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for each x, y ∈ X such that x ̸= y, where F : (0,∞) → (0,∞) is a strictly increasing
function and ϕ : (0,∞) → (0,∞) satisfies

lim inf
t→s+

ϕ(t) > 0 for each s > 0,

has a fixed point.
Another generalization of the fixed point results of [31, 32] was obtained in [14]

where it was shown that a mapping T : X → X has a fixed point if it satisfies

ϕ(ρ(x, y)) + F2(ρ(T (x), T (y))) ≤ F1(ρ(x, y))

for each x, y ∈ X such that x ̸= y, where F1 : (0,∞) → (0,∞) is an increasing
function, F2 : (0,∞) → (0,∞) is a continuous function, F1(x) ≤ F2(x) for each
x ∈ (0,∞) and the function ϕ : (0,∞) → (0,∞) is as above. In the present paper
we obtain a generalization of all the results mentioned above. Namely, in our case
the mapping T satisfies all the assumptions posed in [32] but the function F is
merely increasing.

2. The first result

Assume that (X, ρ) is a complete metric space endowed with the metric ρ. For
each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For each x ∈ X and each set A ⊂ X set

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.

Assume that T : X → X, F, ϕ : (0,∞) → (0,∞), the function F is increasing,

(2.1) lim inf
t→s+

ϕ(t) > 0 for each s > 0

and that for each x, y ∈ X satisfying x ̸= y, we have

(2.2) ϕ(ρ(x, y)) + F (ρ(T (x), T (y))) ≤ F (ρ(x, y)).

Equation (2.2) implies that for each x, y ∈ X,

(2.3) ρ(T (x), T (y)) ≤ ρ(x, y).

In this section we show that the mapping T has a fixed point. In contrast to the
results known in the literature in our study the function F is merely increasing.

Theorem 2.1. Let x ∈ X. Then the sequence {Tn(x)}∞n=1 converges and its limit
is a fixed point of T .

Proof. We may assume without loss of generality that

Tn(x) ̸= Tn+1(x) for each integer n ≥ 0.

By (2.2) and (2.3), for each integer n ≥ 0,

(2.4) ϕ(ρ(Tn(x), Tn+1(x))) + F (ρ(Tn+1(x), Tn+2(x))) ≤ F (ρ(Tn(x), Tn+1(x))),

(2.5) ρ(Tn+1(x), Tn+2(x)) < ρ(Tn(x), Tn+1(x)).
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We show that

(2.6) lim
n→∞

ρ(Tn(x), Tn+1(x)) = 0.

Assume the contrary. Then by (2.5),

(2.7) γ := lim
n→∞

ρ(Tn(x), Tn+1(x)) > 0.

Set
∆ = lim

s→γ+
ϕ(s) > 0.

By (2.5), (2.7) and the relation above, there exists a natural number n0 such that
for each integer n ≥ n0,

(2.8) ϕ(ρ(Tn(x), Tn+1(x)) ≥ ∆/2.

In view of (2.4) and (2.8), for each integer n ≥ n0,

F (ρ(Tn+1(x), Tn+2(x))) ≤ F (ρ(Tn(x), Tn+1(x)))−∆/2

and for each integer n ≥ n0,

F (ρ(Tn(x), Tn+1(x))) ≤ F (ρ(Tn0(x), Tn0+1(x)))− 2−1∆(n− n0) → −∞.

On the other hand in view of (2.7), for each integer n ≥ n0,

F (ρ(Tn(x), Tn+1(x))) ≥ F (γ).

The contradiction we have reached proves that

lim
n→∞

ρ(Tn(x), Tn+1(x))) = 0.

We show that {Tn(x)}∞n=0 is a Cauchy sequence. Let ϵ ∈ (0, 1). Set

(2.9) ∆0 = lim inf
s→ϵ+

ϕ(s) > 0.

We show that for all sufficiently large natural numbers i, j,

(2.10) ρ(T i(x), T j(x)) ≤ ϵ.

Since the function F is increasing the set of all points where F is discontinuous is
countable. Therefore we may assume without loss of generality that the function F
is continuous at ϵ. Choose

δ ∈ (0, ϵ/4)

such that

(2.11) |F (ξ)− F (ϵ)| ≤ ∆0/8 for each ξ ∈ [ϵ− 4δ, ϵ+ 4δ].

By (2.6), there exists a natural number n0 such that

(2.12) ρ(T i(x), T i+1(x)) ≤ δ for each integer i ≥ n0.

We show that for all sufficiently large natural numbers i, j equation (2.10) holds.
Assume the contrary. Then for each integer k ≥ 1 there exist

(2.13) jk > ik ≥ k + n0

such that

(2.14) ρ(T ik(x), T jk(x)) > ϵ.
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Let k ≥ 1 be an integer. By (2.12)-(2.14),

(2.15) jk > ik + 1.

