
Applied Analysis and Optimization Yokohama Publishers

Copyright 2024C
ISSN 2189-1664 Online Journal  



298 Y. X. ZHANG, Y. M. GUAN, AND R. X. YANG

element x∗ such that

(1.3) x∗ ∈ C =

t∩
i=1

Ci, Ax∗ ∈ Q =

r∩
j=1

Qj ,

where Ci ⊂ H1, i = 1, 2, . . . , t, and Qj ⊂ H2, j = 1, 2, . . . , r are nonempty closed
and convex sets. When t = r = 1, the MSSFP (1.3) becomes the SFP.
In 2020, Reich and Tuyen [20] proposed the following split feasibility problem

with multiple output sets in Hilbert spaces. Let H,Hj , j = 1, 2, . . . , r be real Hilbert
spaces. Let Aj : H → Hj , j = 1, 2, . . . , r, be bounded linear operators. In addition,
let C and Qj be nonempty, closed,and convex subsets of H and Hj , j = 1, 2, . . . , r,
respectively. The problem is to find an element x∗ such that

(1.4) x∗ ∈ S = C ∩ (

r∩
j=1

A−1
j (Qj)) ̸= ∅.

In other words, the aim is to find an x∗ ∈ C such that Ajx
∗ ∈ Qj for all j =

1, 2, . . . , r. When r = 1, the problem (1.4) becomes the SFP. For more information
about this problem, please refer to references [23, 21, 14, 22].

In order to solve problem (1.4), Reich and Tuyen [20] introduced the following
iterative methods: For any x0, y0 ∈ C, let {xn} and {yn} be the two sequences
generated by

xn+1 = PC [xn − γn

r∑
j=1

A∗
j (I − PQj )Ajxn],(1.5)

yn+1 = αnf(yn) + (1− αn)PC [yn − γn

r∑
j=1

A∗
j (I − PQj )Ajyn].(1.6)

where f : C → C is a strict contraction with the contraction coefficient c ∈
[0, 1), {γn} ⊂ (0,∞) and {αn} ⊂ (0, 1). They established the weak and strong
convergence of iterative methods (1.5) and (1.6) under appropriate conditions, re-
spectively.
Motivated by the above results, in this paper, we slightly generalize the prob-

lem (1.4) and propose two algorithms with strong convergence. The problem is
formulated as follows: Let H, Hj , j = 1, 2, . . . , r, be real Hilbert spaces and let
Aj : H → Hj , j = 1, 2, . . . , r, be bounded linear operators. Let Ci and Qj be
nonempty, closed and convex subsets of H and Hj , j = 1, 2, . . . , r, respectively.
Find an element x∗, such that

(1.7) x∗ ∈ S =
t∩

i=1

Ci ∩ (
r∩

j=1

A−1
j (Qj)).

That is to say, x∗ ∈ Ci and Ajx
∗ ∈ Qj for all i = 1, 2, . . . , t, j = 1, 2 . . . , r.

Remark 1.1. (i) When t = 1, r = 1, the problem (1.7) becomes the SFP.
(ii) When t = 1, the problem (1.7) becomes the split feasibility problem with mul-
tiple output sets (1.4).
(iii) When Aj ≡ A,Hj ≡ H1, the problem (1.7) becomes MSSFP (1.3).
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It is already known that the MSSFP (1.3) is equivalent to the following mini-
mization problem:

(1.8) min f(x) =
1

2

t∑
i=1

li∥x− PCi(x)∥2 +
1

2

r∑
j=1

λj∥Ax− PQj (Ax)∥2,

where PCi and PQj are the metric projections onto Ci and Qj , respectively, and

li, i = 1, . . . , t and λj , j = 1, . . . , r are all positive constants such that
∑t

i=1 li +∑r
j=1 λj = 1. Similarly, the problem (1.7) is equivalent to the following minimiza-

tion problem:

(1.9) min f(x) =
1

2

t∑
i=1

li∥x− PCi(x)∥2 +
1

2

r∑
j=1

λj∥Ajx− PQj (Ajx)∥2.

