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RELAXED MANN-TYPE VISCOSITY IMPLICIT METHOD FOR

A SYSTEM OF VARIATIONAL INCLUSIONS WITH A FIXED

POINT PROBLEM CONSTRAINT OF PSEUDOCONTRACTIVE
MAPPINGS

LU-CHUAN CENG*, OUAYL CHADLI, JEN-CHIH YAO', AND XIAOPENG ZHAO?

ABSTRACT. In a uniformly convex and g-uniformly smooth Banach space with

€ (1,2], let the VI indicate a variational inclusion for two accretive operators
and let the CFPP denote a common fixed point problem of a countable family
of f-uniformly Lipschitzian pseudocontractive mappings. In this paper, we intro-
duce a relaxed Mann-type viscosity implicit method for solving a general system
of variational inclusions (GSVI) with the VI and CFPP constraints. Strong con-
vergence of the proposed algorithm to a solution of the GSVI with the VI and
CFPP constraints under some suitable conditions is established. Applications of
the main result to the variational inequality, split feasibility problem and LASSO
problem in Hilbert spaces are given.

1. INTRODUCTION

Let (H,|| -|) be a real Hilbert space, in which the inner product is denoted
by (-,-). Let 0 # C C H be a closed convex set. We denote by Pc the metric
projection from H onto C. Given a mapping A : C' — H. Consider the classical
variational inequality problem (VIP) of finding a point z* € C s.t. (Az*,y —
z*) > 0 Vy € C. We denote by VI(C, A) the solution set of the VIP. Up to now,
Korpelevich’s extragradient method [23] has been one of the most popular methods
for solving the VIP. It is worth mentioning that if VI(C, A) # (), this method has
only weak convergence, and only requires that the mapping A is monotone and
Lipschitz continuous. To the most of our knowledge, Korpelevich’s extragradient
method has been improved and modified in various ways so that some new iterative
methods happen to solve the VIP and related optimization problems; see e.g., [1, 7—
17,19, 22, 28, 29, 33, 34, 41, 42] and references therein, to name but a few.

Assume that the operators A: C — H and B : D(B) C C — H are a-inverse-
strongly monotone and maximal monotone, respectively. Consider the variational
inclusion (VI) of finding a point z* € C' s.t. 0 € (A+ B)z*. In order to solve the
FPP of nonexpansive mapping S : C' — C and the VI for both monotone mappings
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A, B, Takahashi et al. [35] suggested a Mann-type Halpern iterative method, i.e.,
for any given x1 = x € C, {z;} is the sequence generated by

zip1 = iy + (1= Bj)S(aje + (1 — ay) I (w5 — NjAzy)) Vj>1,

where {\;} C (0,2«) and {«;}, {5} C (0,1). They proved the strong convergence of
{z;} to a point of Fix(S)N(A+B)~1(0) under some mild conditions. In the practical
life, many mathematical models have been formulated as the VI. Without question,
many researchers have presented and developed a great number of iterative methods
for solving the VI in various approaches; see e.g., [6, 8, 12, 15, 16, 24, 26, 34, 35]
and the references therein. Due to the importance and interesting of the VI, many
mathematicians are now interested in finding a common solution of the VI and FPP.

Recently, Manaka and Takahashi [26] suggested an iterative process, i.e., for any
given zg € C, {z;} is the sequence generated by

i1 = gy + (1= o) ST (2 — NjAzj) Vj =0,

where {a;} C (0,1), {A\;} C (0,00), A : C — H is an inverse-strongly monotone
mapping, B : D(B) c C — 2" is a maximal monotone operator, and S : C — C
is a nonexpansive mapping. They proved weak convergence of {z;} to a point of
Fix(S) N (A + B)~1(0) under some suitable conditions.

For ¢ € (1,2], let E be a uniformly convex and g-uniformly smooth Banach
space with g-uniform smoothness coefficient x4. Suppose that f : E — E is a p-
contraction and S : F — F is a nonexpansive mapping. Let A : E — FE be an
a-inverse-strongly accretive mapping of order ¢ and B : E — 2F be an m-accretive
operator. Very recently, Sunthrayuth and Cholamjiak [34] proposed a modified
viscosity-type extragradient method for the FPP of S and the VI of finding z* € F
st. 0 € (A+ B)z*, i.e., for any given zg € E, {z;} is the sequence generated by

yj = J () — AjAxy),

zj = I3 (x5 — NjAy; +15(y; — 25)),

Tip1 = o f(x;) + Bjzj + 7352 Vj =0,
where JAB; = (I+XB)7 {r;} {ai}, {85}, {7} € (0,1) and {);} C (0, 00) are such
that: (i) a; + 8 +7; = 15 (i) limjeo oy = 0, 3272, a = o005 (iil) {8} C [a,0] C
(0,1); and (iv) 0 < A < \j < \j/r; < p < (aq/rg)/@ D, 0 < r <r; < 1. They
proved the strong convergence of {x;} to a point of Fix(S) N (4 + B)~1(0), which
solves a certain VIP.

Furthermore, suppose that J : E — 2" is the normalized duality mapping from
E into 27" defined by J(x) = {¢ € E* : (x,¢) = ||z||> = ||¢||*} Vx € E, where (-,-)
denotes the generalized duality pairing between E and E*. It is known that if £
is smooth then J is single-valued. Let C be a nonempty closed convex subset of a
smooth Banach space E. Let A;, Ay : C — E and Bi, By : C — 2F be nonlinear

mappings with B;z # () Vo € C,i = 1,2. Consider the general system of variational
inclusions (GSVI) of finding (z*,y*) € C x C s.t.

(1.1) 0 € G(Ay* + Brz*) + 2* — o,
' 0 € (a(A2x™ 4+ Bay*) + y* — a*,
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where (; is a positive constant for ¢ = 1,2. It is known that problem (1.1) has been
transformed into a fixed point problem in the following way.

Lemma 1.1. ([18, Lemma 2]) Assume that By, By : C — 2F are both m-accretive
operators and Ay, Ay : C — E are both operators. For given x*,y* € C, (z*,y*) is a
solution of problem (1.1) if and only if x* € Fix(G), where Fix(G) is the fized point
set of the mapping G := ng (I — (1A1)J£2 (I — (2A2), and y* = JgQ(I — (o Ag)x*.

Suppose that E is a uniformly convex and 2-uniformly smooth Banach space with
2-uniform smoothness coefficient k9. Let By, Bs : C — 2P be both m-accretive
operators and A; : C — FE (i = 1,2) be (;-inverse-strongly accretive operator.
Let f : C — C be a contraction with constant 6 € [0,1). Let V : C — C be
a nonexpansive operator and T : C' — C be a A-strict pseudocontraction. Very
recently, using Lemma 1.1, Ceng et al. [18] suggested a composite viscosity implicit
rule for solving the GSVI (1.1) with the FPP constraint of T, i.e., for any given
xo € C, the sequence {z;} is generated by

yj = 2 (w) — G Agwy),
vj = o f(zj1) + i1 + BV 1 +y5lpSz; + (1 — w) IS (y; — GLAwy;)]

for any j > 1, where p € (0,1), S := (1—a)+aT with 0 < o < min{1, %}, and the
sequences {o; },{6;}, {B;},{~;} C (0,1) are such that (i) a;+d;+58;+v; =15 > 1;
(i) limj o0 o = 0, lim;j o0 g—; = 0; (iii) limje00y; = 1; (iv) 22725 a; = co. They
proved that {x;} converges strongly to a point of Fix(G) N Fix(T"), which solves a
certain VIP.

