ Γτ(k)+1 and ατ(k) > 0, we conclude from (3.7) that

‖xτ(k) − x∗‖q ≤ q

1− ϱ
〈f(x∗)− x∗, Jq(xτ(k)+1 − x∗)〉

and hence

lim sup
k→∞

‖xτ(k) − x∗‖q ≤ 0.

Consequently,

lim
k→∞

‖xτ(k) − x∗‖q = 0.

Using Proposition 2.1 and (3.25), we obtain

‖xτ(k)+1 − x∗‖q − ‖xτ(k) − x∗‖q ≤ q〈xτ(k)+1 − xτ(k), Jq(xτ(k) − x∗)〉
+ κq‖xτ(k)+1 − xτ(k)‖q

≤ q‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖q−1

+ κq‖xτ(k)+1 − xτ(k)‖q → 0 (k → ∞).

Owing to Γk ≤ Γτ(k)+1, we get

‖xk − x∗‖q ≤‖xτ(k)+1 − x∗‖q

≤ ‖xτ(k) − x∗‖q + q‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖q−1

+ κq‖xτ(k)+1 − xτ(k)‖q.

It is easy to see from (3.25) that xk → x∗ as k → ∞. This completes the proof. □

We also obtain the strong convergence result for the relaxed Mann-type viscosity
implicit method in a real Hilbert space H. It is well known that κ2 = 1 [38]. Hence,
by Theorem 3.2 we derive the following conclusion.
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Corollary 3.3. Let ∅ 6= C ⊂ H be a closed convex set. Let f : C → C be
a ϱ-contraction with constant ϱ ∈ [0, 1), and {Sn}∞n=0 be a countable family of ℓ-
uniformly Lipschitzian pseudocontractive self-mappings on C. Suppose that B1, B2 :
C → 2H are both maximal monotone operators and Ai : C → H is σi-inverse-
strongly monotone mapping for i = 1, 2. Define the mapping G : C → C by
G := JB1

ζ1
(I−ζ1A1)J

B2
ζ2

(I−ζ2A2) with 0 < ζi < 2σi for i = 1, 2. Let A : C → H and

B : C → 2H be a σ-inverse-strongly monotone mapping and a maximal monotone
operator, respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn)∩Fix(G)∩(A+B)−1(0) 6= ∅.

For any given x0 ∈ C and ξ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn),

yn = δnGwn + (1− δn)J
B
λn
(I − λnA)Gwn,

zn = JB
λn
(Gwn − λnAyn + rn(yn −Gwn)),

xn+1 = αnf(xn) + βnGwn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn}, {δn} ⊂ (0, 1] with αn+βn+γn = 1
and {λn} ⊂ (0,∞) are such that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(C2) 0 < δ ≤ δn ≤ δ < 1;
(C3) 0 < a ≤ βn ≤ b < 1 and 0 < c ≤ sn ≤ d < 1;

(C4) 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn
rn

≤ µ < 2σ.

Assume that
∑∞

n=0 supx∈D ‖Sn+1x−Snx‖ < ∞ for any bounded subset D of C. Let
S : C → C be a mapping defined by Sx = limn→∞ Snx ∀x ∈ C, and suppose that
Fix(S) =

⋂∞
n=0 Fix(Sn). Then xn → x∗ ∈ Ω, which is the unique solution to the

VIP: 〈(I − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x
∗).

Remark 3.4. Compared with the corresponding results in Manaka and Takahashi
[26], Sunthrayuth and Cholamjiak [34], and Ceng et al. [18], our results improve
and extend them in the following aspects.

(i) The problem of solving the VI for both monotone operators A,B with the
FPP constraint of a nonexpansive mapping S in [26, Theorem 3.1] is extended to
develop our problem of solving the GSVI (1.1) with the constraints of the VI for
both accretive operators A,B and the CFPP of {Sn}∞n=0 a countable family of ℓ-
uniformly Lipschitzian pseudocontractions. The Mann-type iterative scheme with
weak convergence in [26, Theorem 3.1] is extended to develop our relaxed Mann-type
viscosity implicit method with strong convergence.

(ii) The problem of solving the GSVI (1.1) with the FPP constraint of a strict
pseudocontraction T in [18, Theorem 1], is extended to develop our problem of solv-
ing the GSVI (1.1) with the constraints of the VI for two accretive operators A,B
and the CFPP of {Sn}∞n=0 a countable family of ℓ-uniformly Lipschitzian pseudo-
contractions. The composite viscosity implicit rule in [18, Theorem 1] is extended
to develop our relaxed Mann-type viscosity implicit method.