So the gradient algorithm yields the following algorithm

(1.10) xn+1 = xn − τn∇f(xn),

where

(1.11) ∇f(x) =
t∑

i=1

li(x− PCi(x)) +
r∑

j=1

λjA
∗
j (I − PQj )Ajx

is
∑t

i=1 li +
∑r

j=1 λj ||Aj ||2 - Lipschitz continuous, and the step size τn ≥ 0. One
can prove the weak convergence of this algorithm under certain conditions on τn.
For numerical calculations, if the sets Ci and Qj are relatively simple sets, such

as ball or half spaces, etc, PCi and PQj have explicit expressions. However PCi and
PQj have no explicit expressions in general. So many authors adopted the relaxed
projection which is proposed by Yang [29] for solving SFP in finite dimensional
Hilbert spaces. The algorithm as follows:

(1.12) xn+1 = PCn(xn − αnA
∗(I − PQn)Axn),

where Cn and Qn, n ≥ 1, are closed half spaces containing C and Q, respectively:
(1.13)
Cn = {x ∈ H1 : c(xn) ≤ ⟨ξn, xn − x⟩}, Qn = {y ∈ H2 : q(Axn) ≤ ⟨ζn, Axn − y⟩},

where ξn ∈ ∂c(xn) and ζ ∈ ∂q(Axn), and c(·) and q(·) are weakly lower semi-
continuous and convex functions such that

(1.14) C = {x ∈ H1 : c(x) ≤ 0}, Q = {y ∈ H2 : q(y) ≤ 0}.

We adopt the same idea to iteration scheme (1.10). Set

(1.15) Ci = {x ∈ H : ci(x) ≤ 0}, Qj = {y ∈ Hj : qj(y) ≤ 0},

where ci(x), i = 1, 2, . . . , t and qj(y), j = 1, 2, . . . , r are weakly lower semi-continuous
and convex functions. Define a series of closed half spaces Cn

i and Qn
j , n ≥ 1, by

(1.16)
Cn
i = {x ∈ H : ci(xn) ≤ ⟨ξni , xn − x⟩},

Qn
j = {y ∈ Hj : qj(Ajxn) ≤ ⟨ζnj , Ajxn − y⟩},

where ξni ∈ ∂ci(xn), i = 1, 2, . . . , t and ζnj ∈ ∂qj(Ajxn), j = 1, 2, . . . r.
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It is easy to verify that Cn
i ⊃ Ci, i = 1, 2, . . . , t and Qn

j ⊃ Qj , j = 1, 2, . . . , r,
n ≥ 1. The iteration scheme becomes

(1.17) xn+1 = xn − τ∇f(xn),

where

(1.18) fn(x) =
1

2

t∑
i=1

li∥x− PCn
i
(x)∥2 + 1

2

r∑
j=1

λj∥Ajx− PQn
j
(Ajx)∥2,

(1.19) ∇fn(x) =

t∑
i=1

li(x− PCn
i
(x)) +

r∑
j=1

λjA
∗
j (I − PQn

j
)Ajx.

To avoid the complex work on norm estimation of ||Aj ||, several choice of the step
size are proposed. For instance, Yang [30] introduced the self-adaptive step size in
the CQ algorithms below

(1.20) αn =
ρn

∥∇f(xn)∥
,

where {ρn} is a sequence of positive real numbers satisfying
∑∞

n=0 ρn = 0 and∑∞
n=0 ρ

2
n < +∞, f(x) = 1

2∥(I − PQ)Ax∥2. In 2012, López et al.[15] proposed the
following self-adaptive step size in the relaxed CQ algorithms

(1.21) αn =
ρnfn(xn)

∥∇fn(xn)∥2
,

where ρn ∈ (0, 4),fn(x) = 1
2∥(I − PQn)Ax∥2. Some scholar, such as Gibali et al.