In addition, assume that {u;} C (0,1), {\;} C (0,2a] and {a;},{4;} C (0,1]
with o; + &; < 1. Ceng et al. [8] introduced a Mann-type hybrid extragradient
algorithm, i.e., for any initial up = u € C, {u;} is the sequence generated by

yj = Po(uj — pjAuj),
vj = Po(uj — pjAy;),
b = J (v; — A\jAvy),

zj = (1-— o — aj)uj + ;05 + ajSvj,

uj+1 = Po;nq;u Vi >0,

where C; = {z € C : ||zj —z| < |luj — 2|}, Qj ={x € C : (uj — z,u —u;) >
0}, JAB; = (I +XB)"',) A: C - H is a monotone and L-Lipschitzian mapping,
A : C — H is an a-inverse-strongly monotone mapping, B is a maximal monotone
mapping with D(B) = C and S : C — C is a nonexpansive mapping. They proved
strong convergence of {u;} to the point Ppu in 2 = Fix(S)N(A+B)~1(0)NVI(C, A)
under some mild conditions.

In a uniformly convex and g-uniformly smooth Banach space with ¢ € (1,2],
let the VI indicate a variational inclusion for two accretive operators and let the
CFPP denote a common fixed point problem of a countable family of /-uniformly
Lipschitzian pseudocontractive mappings. In this paper, we introduce a relaxed
Mann-type viscosity implicit method for solving the GSVI (1.1) with the VI and
CFPP constraints. We then prove the strong convergence of the suggested algorithm
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to a solution of the GSVI (1.1) with the VI and CFPP constraints under some
suitable conditions. As applications, we apply our main result to the variational
inequality problem (VIP), split feasibility problem (SFP) and LASSO problem in
Hilbert spaces. Our results improve and extend the corresponding results in Manaka
and Takahashi [26], Sunthrayuth and Cholamjiak [34], and Ceng et al. [18] to a
certain extent.

2. PRELIMINARIES

Let E be a real Banach space with the dual E*, and () # C C E be a closed
convex set. For convenience, we shall use the following symbols: x,, — x (resp.,
x, — x) indicates the strong (resp., weak) convergence of the sequence {z,} to z.
Given a self-mapping 7" on C. We use the symbols R and Fix(7T') to denote the set
of all real numbers and the fixed point set of T', respectively. Recall that T is called
a nonexpansive mapping if |7z — Ty|| < ||z — y|| Vo,y € C. A mapping f:C = C
is called a contraction if Jp € [0,1) s.t. ||f(z) — f(y)| < ollz — y|| Yz,y € C. Also,
recall that the normalized duality mapping J defined by

J(@) ={o € E": (z,¢) = |2|* = l|¢lI"} Vz € E,

is the one from F into the family of nonempty (by Hahn-Banach’s theorem) weak*
compact subsets of E*, satisfying J(7u) = 7J(u) and J(—u) = —J(u) for all 7 > 0
and u € E.

The modulus of convexity of E is the function dg : (0,2] — [0, 1] defined by

55 (€) :inf{l -

The modulus of smoothness of E' is the function pg : Ry := [0,00) — Ry defined
by

2y €E, el =yl = 1, o —yl > }

T+TY||+||x—TY
pitr) =sup (L= iy e = o =1

A Banach space E is said to be uniformly convex if dg(e) > 0 Ve € (0,2]. It is
pe(T) _

said to be uniformly smooth if lim,._,o+ 0. Also, it is said to be g-uniformly
smooth with ¢ > 1 if ¢ > 0 s.t. pg(t) < ct? Vt > 0. If E is g-uniformly smooth,
then ¢ < 2 and FE is also uniformly smooth and if E is uniformly convex, then F is
also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly
smooth. Further, sequence space ¢, and Lebesgue space L, are min{p, 2}-uniformly
smooth for every p > 1 [38].

Let ¢ > 1. The generalized duality mapping J, : £ — 2F" is defined by

Jo() ={p € B* : (x,90) = ||z |6l = =]},
where (-, -) denotes the generalized duality pairing between E and E*. In particular,
if ¢ = 2, then Jy = J is the normalized duality mapping of E. It is known that
Jy(x) = ||z)|972J(x) Yz # 0 and that J, is the subdifferential of the functional

%H -||9. If E is uniformly smooth, the generalized duality mapping .J; is one-to-one
and single-valued. Furthermore, J, satisfies J, = J 1 where Jp is the generalized
duality mapping of E* with ]13 + % = 1. Note that no Banach space is g-uniformly

smooth for ¢ > 2; see [36] for more details. Let ¢ > 1 and E be a real normed
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space with the generalized duality mapping J,;. Then the following inequality is an
immediate consequence of the subdifferential inequality of the functional %H )2

21 eyl <2l + oy, do(x +y)) Yo,y € B, Gole +y) € Jy(x +y).

Proposition 2.1 ([38]). Let ¢ € (1,2] be a fized real number and let E be q-
uniformly smooth. Then ||z + y||¢ < ||z||? 4+ q(y, J4()) + Kqllyl|? Yo,y € E, where
kg s the g-uniform smoothness coefficient of E.

Recall that a mapping T : C' — C' is called pseudocontractive if for each x,y € C,
there exists j(z —y) € J(z —y) such that (T — Ty, j(z —vy)) < ||z —y||*>. Also, it is
called strongly pseudocontractive if for each =,y € C, there exists j(z—y) € J(x—y)
such that (Tz — Ty, j(x —y)) < alz — y||* for some o € (0,1). We will use the
following concept in the sequel.

Definition 2.2. Let {S5,}7°, be a sequence of continuous pseudocontractive self-
mappings on C. Then {S,}>°, is said to be a countable family of ¢-uniformly
Lipschitzian pseudocontractive self-mappings on C' if there exists a constant £ > 0
such that each S, is ¢-Lipschitz continuous.

Lemma 2.3 ([3]). Let {S,} 2, be a sequence of self-mappings on C such that
Yoo supsec |[Snx — Sp—1z|] < 0o. Then for each y € C, {Spy} converges strongly
to some point of C. Moreover, let S be a self-mapping on C defined by Sy =
limy, 00 Spy Vy € C. Then lim,, o0 sUp, e || Snz — Sz|| = 0.

The following lemma can be obtained from the result in [38].

Lemma 2.4. Let ¢ > 1 and r > 0 be two fized real numbers and let E be uniformly
convex. Then there exist strictly increasing, continuous and convex functions g, h :
R, — R with g(0) =0 and h(0) = 0 such that

(1) [lpz + (1= wyl|? < pllzf|+ 1 = w)llyll? — w1 =p)g(lle —yll) with p € [0,1];
(i) h(llz = yl)) < [lz[|? — ¢(z, jq(y)) + (¢ — Dyl
for all x,y € B, and jq4(y) € Jq(y), where B, :={z € E : ||z|| < r}.

The following lemma is an analogue of Lemma 2.4(a).

Lemma 2.5. Let ¢ > 1 and r > 0 be two fixed real numbers and let E be uniformly
convexr. Then there exists a strictly increasing, continuous and convexr function
g: Ry = Ry with g(0) = 0 such that | Az + py + vz]7 < Ao + lylle + vl|2)e -
Apg(|le —yll) for all z,y,z € By and A\, p,v € [0,1] with A+ pu+v = 1.

Proposition 2.6 ([21]). Let 0 # C C E be a closed convex set. If T : C' — C is a
continuous and strong pseudocontractive, then T has a unique fized point in C.