(iii) The problem of solving the VI for both accretive operators A,B with the
FPP constraint of a nonexpansive mapping S in [34, Theorem 3.3] is extended to
develop our problem of solving the GSVI (1.1) with the constraints of the VI for both
accretive operators A,B and the CFPP of {Sn}∞n=0 a countable family of ℓ-uniformly
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Lipschitzian pseudocontractions. The modified viscosity-type extragradient method
in [34, Theorem 3.3] is extended to develop our relaxed Mann-type viscosity implicit
method.

4. Some applications

In this section, we give some applications of Corollary 3.3 to important mathe-
matical problems in the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed
convex subset C ⊂ H and a nonlinear monotone operator A : C → H. Consider
the classical VIP of finding u∗ ∈ C s.t.

(4.1) 〈Au∗, v − u∗〉 ≥ 0 ∀v ∈ C.

The solution set of problem (4.1) is denoted by VI(C,A). It is clear that u∗ ∈ C
solves VIP (4.1) if and only if it solves the fixed point equation u∗ = PC(u

∗−λAu∗)
with λ > 0. Let iC be the indicator function of C defined by

iC(u) =

{
0 if u ∈ C,

∞ if u 6∈ C.

We use NC(u) to indicate the normal cone of C at u ∈ H, i.e., NC(u) = {w ∈
H : 〈w, v − u〉 ≤ 0 ∀v ∈ C}. It is known that iC is a proper, convex and lower
semicontinuous function and its subdifferential ∂iC is a maximal monotone mapping

[32]. We define the resolvent operator J∂iC
λ of ∂iC for λ > 0 by

J∂iC
λ (x) = (I + λ∂iC)

−1(x) ∀x ∈ H,

where

∂iC(u) = {w ∈ H : iC(u) + 〈w, v − u〉 ≤ iC(v) ∀v ∈ H}
= {w ∈ H : 〈w, v − u〉 ≤ 0 ∀v ∈ C} = NC(u) ∀u ∈ C.

Hence, we get

u = J∂iC
λ (x) ⇔ x− u ∈ λNC(u)

⇔ 〈x− u, v − u〉 ≤ 0 ∀v ∈ C

⇔ u = PC(x),

where PC is the metric projection of H onto C. Moreover, we also have (A +
∂iC)

−1(0) = VI(C,A) [35]. Thus, putting B = ∂iC in Corollary 3.3, we obtain the
following result:

Theorem 4.1. Let f,A,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary
3.3. Suppose that Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ VI(C,A) 6= ∅. For any given

x0 ∈ C and ξ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn),

yn = δnGwn + (1− δn)PC(I − λnA)Gwn,

zn = PC(Gwn − λnAyn + rn(yn −Gwn)),

xn+1 = αnf(xn) + βnGwn + γnGzn ∀n ≥ 0,
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where the sequences {rn}, {sn}, {αn}, {βn}, {γn}, {δn} ⊂ (0, 1] with αn+βn+γn = 1
and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.3 hold.
Then xn → x∗ ∈ Ω, which is the unique solution to the VIP: 〈(I − f)x∗, p− x∗〉 ≥
0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x

∗).

4.2. Application to split feasibility problem. Let H1 and H2 be two real
Hilbert spaces. Consider the following split feasibility problem (SFP) of finding

(4.2) u ∈ C subject to T u ∈ Q,

where C and Q are closed convex subsets of H1 and H2, respectively, and T : H1 →
H2 is a bounded linear operator with its adjoint T ∗. The solution set of SFP is
denoted by ℧ := C ∩ T −1Q = {u ∈ C : T u ∈ Q}. In 1994, Censor and Elfving
[20] first introduced the SFP for modelling inverse problems of radiation therapy
treatment planning in a finite dimensional Hilbert space, which arise from phase
retrieval and in medical image reconstruction.

It is known that z ∈ C solves the SFP (4.2) if and only if z is a solution of the
minimization problem: miny∈C g(y) := 1

2‖T y − PQT y‖2. Note that the function g
is differentiable convex and has the Lipschitzian gradient defined by ∇g = T ∗(I −
PQ)T . Moreover, ∇g is 1

∥T ∥2 -inverse-strongly monotone, where ‖T ‖2 is the spectral

radius of T ∗T [5]. So, z ∈ C solves the SFP if and only if it solves the variational
inclusion problem of finding z ∈ H1 s.t.