([9]) applied the Armijo line search to obtain the step size.
To achieve a faster convergence of the algorithms, many references have inves-

tigated the inertial technique. Suantai et al.[24] introduced the following inertial
relaxed CQ algorithm for solving the multiple-sets split feasibility problems,

(1.22)
xn+1 = αnu+ (1− αn)(yn − τn∇fn(yn)),

yn = xn + βn(xn − xn−1), n ≥ 1,

where βn is the inertial coefficient, fn(yn) = 1
2

∑t
i=1 li∥yn − PCn

i
(yn)∥2

+1
2

∑r
j=1 λj∥Ajyn − PQn

j
(Ajyn)∥2, and τn = ρnfn(yn)

∥∇fn(yn)∥2 , n ≥ 1.

Another issue in the research of the algorithms is the bounded perturbation re-
silience. For example, Guo et al.[10] presented the following proximal gradient
algorithm with perturbation,

(1.23) xn+1 = proxλng(I − λkA∇f + e)(xn),

and they proved that the sequence {xn} generated by the algorithm (1.23) con-
verges weakly to a solution. For more information about the bounded perturbation
resilience of the algorithms, please refer to references [27, 8], etc.
Motivated by the previous works, we propose the following iterative algorithm

for solving problem(1.7),

(1.24)
yn = xn + en, n ≥ 1,

xn+1 = αng(yn) + (1− αn)(yn − τn∇fn(yn)),
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where en denotes the perturbation, {αn} ⊂ (0, 1), g : H → H is a strict contraction
with the contraction coefficient c ∈ [0, 1), fn is defined in (1.18), and τn is the step
size, which has two different choices in Section 3.
The rest of the paper is arranged as follows. In Section 2, some useful concepts

and lemmas for our analysis are reviewed. We present our algorithms and prove their
strong convergence in Section 3. Finally, in Section 4, we exhibit several numerical
examples to illustrate our results and observe the performance of our algorithms.

2. Preliminaries

In this section, we present some basic concepts and lemmas which will be used
in this paper. Let H be a real Hilbert space, and its inner product and norm be
expressed by ⟨·, ·⟩ and ∥·∥, respectively. Besides, we use the symbol xn → x (xn ⇀ x)
to express that the sequence {xn} converges strongly (weakly) to x. Recall that an
operator T : H → H is said to be nonexpansive if, for every x, y ∈ H,

(2.1) ∥Tx− Ty∥ ≤ ∥x− y∥;
T : H → H is said to be firmly nonexpansive if, for every x, y ∈ H,

(2.2) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2,
where I is the identity operator. It can be proved that (2.2) is equivalent to the
following inequality

(2.3) ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩,
for every x, y ∈ H. It is known that T is firmly nonexpansive if and only if I − T
is firmly nonexpansive.
Let C be a nonempty, closed and convex subset of H. The metric projection

PC : H → C is an important tool for our work in this paper which is defined by

(2.4) PC(x) = argmin
y∈C

∥x− y∥2, x ∈ C.

Moreover, we have

(2.5) ⟨x− PC(x), y − PC(x)⟩ ≤ 0, ∀x ∈ H, y ∈ C.

It is well known that PC is a firmly nonexpansive operator.

Definition 2.1. Let φ : H → R be a convex function. The subdifferential of φ at
x is defined as

(2.6) ∂φ(x) = {ξ ∈ H : φ(y) ≥ φ(x) + ⟨ξ, y − x⟩, ∀y ∈ H}.

Definition 2.2. A function φ : H → R is said to be weakly lower semicontinuous
at x if xn converges weakly to x implies

(2.7) φ(x) ≤ lim inf
n→∞

φ(xn).