Let D be a subset of C' and let II be a mapping of C into D. Then II is said to
be sunny if II1[11(z) + t(x — II(x))] = II(x), whenever II(z) + t(x — II(z)) € C for
x € C and t > 0. A mapping I of C into itself is called a retraction if I1? = II. If a
mapping 7 of C into itself is a retraction, then II(z) = z for each z € R(IT), where
R(IT) is the range of II. A subset D of C' is called a sunny nonexpansive retract of
C' if there exists a sunny nonexpansive retraction from C onto D. In terms of [30],
we know that if E is smooth and II is a retraction of C' onto D, then the following
statements are equivalent:
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(i) II is sunny and nonexpansive;
(i) | (z) = H ()| < (x -y, J(H () — [I(y))) Yz,y € C;

(iii) (¢ — (x),J(y—I(z))) <0Vzx e C,y € D.

Let B : C — 2F be a set-valued operator with Bx # () Vo € C. Let ¢ > 1. An
operator B is said to be accretive if for each x,y € C, Fj,(z — y) € Jy(x — y) s.t.
(u—wv,j4(zr —y)) > 0Vu € Bx,v € By. An accretive operator B is said to be
a-inverse-strongly accretive of order ¢ if for each z,y € C, Jj,(x —y) € Jy(x — y)
s.t. (u—v,jq(x —y)) > aflu—v||? Vu € Bx,v € By for some a > 0. f E=H is a
Hilbert space, then B is called a-inverse-strongly monotone. An accretive operator
B is said to be m-accretive if (I+AB)C = E for all A > 0. For an accretive operator
B, we define the mapping JZ : (I+AB)C — C by JZ = (I+AB)~! for each A > 0.
Such J /{9 is called the resolvent of B for A > 0.

Lemma 2.7 ([16, 24]). Let B : C — 2F be an m-accretive operator. Then the
following statements hold:
(i) the resolvent identity: JPx = Jf(§$ + (1 =8 JP2) VA, u>0, z € E;
(i) of J)’\B is a resolvent of B for A > 0, then Jf is a firmly nonexpansive
mapping with Fix(JP) = B71(0), where B~1(0) = {x € C: 0 € Bx};
(iii) of E = H is a Hilbert space, then B is mazximal monotone.

Let A: C — FE be an a-inverse-strongly accretive mapping of order ¢ and B :
C — 2F be an m-accretive operator. In the sequel, we will use the notation T) :=
JB(I = NA) = (I+AB)"1(I — AA) VA > 0.

Proposition 2.8 ([24]). The following statements hold:

(i) Fix(Ty) = (A + B)~(0) YA > 0;
(i) [ly — Thyll <2|ly — Try|| for0 <A <r andy € C.

Proposition 2.9 ([39]). Let E be uniformly smooth, T : C'— C' be a nonexpansive
mapping with Fix(T) # () and f : C — C be a fizved contraction. For eacht € (0,1),
let zy € C be the unique fized point of the contraction C' > z — tf(z)+ (1 —t)Tz
on C, i.e., zz = tf(z) + (1 —t)Tz. Then {2z} converges strongly to a fized point
x* € Fix(T), which solves the VIP: (I — f)x*,J(x* — x)) < 0 Va € Fix(T).

Proposition 2.10 ([24]). Let E be gq-uniformly smooth with q € (1,2]. Suppose
that A : C — FE is an a-inverse-strongly accretive mapping of order q. Then, for
any given A > 0,

17 = M)z — (I = Ayl < lle — yl” — Aaq — kAT )| Az — Ayll? Va,y € C,

where kg > 0 is the g-uniform smoothness coefficient of E. In particular, if 0 <

1
A< (%Z)qj, then I — AA is nonexpansive.

Lemma 2.11 ([18]). Let E be q-uniformly smooth with q¢ € (1,2]. Let By, By :

C — 2% be two m-accretive operators and A; : C — E (i = 1,2) be o;-inverse-

strongly accretive mapping of order q. Define an operator G : C — C by G =
1

ng(I—ClAl)J£2(I—C2A2). If0 < ¢ < (Z9)a=T (i = 1,2), then G is nonexpansive.

Kq
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Lemma 2.12 ([2]). Let E be smooth, A: C — E be accretive and Il be a sunny
nonexpansive retraction from E onto C. Then VI(C, A) = Fix(Ilc(I —\A)) VA > 0,
where VI(C, A) is the solution set of the VIP of finding z € C s.t. (Az,J(z—y)) <
0VvyeC.

Recall that if E = H is a Hilbert space, then the sunny nonexpansive retraction
Ilc from E onto C' coincides with the metric projection Po from H onto C. More-
over, if E is uniformly smooth and T is a nonexpansive self-mapping on C' with
Fix(T') # 0, then Fix(T') is a sunny nonexpansive retract from E onto C' [31]. By
Lemma 2.12 we know that, 2* € Fix(T") solves the VIP in Proposition 2.9 if and
only if 2* solves the fixed point equation z* = Il 7) f(7").

Proposition 2.13 ([3]). Let {S,}>2, be a sequence of self-mappings on C such
that Y > supgec [|Sn — Sp—1z|| < oo. Then for each y € C, {Sny} converges
strongly to some point of C. Moreover, let S be a self-mapping on C defined by
Sy = limy, 00 Spy for all y € C. Then lim,_,o sup,cc ||Snx — Sz|| = 0.

Lemma 2.14 ([25]). Let {I,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I',,} of {I'n} which satisfies
Iy, < Iy, 41 for each integer i > 1. Define the sequence {T(n)}n>n, of integers as
follows:
7(n) =max{k <n: I} < Ik},

where integer ng > 1 such that {k <ny: Iy < I'y11} # 0. Then, the following hold:

(i) 7(ng) <7(np+1) <--- and 7(n) — oo;

(11) F‘r(n) < Zﬂ‘r(n)«#l and I’y < Fr(n)+1 Vn > ng.

Lemma 2.15 ([4]). Let E be strictly convex, and {S,}22, be a sequence of non-
expansive mappings on C. Suppose that (\,_, Fix(Sy) is nonempty. Let {\,} be
a sequence of positive numbers with Y > (A, = 1. Then a mapping S on C de-
fined by Sz = 3 2 ApSpx Yo € C is defined well, nonexpansive and Fix(S) =
Mo’y Fix(Sy) holds.

Lemma 2.16 ([39]). Let {a,} be a sequence in [0,00) such that apt+1 < (1 —
Sn)an + Spip Y > 0, where {s,} and {v,} satisfy the conditions: (i) {s,} C [0,1],
Yoy sn = 00; (ii) Hmsup, oo vn <0 or > 07 |spn| < 0o. Then limy, o0 ay, = 0.

3. MAIN RESULTS

Throughout this paper, suppose that C' is a nonempty closed convex subset of
a uniformly convex and g-uniformly smooth Banach space E with ¢ € (1,2]. Let
Bi,By : C — 2P be both m-accretive operators and A; : C — E be o;-inverse-
strongly accretive mapping of order ¢ for i = 1,2. Let the mapping G : C — C be
defined as G = JE(I — (LA T (I — G A2) with 0 < ¢ < (%qq)q% for i = 1,2.
Let f : C — C be a p-contraction with constant ¢ € [0,1), and {S,}>2, be a
countable family of Z-uniformly Lipschitzian pseudocontractive self-mappings on C.
Let A: C — E and B : C — 2F be a o-inverse-strongly accretive mapping of order

¢ and an m-accretive operator, respectively. Assume that 2 := (2 Fix(S,) N
Fix(G) N (A + B)~1(0) # 0.
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Algorithm 3.1. Relaxed Mann-type viscosity implicit method for the GSVI (1.1)
with the VI and CFPP constraints.

Initial Step. Given £ € (0,1) and xg € C arbitrarily.