By (2.15), we may assume without loss of generality that

ρ(T ik(x), T s(x)) ≤ ϵ, s = ik + 1, . . . , jk − 1

and in particular

(2.16) ρ(T ik(x), T jk−1(x)) ≤ ϵ.

It follows from (2.6), (2.13) and (2.16) that

ρ(T ik(x), T jk(x)) ≤ ρ(T ik(x), T jk−1(x)) + ρ(T jk−1(x), T jk(x))

≤ ϵ+ ρ(T jk−1(x), T jk(x))

and

(2.17) lim
k→∞

ρ(T ik(x), T jk(x)) = ϵ.

It follows from (2.1), (2.9), (2.14) and (2.17) that there exists an integer k1 ≥ 1
such that for each integer k > k1,

(2.18) ρ(T ik(x), T jk(x)) ∈ (ϵ, ϵ+ δ),

(2.19) ϕ(ρ(T ik(x), T jk(x))) ≥ ∆0/2.

Let k ≥ k1 be an integer. By (2.2),

(2.20) ϕ(ρ(T ik(x), T jk(x))) + F (ρ(T ik+1(x), T jk+1(x))) ≤ F (ρ(T ik(x), T jk(x))).

Equations (2.11) and (2.18)-(2.20) imply that

∆0/2 + F (ρ(T ik+1(x), T jk+1(x))) ≤ F (ϵ) + ∆/4,

F (ρ(T ik+1(x), T jk+1(x))) ≤ F (ϵ)−∆0/4.

Equation (2.11) implies that

ρ(T ik+1(x), T jk+1(x)) ≤ ϵ− 4δ.

Together with (2.12) this implies that

ρ(T ik(x), T jk(x)) ≤ ρ(T ik(x), T ik+1(x)) + ρ(T ik+1(x), T jk+1(x))

+ρ(T jk(x), T jk+1(x)) ≤ ϵ− 4δ + 2δ.

This contradicts (2.14). The contradiction we have reached proves that (2.10) holds
for all sufficiently large natural numbers i, j. Therefore {xn}∞n=0 is a Cauchy se-
quence and there exists

x∗ = lim
n→∞

Tn(x).

By (2.3) and the equation above,

d(T (x∗), T
n+1(x)) ≤ d(x∗, T

n(x)) → 0

as n → ∞ and x∗ ∈ T (x∗). Theorem 2.1 is proved. □
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3. The second result

Fix θ ∈ X.

Theorem 3.1. Assume that the function F is bounded from above on every interval
[a, b] such that 0 < a < b, x∗ ∈ X, x∗ = T (x∗), for each t > 0,

(3.1) inf{ϕ(s) : s ∈ [t,∞, 0} > 0

and that for each x ∈ X \ {x∗},

(3.2) ϕ(ρ(x, x∗)) + F (ρ(T (x), x∗)) ≤ F (ρ(x, x∗)).

Let M > 0, ϵ ∈ (0, 1). Then there exists an integer n0 ≥ 1 such that for each
x ∈ B(θ,M) and each integer n ≥ n0, we have

ρ(Tn(x), x∗) ≤ ϵ.

Proof. By (3.2), for each y ∈ X,

(3.3) ρ(T (y), x∗) ≤ ρ(y, x∗).

By (3.1) and our assumptions there exist

δ ∈ (0, ϵ/4)

such that

(3.4) ϕ(t) ≥ δ, t ∈ [4−1ϵ,∞)

and

(3.5) M1 > F (t), t ∈ [M, ϵ/4].

Choose a natural number n0 such that

n0δ > M1 − F (4−1ϵ).

Let x ∈ B(θ,M). We show that there exists j ∈ {0, . . . , n0} such that

ρ(T j(x), x∗) ≤ ϵ/4.

Assume the contrary. For each j ∈ {0, . . . , n0},

(3.6) ρ(T j(x), x∗) > ϵ/4.

By (3.2), (3.6) and (3.9),

ϕ(ρ(T j(x), x∗)) + F (ρ(T j+1(x), x∗)) ≤ F (ρ(T j(x), x∗)),

δ + F (ρ(T j+1(x), x∗)) ≤ F (ρ(T j+1(x), x∗)),

F (ϵ/4) ≤ F (ρ(Tn0(x), x∗) ≤ F (ρ(T j(x), x∗))− n0δ ≤ M1 − n0δ.

This contradicts (3.6). The contradiction we have reached proves that there exists
j ∈ {0, . . . , n0} for which

ρ(T j(x), x∗) ≤ ϵ/4, ρ(T i(x), x∗) ≤ ϵ

for each integer i ≥ n0. Theorem 3.1 is proved. □
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