Definition 2.3. An algorithmic operator T is said to be bounded perturbations
resilient if the iterations xn+1 = Txn and xn+1 = T (xn + βnen) all converge, where
βn ≥ 0 for all n ≥ 0 , {en} is a sequence in H, and M ∈ R and satisfies

∞∑
n=0

βn < +∞, ∥en∥ ≤ M.
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Lemma 2.4. [5] Let {Ci}ti=1 and {Qj}rj=1 be closed convex subsets of H1 and H2,

respectively, A : H1 → H2 is a bounded linear operator. Let f(x) be the function
defined as follows

(2.8) f(x) =
1

2

t∑
i=1

li∥x− PCi(x)∥2 +
1

2

r∑
j=1

λj∥Ax− PQj (Ax)∥2,

Then ∇f(x) is Lipschitz continuous with Lipschitz constant L =
t∑

i=1
li+∥A∥2

r∑
j=1

λj.

Lemma 2.5 ([28]). Let {an} and {cn}be sequences of nonnegative real numbers such
that

(2.9) an+1 ≤ (1− αn)an + bn + cn, n ≥ 1,

where {αn} is a sequence in (0, 1) and {bn} is a real sequence. Suppose that∑∞
n=1 cn < ∞. Then the following results hold:

(1) If bn ≤ αnM for some M ≥ 0, then {an} is a bounded sequence.
(2) If

∑∞
n=1 αn = ∞ and lim sup

n→∞
bn
αn

≤ 0, then lim
n→∞

an = 0.

Lemma 2.6 ([11]). Assume that {sn} is a sequence of nonnegative real numbers
such that

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 1,(2.10)

sn+1 ≤ sn − ηn + γn, n ≥ 1,(2.11)

where {αn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers,
{δn} and {γn} are two sequences in R such that

(1)
∑∞

n=1 αn = ∞;
(2) lim

n→∞
γn = 0;

(3) lim
k→∞

ηnk
= 0 implies lim sup

k→∞
δnk

≤ 0 for any subsequence {nk} of {n}.

Then lim
n→∞

sn = 0.

3. Main results

In this section, we present the two algorithms for the problem (1.7) and prove
their strong convergence. Throughout this section, we assume that the following
three assumptions hold.

(A1) The solution set S of (1.7) is nonempty.
(A2) The functions ci : H1 → R and qj : H2 → R defined in (1.15) are convex

and weakly lower semicontinuous functions.
(A3) For any x ∈ H and yj ∈ Hj , at least one subgradient ξi ∈ ∂ci(x) and

ηj ∈ ∂qj(yj) can be calculated. The subdifferentials ∂ci and ∂qj are bounded
on the bounded sets.

Algorithm 1.

(3.1)
yn = xn + en, n ≥ 1,

xn+1 = αng(yn) + (1− αn)(yn − τn∇fn(yn)),
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where {αn} ⊂ (0, 1), ∇fn is given in (1.19), τn is the step size, g : H → H is a strict
contraction mapping with the contraction coefficient c ∈ [0, 1).

Now we establish strong convergence theorems for Algorithm 1.

Theorem 3.1. Let H and Hj be real Hilbert spaces, Ci, i = 1, 2, . . . , t and Qj , j =
1, 2, . . . , r be nonempty, closed and convex subsets of H and Hj, respectively. Let
Aj : H → Hj , j = 1, 2, . . . , r be bounded linear operators with their adjoint denoted
by A∗

j . Assume that {αn}, {en} and τn satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 0 < a ≤ τn ≤ b < min{ 1
t max
1≤i≤t

li
, 1
r max
1≤j≤r

∥Aj∥2 max
1≤j≤r

λj
};

(C3)
∑∞

n=1 ∥en∥ < +∞, lim
n→∞

en
αn

= 0.

Then the sequence {xn} generated by Algorithm 1 converges strongly to z ∈ S,

where S =
∩t

i=1Ci∩(
∩r

j=1A
−1
j (Qj)), and z is the unique solution to the variational

inequality:

(3.2) ⟨(I − g)(z), y − z⟩ ≥ 0, ∀y ∈ S.