Iteration Steps. Given the current iterate z,, compute x,1 as follows:

Step 1. Calculate wy, = $,Gxy + (1 — sp)(§xn + (1 — &) Spwy);

Step 2. Calculate y,, = dpu, + (1 — 5”)‘]/51 (up, — ApAuy,) with u, = Guy;

Step 3. Calculate z,, = J)i (un, — MAyn + 70 (Yn — un));

Step 4. Calculate x, 41 = anf(xn) + Bntn + ¥ Gzn, where {r,}, {sn}, {an},
{Bn}s {m}, {0n} C (0,1] with ay, + By, + vn = 1 and {A\,} C (0,00). Set n:=n+1
and go to Step 1.

Lemma 3.1. If {z,,} is the sequence generated by Algorithm 3.1, then it is bounded.

Proof. Take an element p € 2 := (3o, Fix(T;) NFix(G) N (A+ B)~1(0) arbitrarily.
Then we have

An
p=Gp=Syp=J (p—A\Ap)=JL <(1 - 'rn)p+rn<p— TAp)> :

n

By Proposition 2.10 and Lemma 2.11, we deduce that I — (1A;, I — (2A2 and
G:= ng (I — C1A1)J£2 (I — (2A2) are nonexpansive mappings. Moreover, it can be
readily seen that for each n > 0, there is only an element w,, € C s.t.

(3.1) Wy, = $pGxp + (1 — sp)(Expn + (1 = £)Spwy,).

In fact, consider the mapping F,u = $,Gxp, + (1 — sp)(Exp + (1 — £)Spu) Yu € C.
Note that .S, : C' — C'is a continuous pseudocontraction. Hence we obtain that for
all u,v € C,

(Fou— Fou, J(u—v)) = (1 — sp)(1 = &)(Spu — Spv, J(u —v))
< (1 =s)(1 =& lu—v]*
Also, from {s,} C (0,1], we get 0 <1 —s,, < 1Vn > 0. Thus, F, is a continuous
and strong pseudocontractive self-mapping on C. By Proposition 2.6, we deduce

that for each n > 0, there is only an element w,, € C, satisfying (3.1). Since each
Sn : C = C is a pseudocontractive mapping, we get

lwn = pl|* = sn(Gxn — p, Jg(wn — p))
+ (1 = sp)(§xn + (1 = &) Spwn — p, Jy(wn — p))
< sullzn = pllllwn = pll 7 + (1 = su) €]z — pll[lwn —p] 7~
+ (1= &llwn —pl*]
= [sn + (1 = sp)&][lan — pllwn — p[| 7
+ (1= sn)(1 = Ellwn —pl*

which immediately yields ||w, — p|| < |zn — p|| Vn > 0. Using the nonexpansivity
of GG again, we deduce from u,, = Gw, that

(3.2) [un = pl| < [lwn = pll < [lzn —pl| Vn = 0.
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Using Lemmas 2.4(i), 2.7(ii) and Proposition 2.10, we obtain that
lyn = pIl* = 160 (un = p) + (1 = 8a) (I, (un — AnAun) = T3 (p = AnAp))||
< ullun = pll? + (1= 6,) |12 (1 = M A)uy = I (I = A A)p|?
(3.3) < Onllun — pl|” + (1 = ) [llun — pl?
— An(0q = KgAE) || Aun — ApY]
= [lun = pl17 = (1 = 8u)An(oq = KgAG )l Aun — Ap]7,
which hence leads to ||y, — p|| < ||un — p||. By the convexity of || - || and (3.3), we

have

lzn — pll* =

‘]ﬁ ((1 — Tp)Un + Tn <yn - j‘\:Ayn>>

-J3 <(1 —Tn)p+Tn (p - i”Ap>>

n

(I— ZLA)ML — (I— tA)p

q

q
< (T =rp)lfun —pl|? + 70

< (1 —=7p)|lun — p||

A AL
o) o = pll? = 2 (00 = 25 ) Ay — Apl?
. n n

< (1 —=7p)[lun — p||
+ Tn{Hun —pllf = (1 = 6n)An(0q — KAS ) || Auy — Apl|

An g AL !
= (o0 = " ) A — Apl}

= fln = pI” = (1 = 8 M0 — oA Auy — Ap]?
K )\%_1
(0 = "L ) [ Aya — Ap|”

n

Tn

This ensures that ||z, — p|| < ||un, — pl|- So it follows from (3.2) that
[zn41 = pll < anllf(zn) — Pl + Bullun — pll + WGz — 1
< an(ollzn = pll + llp = fFW)I) + Bullun — pll + Y llun — pll
< an(ollzn —pll + llp = W) + Bullzn — pll + Y2 — pll
= (1 —an(l = 0)llzn — pll + anllp — f)]
lp — f(0)ll
1 _

<max { |z — pll, L2
%

By induction, we get ||z, — p|| < max{||zo — p|, W} Vn > 0. Thus, {z,} is
bounded, and so are {u,}{wn}, {yn}, {zn},{Gzn}, {Aun}, {Ayn}. This completes
the proof. O

Theorem 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Suppose that
the following conditions hold:
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(C1) limp—yoo ot =0 and > 07§y = 00;
(C2) 0< <6, <d< 1
(C3)0<a<PB,<b<land0<c<s,<d<]1;
1

(CHO0<r<r<land0 <A<, <2 <p<(Fh)or.
Assume that Y2 sup,cp |[Snt12 — Spz| < 0o for any bounded subset D of C. Let
S :C — C be a mapping defined by Sx = lim,_, o, Spx Vo € C, and suppose that
Fix(S) = (o2, Fix(Sn). Then x, — z* € 2, which is the unique solution to the
VIP: (I — f)x*,J(z*—p)) <0 Vp € {2, i.e., the fized point equation x* = Iq f(x*).
Proof. First of all, let z* € 2 and y* = JgQ (x* — (2 Agx™). Putting v, := 52 (wy, —

(2 Aowy,) and using u, = Gw,, we get u, = ng (vp, — C1A1v,). From Proposition
2.10 we have

lon = 5|19 = [T (wn — GAsw,) — T2 (2" — G Asa™) ||
< Jlwp — 2|7 = Ca(02q — rgls )| Azwy — Asa™|?,
and
= @[ = T8 (v = GrA1vn) = IS (" = G Ay |
< Jon = 9119 = Gilorag = kel ) [ Aron — vy,
Combining the last two inequalities, we have
= 9 <l — 7 = a2 — g4 ™)l Azt — Ao |
— G010 — rGl ) Aren — Avy7|"
Using Lemma 2.5, from (2.1), (3.2) and (3.4) we obtain that
[#n1 — 2|
= llan(f(zn) = (7)) + Bnlun — 27) + 1 (Gzn — 27) + an(f(z7) — 27)[7
< ol f(@n) = F@O)? + Bullun — 2™ [[* + ml|Gzn — 277 = Bumg(llun — Gznl|)
+ qan((f — 2", Jg(Tnt1 — 27))
< anollzn, — 2|7 + Ballun — 2|9
+n{[un — 2|11 = (1 = 8n)An(0g — KAL)

-1
/ﬁq)\%

X || Auy — AT = Ap (fﬂl T ) [ Ayn — Az™[|7}

— Bung(lun — Gzal) + gon(f = Da*, Jy(ansr - 2°))

< anellen — &1+ Ballen — 27 + vl — "]
— Go (020 — mgGd™") [ Aawn — Asa” |7 — &1 (710 — gCl ") 1A v — Ary”|
— (1= ) An (90 — £gXE) || Auy — A

n

K )\%71 .
- (Jq - iq_l ) |Ayn — Az™[|7} = Bryng([|tn — Gznl))



MANN-TYPE VISCOSITY IMPLICIT METHOD FOR VARIATIONAL INCLUSIONS 339

(3.5)
+ qan((f - I).CL‘*, Jq(xn—i-l - 1‘*)>

= (1= an(1 = ) — 2|17 = 3{C (720 = #g§ ") | Azun, — Aga*|
+ G (10— gl ) X Aron — Ayl
+ 70 (1 = 6p)An (0g — KAL) || Auy, — Az™||?

g AGt N
+ A (U(I - iq_l > X || Ayn — Az"[|*} = Bryng(lun — G2al))

+ qon((f = D)z", Jg(zp1 — %))
For each n > 0, we set
Iy = [lay, — 2|9,
€n = Oén(l - Q)a
= 0 { G202 = gG§ )| A — Az
+ (1019 — roCl | Arv, — Ary ||
+ (1 = 6n)An(og — ’{q)‘gz_l)HA“n — Az™||?