0 ∈ ∇g(z) + ∂iC(z) ⇔ 0 ∈ z + λ∂iC(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂iC(z)

⇔ z = (I + λ∂iC)
−1(z − λ∇g(z))

⇔ z = PC(z − λ∇g(z)).

Now, setting A = ∇g, B = ∂iC and σ = 1
∥T ∥2 in Corollary 3.3, we obtain the

following result:

Theorem 4.2. Let f,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary
3.3. Assume that Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ ℧ 6= ∅. For any given x0 ∈ C and

ξ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn),

yn = δnGwn + (1− δn)PC(I − λnT ∗(I − PQ)T )Gwn,

zn = PC(Gwn − λnT ∗(I − PQ)T yn + rn(yn −Gwn)),

xn+1 = αnf(xn) + βnGwn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn}, {δn} ⊂ (0, 1] with αn+βn+γn = 1
and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.3 hold
where σ = 1

∥T ∥2 . Then xn → x∗ ∈ Ω, which is the unique solution to the VIP: 〈(I−
f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x

∗).

4.3. Application to LASSO problem. In this subsection, we first recall the least
absolute shrinkage and selection operator (LASSO) [37], which can be formulated
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as a convex constrained optimization problem:

(4.3) min
y∈H

1

2
‖T y − b‖22 subject to ‖y‖1 ≤ s,

where T : H → H is a bounded operator on H, b is a fixed vector in H and s > 0.
Let ℧ be the solution set of LASSO (4.3). The LASSO has received much attention
because of the involvement of the ℓ1 norm which promotes sparsity, phenomenon of
many practical problems arising in statics model, image compression, compressed
sensing and signal processing theory.

In terms of the optimization theory, one knows that the solution to the LASSO
problem (4.3) is a minimizer of the following convex unconstrained minimization
problem so-called Basis Pursuit denoising problem:

min
y∈H

g(y) + h(y),

where g(y) := 1
2‖T y − b‖22, h(y) := λ‖y‖1 and λ ≥ 0 is a regularization parameter.

It is known that ∇g(y) = T ∗(T y − b) is 1
∥T ∗T ∥ -inverse-strongly monotone. Hence,

we have that z solves the LASSO if and only if z solves the variational inclusion
problem of finding z ∈ H s.t.

0 ∈ ∇g(z) + ∂h(z) ⇔ 0 ∈ z + λ∂h(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂h(z)

⇔ z = (I + λ∂h)−1(z − λ∇g(z))

⇔ z = proxh(z − λ∇g(z)),

where proxh(y) is the proximal of h(y) := λ‖y‖1 given by

proxh(y) = argminu∈H{λ‖u‖1 +
1

2
‖u− y‖22} ∀y ∈ H,

which is separable in indices. Then, for y ∈ H,

proxh(y) = proxλ∥·∥1(y)

= (proxλ|·|(y1), proxλ|·|(y2), ..., proxλ|·|(yn)),

where proxλ|·|(yi) = sgn(yi)max{|yi| − λ, 0} for i = 1, 2, ..., n.

In 2014, Xu [40] suggested the following proximal-gradient algorithm (PGA):

xk+1 = proxh(xk − λkT ∗(T xk − b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem
(4.3).

Next, putting C = H, A = ∇g, B = ∂h and σ = 1
∥T ∗T ∥ in Corollary 3.3, we

obtain the following result:

Theorem 4.3. Let f,Ai, Bi (i = 1, 2) and {Sn}∞n=0 be the same as in Corollary 3.3
with C = H. Assume that Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ ℧ 6= ∅. For any given
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x0 ∈ H and ξ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by
wn = snGxn + (1− sn)(ξxn + (1− ξ)Snwn),

yn = δnGwn + (1− δn)proxh(Gwn − λnT ∗(T Gwn − b)),

zn = proxh(Gwn − λnT ∗(T yn − b) + rn(yn −Gwn)),

xn+1 = αnf(xn) + βnGwn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn}, {δn} ⊂ (0, 1] with αn+βn+γn = 1
and {λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.3 hold
where σ = 1

∥T ∗T ∥ . Then xn → x∗ ∈ Ω, which is the unique solution to the VIP: 〈(I−
f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x

∗).
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