Proof. Note that g : H → H is contractive, so PSg is also contractive, thus PSg has
a unique fixed point z, which by (2.5) is the unique solution of (3.2).
It is obvious that

(3.3) ∥yn − τn∇fn(yn)− z∥2 = ∥yn − z∥2 + τ2n∥∇fn(yn)∥2 − 2τn⟨∇fn(yn), yn − z⟩
and that

(3.4)

∥∇fn(yn)∥2 = ∥
t∑

i=1

li(I − PCn
i
)yn +

r∑
j=1

λjA
∗
j (I − PQn

j
)Ajyn∥2

≤ 2∥
t∑

i=1

li(I − PCn
i
)yn∥2 + 2∥

r∑
j=1

λjA
∗
j (I − PQn

j
)Ajyn∥2

≤ 2t
t∑

i=1

l2i ∥(I − PCn
i
)yn∥2 + 2r

r∑
j=1

λ2
j∥A∗

j (I − PQn
j
)Ajyn∥2.

The definition of fn and the operators I −PQn
j
being firmly nonexpansive ensure

that

(3.5)

⟨∇fn(yn), yn − z⟩

= ⟨
t∑

i=1

li(I − PCn
i
)yn +

r∑
j=1

λjA
∗
j (I − PQn

j
)Ajyn, yn − z⟩

=

t∑
i=1

li⟨(I − PCn
i
)yn, yn − z⟩+

r∑
j=1

λj⟨(I − PQn
j
)Ajyn, Aj(yn − z)⟩

≥
t∑

i=1

li∥(I − PCn
i
)yn∥2 +

r∑
j=1

λj∥(I − PQn
j
)Ajyn∥2.
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Substituting the inequality (3.4) and (3.5) into (3.3), we obtain
(3.6)

∥yn − τn∇fn(yn)− z∥2 ≤ ∥yn − z∥2 + τ2n(2t
t∑

i=1

l2i ∥(I − PCn
i
)yn∥2 + 2r

r∑
j=1

λ2
j∥A∗

j (I − PQn
j
)Ajyn∥2)

− 2τn(

t∑
i=1

li∥(I − PCn
i
)yn∥2 +

r∑
j=1

λj∥(I − PQn
j
)Ajyn∥2)

≤ ∥yn − z∥2 − τn(2− 2tτn max
1≤i≤t

li)

t∑
i=1

li∥(I − PCn
i
)yn∥2

− τn(2− 2rτn max
1≤j≤r

∥Aj∥2 max
1≤j≤r

λj)
r∑

j=1

λj∥(I − PQn
j
)Ajyn∥2.

Thus we have from (C2) that

(3.7) ∥yn − τn∇fn(yn)− z∥ ≤ ∥yn − z∥.

The iterative scheme of Algorithm 1 shows that

(3.8) ∥yn − z∥ = ∥xn + en − z∥ ≤ ∥xn − z∥+ ∥en∥,

and hence

(3.9)

∥xn+1 − z∥ = ∥αng(yn) + (1− αn)(yn − τn∇fn(yn))− z∥
≤ αn∥g(yn)− z∥+ (1− αn)∥yn − τn∇fn(yn)− z∥
≤ αnc∥yn − z∥+ αn∥g(z)− z∥+ (1− αn)∥yn − z∥
= [1− αn(1− c)]∥yn − z∥+ αn∥g(z)− z∥
≤ [1− αn(1− c)]∥xn − z∥+ [1− αn(1− c)]∥en∥+ αn∥g(z)− z∥
= [1− αn(1− c)]∥xn − z∥

+ αn(1− c)
∥g(z)− z∥+ 1−αn(1−c)

αn
∥en∥

1− c
.