KAt .
A (o = FE ) Ay — A2}

+ Bryng(||un — Gznll)
Un = qon((f — I)z", Jq(xn-i-l —z")).

Then (3.5) can be rewritten as the following formula:

(3.6) Fni1 < (=€)l = +9, ¥Yn>0,
and hence
(3.7) Iy <(l—e)ln+9, ¥Yn>0.

We next show the strong convergence of {I7,} by the following two cases:
Case 1. Suppose that there exists an integer ng > 1 such that {I},} is non-
increasing. Then

Iy — i1 — 0.

From (3.6), we get
0<n < Iy — Inyr + 0 — en 1.

Since combining €, — 0 and ¥, — 0 guarantees 1, — 0, it is easy to see that
limy, 00 g(J|un, — Gzy||) =0,

(3.8) lim |[Aow, — Aoz™|| = lim ||Ajv, — A1y"]| =0
n—oo n—o0

(3.9) lim ||Au, — Az*|| = lim ||Ay, — Az™|| =0.
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Note that g is a strictly increasing, continuous and convex function with g(0) = 0.
So it follows that

(3.10) lim |lu, — Gz,|| = 0.
n—oo
On the other hand, using Lemma 2.4(ii) and Lemma 2.7(ii), we get

lon =y (14 = 1752 (wn — (2 Agwn) — JE2 (27 — Go Aga™)|?
< (wp — QAsw, — (2% — (AT™), Jq(vn -y"))
= (wp — 2", Jy(vn — y¥)) + G(Agx™ — Aswy,, Jg(vy, — "))

IN

llwn — 217+ (¢ = 1)[[on — y* (|9 = ha([|wn — 2 — v + y7|)]
+ Go(Aox™ — Aqwy, Jg(vn — y™)),

1
q

which hence attains
lon =y 1|7 < Jlwp — 2*(|9 = by (lwn — v — 2% +y7*||) + qlal| Agz™ — Agwy | [|on — (197"
In a similar way, we get

ln — 2|14 = |TE (05 — C1 A1) — JE (5" — G AW
< <Un - ClAlvn - (y* - ClAly*)a Jq(un - $*)>
= <Un - y*, Jq(un - 1'*)> + Cl <A1y* - AlvTH Jq(un - l'*)>

A

1 * * T * *
< 5[an—y 174 (¢ = Dllun — 2"[|* = ha(llvn — y* = un + 2™|)]

+ C1({A1y" — Arvn, Jy(un — 27)),
which hence attains
lun = 2|7 < Jlow = y* 117 = ha(l[vn = y* = un + 2*[])
+qGil[ A1y — Avog|l|un — 277
<l = 2|7 = h((|lwn = vn — 2" + )
+ G| Azz* — Agwy|[Jvn — |77
= ha(|[vn — un + 2 = y*|))
+qG| Ay — Avog|l[fun — 2|77

(3.11)

Putting e, := J)i (un, — AnAuy) and using Lemma 2.4(ii) and Lemma 2.7(ii), we get

len = 217 = 172, — AnAn) — JE (@° = My Au)
< ((un, — ApAuy) — (2% — X\yAz™), Jg(en, — x¥))

1 * * *
<l = Andun) = (@ = X Aa”)[7 + (g = Dlfer =2

= h1([lun — An(Aup — Az™) — ey])],
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which together with Proposition 2.10, implies that
llen — 27| < [[(un — AnAun) — (27 = Xy Az™)[?
— hi(||lun — A (Auy — Az™) —e,]])
< lun = 2" = ha(llun — An(Aun — Az") —en)).

Consequently, we have

[yn — 2| < Onllun — 2| + (1 = 0n)llen — ™|

< O flun — 27|
+ (1 = 6)[[lun — 27| = ha([lun — An(Auy — Az™) — €5]])]
= flup — 2|7 = (1 = Sn) P ([Jun — An(Aup — Az™) — en)).

This together with (3.4) and (3.11), implies that

[2n1 — 2** < anl[f(zn) — 2"[[* + Bullun — 27|*

+ Wl Gzn — 27|
< an|[f(@n) = 2"||* + Bullun — 27|*

(X = 7o) lun — 2|7 + rallyn — 27|9]
an|[f(xn) = 2*[|* + Bullun — 2*[|
+ {1 =) lun — 27 + raf[lun — 27|
— (1= 0n)ha([un — An(Aun — Az™) — e )]}
an|[f(zn) — 27| + [Jun — ™[
— Ynrn(l = 0p)h1([Jun, — A (Auy, — Ax™) — ey |)
an [ f(zn) = 2| + [lzn — 27|
= h(|[wn = v = &+ y* ) = ha(llon — un +2* = y*|))
+ a6 Ay = Avogl[|un — 277
+ qGa||Asz™ — Agwy|l[Jon —y* |77
— Ynrn(1 = 6p)ha(lun — An(Au, — Az™) — €4])),

IN

IN

IN

which immediately yields
h([[wn = vn — &+ y*[) + ha([vn — un + 2* = y*)
+ (1 = )by (|Jun — An(Auy, — Ax™) — ey])
< ol f(zn) — 2|7+ Ty — D1 + qGllAry™ — Avop|lun — 2771
+ qGa| Asz™ — Agwy|l|lon — |97
§ince ﬁleQ and hj are strictly increasing, continuous and convex functions with
h1(0) = he(0) = h1(0) = 0, we conclude from (3.8) and (3.9) that ||w, — v, —2* +

v || = 0, ||vp —up +2* —y*|| — 0 and ||u, —e,|| — 0 as n — oco. This immediately
implies that

(3.12) lim [Jw, — upll = lm [lup =yl = 0.
n—oo n—oo
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Furthermore, noticing w,, = $,Gxy, + (1 — s, )(€xp + (1 — £)Spwy,), we obtain that
lwn, — 2|9 = (spGxp + (1 — sp)(Exn + (1 — &) Spwy) — 2™, Jg(w, — %))
= $p (G — 2%, Jg(wy, — %)) + (1 — sp)[{(xn — ¥, Jg(wy — z7))
+ (1 = &){(Shwpn — 2", Jg(wn — z7))]
< $p(Grxy, — 2™, Jy(wy, — x%)) + (1 — sp) [E(zp, — 27, Jy(wy, — z7))
+ (1 = &lfwn — ™7,
which together with Lemma 2.4(ii), yields
[
< e Ol (G — " Ty — )

+ (1= sn)€(xn — 27, Jo(wn — 27))]

S it =€) 11Gn I+ (g = Dl — a7 = hal([Gar, = )
1-—- n 1 * * T
+quxn—x 194 (g — D)lfwn — 2 — Fa([2n — wal])]
1
< ~llon — a1+ (g = Dl — 27
Sn
~ i —apg el el
(17571)5 7
T on+ A= sy 2l ‘“’"”)] |

This together with (3.2) implies that

lun = 2| < Jlwn — 27|

1—s)E -
Ll = )]

In a similar way, we have
120 = &7 = 1T (un = AnAyn + 70 (yn — un)) = I (2% = A Az™)||?
< ((un = AnAyn + ra(yn — un)) — (27 — A AZ™), Jy(2n — 27))

IN

1 * * *
0100 = Mg+ = ) = (& = A7+ (g = Dy |

— ha([lun + 7 (Yn — un) — An(Ayn — A2™) — 23|))],
which together with (3.4), implies that
[2n — ™[ < [[(un = AnAyn + mn(yn — un)) — (" — AnAz™) ||
— ha([Jun + T (Yn — un) — An(Ayn — Az™) — 2,]|)
< lun — 2|7 = ho([lun + 70 (Yn — Un) — An(Ayn — Az™) — 24])).
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This together with (3.13), ensures that
[znr1 — 2™(|? < anl[ f(zn) = 2|7 + Bullun — 2|7 + |Gz — 27|
< anl[f(@n) — @79 + Bpllun — =*[|7
+ Yalllun — 2|7 = ho([lun + 10(Yn — un) — An(Ayn — Az™) — 25 |)]
< anl[f(@n) — 2*|7 + |lup — 27|
— Ynh2([un + 10(Yn — un) — An(Ayn — Az™) = 25|)]
< an| f(an) = %9 + [Jon — 27|

5n (1 * Sn)f T

- ’Ynh2(Hun + rn(yn - un) - )‘N(Ayn - ACL‘*) - Zn”)]v

which immediately leads to

Sn (1 _Sn)g 7
th(HG.Tn - wnH) + mhg(”xn — wnH)

+ mha([un + 1n(yYn — un) — An(Ayn — Az™) — 2,])
< an|[f(zn) = 2¥||* + I = Doy
Since ho, hg and ﬁg are strictly increasing, continuous and convex functions with
h2(0) = h3(0) = h3(0) =0, from (3.9) and (3.12) we have
(3.14) lim ||Gzy —wy| = lim ||z, —wy|| = lim ||uy, — 25| = 0.
n—oo n—oo n—oo

So, it follows from (3.12) and (3.14) that

[n = un|| < [|on = wn + [[wp —unl =0 (0 — o0),

[#n = znll < |l2n — unl| + lun — 2n] = 0 (n — o0),
and hence
(3.15) |z — Gzl < ||zn — un|| + [|un — wnl|| + ||wn — Gzl = 0 (n — 0).

We now put py, := &z, + (1 — &) Spwy, Y > 0. Then we have w, = s,Gx, + (1 —
Sn)pPn Y1 > 0. So it follows from (3.14) and (3.15) that

1
||pn_l'nH = ||wn_mn_5n(Gxn_l‘n)H
1—s,
1
< i (llwn = aull + [Gan = 2a]) 5 0 (n = 00),
and hence ,
lim ||Spywy, — &) = — lim [|p, — @]l = 0.
n—00 1 —fn—)oo

Since {5y} is f-uniformly Lipschitzian on C, we deduce from (3.14) that
[Snan — an| < [|Sn@n — Snwall + [[Spwn — @n|

3.16
( ) <Az — wy|| + [|Snwp, — zp]| = 0 (0 — ).

We next claim that ||z, — Sz,|| — 0 as n — oo where S := (2I — S)~1. In fact,
it is first clear that S : C — C is pseudocontractive and /¢-Lipschitzian, where
Sz = lim, 00 Spx Vz € C. We claim that lim,,_, ||Sz, — x,|| = 0. Using the
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boundedness of {x,} and setting D = conv{z,, : n > 0} (the closed convex hull of
the set {xy, : n > 0}), by the assumption we have Y 7 sup,cp |[|[Spz — Sp—12|| <
oo. Hence, by Proposition 2.13 we get lim, oo sup,cp ||Snz — Sz| = 0, which
immediately arrives at

lim [|Spz, — Sz,| = 0.
n—oo
Thus, from (3.16) we have
(3.17) |y, — Szp|| < [|zn — Span|| + [|Snzn — Szn|| = 0 (n — 00).

Now, let us show that if we define S := (2 —S)~!, then S : C — C is nonexpansive,
Fix(S) = Fix(S) = N2, Fix(S,) and lim,,_,o0 ||z, — Sz,|| = 0. As a matter of fact,
put S := (21 — S)~!, where I is the identity operator of E. Then it is known that
S is nonexpansive and Fix(S) = Fix(S) = (72, Fix(S,) as a consequence of [27,
Theorem 6]. From (3.17) it follows that

= —=—1 = —=—1
lzn — San|| = HSS Ty — Sap|| < HS Tn — wn”

(3.18)
= ||(2I = S)zp, — zp|| = ||z — Sznl]] =0 (n — o0).
For each n > 0, we put T}, := J (I — A\, A). Then from (3.12) we have

|zn — T)\nan < lzn — unll + llun — TknunH + HTAnun - TAnan
< 2|z — upl| + Jun —enl] = 0 (n — 00).

Noticing 0 < A < A\, Vn > 0 and using Proposition 2.8(ii), we obtain
(3.19) | Th@n — ol < 2|1\, 2n — xn|| = 0 (n — 00).
We define the mapping ® : C — C by ®z := 11Sx+15Gr+ (1 —v1 —ve)Tha Vo € C

with v1 + 15 < 1 for constants v, € (0,1). Then by Lemma 2.15 and Proposition
2.8(i), we know that @ is nonexpansive and

Fix(®) = Fix(S) NFix(G) NFix(Ty) = ﬁ Fix(S,) NFix(G) N (A+ B)~1(0) (=: 2).
n=0

Taking into account that
@z, — 20|l < 1]|S2n — || + v2||Gzr, — 20 || + (1 — 1 — o) | Trn — 20,
we deduce from (3.15), (3.18) and (3.19) that

(3.20) lim || @z, —z,| = 0.

n—0o0

Let zz = tf(2) + (1 —t)®z Vt € (0,1). Then it follows from Proposition 2.9 that
{zt} converges strongly to a point z* € Fix(®) = {2, which solves the VIP:

((I—f)a", J(z" —p)) <0 Vpe L.
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Also, from (2.1) we get
[zt = 2all® = [1E(f (2) = 2n) + (1 = 1)(P2 — ) |*
< (1= 07Dz — 2l + gt(F(20) — n, Ty — 20))
= (1 =) P2y — xn ||+ qt(f(2t) — 21, Jq(2t — )
+ gtz — xp, Jg(2 — xp))
< (1 =)@z — Pan| + [[P2p — 2pl])?
+ qt(f(z) = 20, Jg (2 — wn)) + qtl|ze — @0 |*
<@ =t)(llze — znll + (| P20 — 207
+ qt(f(2) = 20, Jg (2 — 2n)) + qtl|ze — 20|,
which immediately attains

(1—1)? qt —

(f(zt) = 2, Jg(2n — 21)) < m (2t = znll + | P2y — 20 |)? + - [E
From (3.20), we have
limsup(f(z) — 2, Jg(zn — 2¢))
n—oo
(3.21) 1 pa _ 04 at —
<UDy, g 1M:<(1 D7 +qt 1>M,
qt qt qt

where M is a constant such that [|z; — x,||7? < M for all n > 0 and ¢ € (0,1). Tt is
clear that ((1 —¢)9+qt —1)/qt — 0 as t — 0. Since J; is norm-to-norm uniformly
continuous on bounded subsets of F and z; — z*, we get

| Jg(@n — 2¢) — Jg(xr — ™) = 0 (t —0).
So we obtain
[(f(z1) = 2, Jg(zn — 2¢)) — (f(27) — 27, Jg(2n — 27))]
= [(f(2) = f(27), Jg(@n — 21)) + (f(2") — 2", Jg(2n — 21))
+ (2" = 21, Jg(@n — 20)) — (f(2") — 2", Jy(xn, — 27))]
< [{f(2®) = 2", Jg(zn — z) — Jg(@n — ")) + [(f(2e) — f(@7), Jg(zn — 2¢))]
+ [(@" = 2, Jg(an — 2t))|
<N f @) = 2| Tg(n — 20) = Jg(@n — )|+ (1 + )|z — |||l — 2] 77"
Thus, for each n > 0, we have
tn (20) = 2, Ty — 20)) = (£(@) = 2°, Ty — 7).
From (3.21), as t — 0, it follows that
(3.22) limsup(f(z*) — a*, Jy(zn, — 2™)) < 0.

n—oo

By (C1) and (3.10), we get

Hxn—&-l - xn” = ||anf(xn) + Brun + ’VnGZn - xn”

3.23
B2 allf(@n) = el + llun — @all + [Gon — wall =0 (n = o).
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From (3.22) and (3.23), we have
(3.24) limsup(f(z*) — z*, Jy(zpn41 — z*)) <O.

n—oo
Using Lemma 2.16 and (3.24), we can conclude that I, — 0 as n — oo. Therefore,
Tn, — ¥ as n — oo.

Case 2. Suppose that I{I}, } C {I%} s.t. I}, < [,+1 Vi € N, where N is the
set of all positive integers. Define the mapping 7: N — N by
T(k) == max{i < k:[; < [it1}.

Using Lemma 2.14, we get

iy < Ireyyr and T < Igyqr-

Putting Iy, = ||z — 2*||? Vk € N and using the same inference as in Case 1, we can
obtain

2 li — —
(3.25) kgl;o\lf'«“f(k)ﬂ Trpyll =0

and

timsup(f(2°) — 2", (1 — 7)) <0,
—00

Since I'r(x) < Irry41 and az gy > 0, we conclude from (3.7) that
q

|2r ey — 2*[|7 < f@ﬂf(ﬂﬁ*) — 2%, Jy(Tr ()41 — 7))
and hence
limsup ||z, — %] < 0.
k—o0
Consequently,

Jm iz — 27" = 0.
Using Proposition 2.1 and (3.25), we obtain
[2rky+1 — 2|7 = ll2r @y — 217 < @@y 41 — Trr) Jo(Tr ) — 7))
+ KgllTr k11 — Trpyll?
< qlwr g1 — T @ — 277
+ KgllTr k)41 — Try T = 0 (k= o0).
Owing to I'y < I';(x)41, We get
g — &* |7 <[[z7 (k)11 — 27|
< ey — 29+ qllzr )1 — Trlllzrg) — =19
+ KgllTr k)11 — Tr )l %
It is easy to see from (3.25) that z; — z* as k — oo. This completes the proof. O

We also obtain the strong convergence result for the relaxed Mann-type viscosity
implicit method in a real Hilbert space H. It is well known that ko = 1 [38]. Hence,
by Theorem 3.2 we derive the following conclusion.
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Corollary 3.3. Let ) # C C H be a closed conver set. Let f : C — C be
a o-contraction with constant o € [0,1), and {Sp}72, be a countable family of ¢-
uniformly Lipschitzian pseudocontractive self-mappings on C. Suppose that By, Bo :
C — 28 are both mazimal monotone operators and A; : C — H is o;-inverse-
strongly monotone mapping for i = 1,2. Define the mapping G : C — C by
G = JEI = QAT (I —(oAg) with 0 < G < 20, fori=1,2. Let A: C — H and
B : C — 2% be a o-inverse-strongly monotone mapping and a mazimal monotone
operator, respectively. Assume that 2 := (0", Fix(S,) NFix(G)N(A+B)~1(0) # 0.
For any given xg € C and § € (0,1), let {x,}2°, be the sequence generated by

Wy, = $nGry, + (1 — sp)(Exn + (1 — &) Spwy),
Yn = 0nGuwy, + (1 — 5n)J)€L (I — My A)Guy,
zn = JP (Gwn — My Ayn + 70 (Yn — Guy)),
Tnt1 = anf(xn) + BnGuy, + vnGzy ¥ >0,

where the sequences {ry},{sn}, {an}t, {Bn} {1}, {0n} C (0,1] with cp,+Brn+7n =1
and {\,} C (0,00) are such that the following conditions hold:

(C1) limy, 00 =0 and Y on g Oy = 005

(C2) 0<d6<0,<d<1;

(C3) 0<a<pB,<b<land0<c<s,<d<]1;
(CH 0<r<r, <land0<A<A, <22 <pu<20.

Assume that > > Sup,cp ||Snp12 — Spz|| < 0o for any bounded subset D of C. Let
S : C — C be a mapping defined by Sx = lim,,_,o Spx Vo € C, and suppose that
Fix(S) = N2, Fix(S,). Then x, — z* € 2, which is the unique solution to the
VIP: (I — f)z*,p—x*) > 0 Vp € {2, i.e., the fized point equation x* = Pq f(z*).

Remark 3.4. Compared with the corresponding results in Manaka and Takahashi
[26], Sunthrayuth and Cholamjiak [34], and Ceng et al. [18], our results improve
and extend them in the following aspects.

(i) The problem of solving the VI for both monotone operators A, B with the
FPP constraint of a nonexpansive mapping S in [26, Theorem 3.1] is extended to
develop our problem of solving the GSVI (1.1) with the constraints of the VI for
both accretive operators A, B and the CFPP of {S,}>%, a countable family of /-
uniformly Lipschitzian pseudocontractions. The Mann-type iterative scheme with
weak convergence in [26, Theorem 3.1] is extended to develop our relaxed Mann-type
viscosity implicit method with strong convergence.

(ii) The problem of solving the GSVI (1.1) with the FPP constraint of a strict
pseudocontraction 7" in [18, Theorem 1], is extended to develop our problem of solv-
ing the GSVI (1.1) with the constraints of the VI for two accretive operators A, B
and the CFPP of {S,}°°, a countable family of ¢-uniformly Lipschitzian pseudo-
contractions. The composite viscosity implicit rule in [18, Theorem 1] is extended
to develop our relaxed Mann-type viscosity implicit method.

(iii) The problem of solving the VI for both accretive operators A, B with the
FPP constraint of a nonexpansive mapping S in [34, Theorem 3.3] is extended to
develop our problem of solving the GSVI (1.1) with the constraints of the VI for both
accretive operators A, B and the CEPP of {S,,}°°; a countable family of /-uniformly
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Lipschitzian pseudocontractions. The modified viscosity-type extragradient method
in [34, Theorem 3.3] is extended to develop our relaxed Mann-type viscosity implicit
method.

4. SOME APPLICATIONS

In this section, we give some applications of Corollary 3.3 to important mathe-
matical problems in the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed
convex subset C' C H and a nonlinear monotone operator A : C — H. Consider
the classical VIP of finding u* € C s.t.

(4.1) (Au* ;v —u™) >0 Yov e C.

The solution set of problem (4.1) is denoted by VI(C, A). It is clear that u* € C
solves VIP (4.1) if and only if it solves the fixed point equation u* = Po(u* — AAu™)
with A > 0. Let i¢ be the indicator function of C' defined by

io(u) = 0 if ued,
AR P if uegC.

We use N¢(u) to indicate the normal cone of C at u € H, ie., No(u) = {w €
H: (w,v—u) <0Vv e C}. It is known that i¢ is a proper, convex and lower
semicontinuous function and its subdifferential di¢ is a maximal monotone mapping
[32]. We define the resolvent operator Jf\%c of dic for A > 0 by
JY () = (I + \ic) M (x) Va € H,
where
Jic(u) ={w € H :ic(u) + (w,v —u) <ic(v) Vv e H}
={we H:(w,v—u) <0VveC}=Nc(u) VYueC.
Hence, we get
u= inc(:z) & x—u € AN¢g(u)

S (r—u,v—u) <0 Yvel

< u= Po(z),
where Pg is the metric projection of H onto C. Moreover, we also have (A +

dic)~1(0) = VI(C, A) [35]. Thus, putting B = dic in Corollary 3.3, we obtain the
following result:

Theorem 4.1. Let f, A, A;, B; (i =1,2) and {S,}52, be the same as in Corollary
3.8. Suppose that 2 := (,°,Fix(S,) N Fix(G) N VI(C, A) # 0. For any given
xzo € C and § € (0,1), let {x,}02, be the sequence generated by

Wy, = $pGxy + (1 — sp) (Exn + (1 — &) Spwy,),

Yn = 0n,Guwy, + (1 — 0,) Po(I — My A)Guwy,

2 = Po(Gwn — M Ayn + 1n(yn — Gwy,)),

Tnt1 = anf(@n) + BnGuwn + Gz, VYn >0,
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where the sequences {rn}, {sn}, {an}t, {Bn}: {7}, {0n} C (0, 1] with ap+ fn+yn =1
and {\,} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.3 hold.
Then z, — x* € 2, which is the unique solution to the VIP: (I — f)z*,p — z*) >
0 Vp € £2, i.e., the fized point equation x* = Pq f(x*).

4.2. Application to split feasibility problem. Let H; and Hs be two real
Hilbert spaces. Consider the following split feasibility problem (SFP) of finding

(4.2) ue C subject to Tuec @,

where C' and @) are closed convex subsets of H; and Ho, respectively, and 7 : H; —
Hy is a bounded linear operator with its adjoint 7*. The solution set of SFP is
denoted by U := CNT1Q = {u e C: Tu € Q}. In 1994, Censor and Elfving
[20] first introduced the SFP for modelling inverse problems of radiation therapy
treatment planning in a finite dimensional Hilbert space, which arise from phase
retrieval and in medical image reconstruction.

It is known that z € C solves the SFP (4.2) if and only if z is a solution of the
minimization problem: minyec g(y) == || Ty — PoTyl||>. Note that the function g
is differentiable convex and has the Lipschitzian gradient defined by Vg = T*(I —
Pg)T. Moreover, Vg is #—inverse—stmngly monotone, where || 7|2 is the spectral
radius of 7*T [5]. So, z € C solves the SFP if and only if it solves the variational
inclusion problem of finding z € H; s.t.

0€Vyg(z)+dic(z) & 0€ z+ Adic(z) — (2 — AVyg(2))
& z—AVg(z) € z+ Nic(z)
& z= (T4 Nig)  (z—AVyg(2))
& z=Po(z— AVg(2)).

Now, setting A = Vg, B = di¢c and 0 = H71H2 in Corollary 3.3, we obtain the

following result:

Theorem 4.2. Let f, A;, B; (i = 1,2) and {Sy,}52, be the same as in Corollary
3.8. Assume that 2 :=(,2, Fix(S,) NFix(G) N U # 0. For any given xo € C and
€€ (0,1), let {zn}72 be the sequence generated by

Wy, = $nGxy + (1 — sp)(Exp + (1 — &) Spwy),
Yn = 0,Gwy, + (1 — 6,)Pe(I — N\ T*(I — Po)T )Gy,
zp = Po(Gwn, — MT (I — PQ)Tyn + mn(yn — Gwy,)),
Tnt1 = anf(xn) + BnGuwy + v Gz, V0 >0,

where the sequences {ry},{sn},{an}, {Bn}, {m} {0n} C (0,1] with an+Bn+vn =1
and {\,} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.3 hold

where o = |71”2. Then x, — x* € §2, which is the unique solution to the VIP: {(I —

|
flx*,p—a*) > 0Vp e 2, i.e., the fired point equation x* = Pq f(x*).

4.3. Application to LASSO problem. In this subsection, we first recall the least
absolute shrinkage and selection operator (LASSO) [37], which can be formulated
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as a convex constrained optimization problem:

1
4.3 in — —b||2  subject to <s,
(4.3) min 2|7y —bllz  subj lyllh <'s

where T : H — H is a bounded operator on H, b is a fixed vector in H and s > 0.
Let U be the solution set of LASSO (4.3). The LASSO has received much attention
because of the involvement of the ¢; norm which promotes sparsity, phenomenon of
many practical problems arising in statics model, image compression, compressed
sensing and signal processing theory.

In terms of the optimization theory, one knows that the solution to the LASSO
problem (4.3) is a minimizer of the following convex unconstrained minimization
problem so-called Basis Pursuit denoising problem:

min g(y) + h(y),
yeH

where g(y) := 1| Ty — |3, h(y) := Ally|l1 and A > 0 is a regularization parameter.

It is known that Vg(y) = T*(Ty — b) is ﬁ—inverse—strongly monotone. Hence,
we have that z solves the LASSO if and only if z solves the variational inclusion

problem of finding z € H s.t.
0€Vyg(z)+0h(z) & 0€z4+Nh(z) — (2 — AVg(2))

< z—AVg(z) € z+ A\Oh(2)

& 2= (I+Xoh)" (2 — A\Vyg(2))

&z =prox,(z — AVg(z)),

where prox; (y) is the proximal of h(y) := A||y||1 given by

. 1
proxy(y) = argminye g {Allul + 5llu — yll3} vy e H,
which is separable in indices. Then, for y € H,
proxy(y) = pfOXAH-Hl(y)
= (proxy.(y1), proxy (y2), .-, Proxy | (¥n)),

where proxy.(y;) = sgn(y;) max{|y;| — A, 0} for i =1,2,...,n.
In 2014, Xu [40] suggested the following proximal-gradient algorithm (PGA):

Tp4+1 = proxy (zx — M\eT (T — b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem
(4.3).

Next, putting C' = H, A = Vg, B = 0h and ¢ = ﬁ in Corollary 3.3, we
obtain the following result:

Theorem 4.3. Let f, A;, B; (i =1,2) and {S,}>2 be the same as in Corollary 3.3
with C = H. Assume that 2 = (,_,Fix(S,) N Fix(G) N U # 0. For any given
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xzo € H and € € (0,1), let {z,,}72 be the sequence generated by

Wy, = $nGxy + (1 — sp)(Exn + (1 — £)Spwy),

Yn = 0nGwy, + (1 — 8,)proxy, (Gw, — A\ T*(T Gw, — b)),
zn, = proxy, (Gwy, — AT *(Tyn — b) + 10 (yn — Guy,)),
Tnt1 = anf(xn) + BnGuy, + Gz VY0 >0,

where the sequences {rn}, {sn}, {an}t, {Bn}, { M}, {on} C (0,1] with ap,+Bn+vn =1
and {\,} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.3 hold
where 0 = gy Then xn — x* € (2, which is the unique solution to the VIP: ((I—-

f)z”

1]

[10]

[11]

—_

,p—2*) >0Vp € 2, ie., the fized point equation x* = Pq f(x*).
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