According to (C3), we see that µn = 1−αn(1−c)
αn

∥en∥ → 0. Hence the sequence

{µn} is bounded. Put

(3.10) (1− c)M = max{∥g(z)− z∥, sup
n≥1

{µn}},

then (3.9) can be rewritten as follows:

(3.11) ∥xn+1 − z∥ ≤ [1− αn(1− c)]∥xn − z∥+ αn(1− c)M.

Applying Lemma 2.5 (1) and (C3), we conclude that {xn} is bounded, and hence
{yn} is bounded.
Next, we calculate the following estimates:

∥yn − z∥2 = ∥xn + en − z∥2 = ∥xn − z∥2 + 2⟨xn − z, en⟩+ ∥en∥2.(3.12)

⟨xn − z, en⟩ = −1

2
∥xn − z − en∥2 +

1

2
∥xn − z∥2 + 1

2
∥en∥2.(3.13)
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Combining (3.12) and (3.13), we obtain:

(3.14)
∥yn − z∥2 = ∥xn − z∥2 + (−∥xn − z − en∥2 + ∥xn − z∥2 + ∥en∥2) + ∥en∥2

= ∥xn − z∥2 + (∥xn − z∥2 − ∥xn − z − en∥2) + 2∥en∥2.

By (3.6), we obtain:

(3.15)

∥xn+1 − z∥2 = ⟨αng(yn) + (1− αn)(yn − τn∇fn(yn))− z, xn+1 − z⟩
= (1− αn)⟨yn − τn∇fn(yn)− z, xn+1 − z⟩
+ αn⟨g(yn)− z, xn+1 − z⟩

≤ 1− αn

2
(∥xn+1 − z∥2 + ∥yn − τn∇fn(yn)− z∥2)

+
αn

2
(||g(yn)− g(z)||2 + ||xn+1 − z||2)

+ αn⟨g(z)− z, xn+1 − z⟩

≤ 1− αn

2
(∥xn+1 − z∥2 + ∥yn − τn∇fn(yn)− z∥2)

+
αn

2
(c2∥yn − z∥2 + ∥xn+1 − z∥2) + αn⟨g(z)− z, xn+1 − z⟩

≤ 1− αn

2
(∥xn+1 − z∥2 + ∥yn − z∥2

− τn(2− 2tτn max
1≤i≤t

li)
t∑

i=1

li∥(I − PCn
i
)yn∥2

− τn(2− 2rτn max
1≤j≤r

∥Aj∥2 max
1≤j≤r

λj)
r∑

j=1

λj∥(I − PQn
j
)Ajyn∥2)

+
αn

2
(c∥yn − z∥2 + ∥xn+1 − z∥2) + αn⟨g(z)− z, xn+1 − z⟩.

Let

(3.16)

En = τn(2− 2tτn max
1≤i≤t

li)

t∑
i=1

li∥(I − PCn
i
)yn∥2

+ τn(2− 2rτn max
1≤j≤r

∥Aj∥2 max
1≤j≤r

λj)

r∑
j=1

λj∥(I − PQn
j
)Ajyn∥2.

Then (3.15) can be rewritten as follows:

(3.17)

∥xn+1 − z∥2 ≤ (1− αn)∥yn − z∥2 − (1− αn)En + αnc∥yn − z∥2

+ 2αn⟨g(z)− z, xn+1 − z⟩
= [1− αn(1− c)]∥yn − z∥2 − (1− αn)En

+ 2αn⟨g(z)− z, xn+1 − z⟩.
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Combining (3.14) and (3.17), we obtain

(3.18)

∥xn+1 − z∥2 ≤ [1− αn(1− c)][∥xn − z∥2 + (∥xn − z∥2 − ∥xn − z − en∥2)
+ 2∥en∥2]
− (1− αn)En + 2αn⟨g(z)− z, xn+1 − z⟩

≤ [1− αn(1− c)]∥xn − z∥2

+ [1− αn(1− c)]∥en∥(∥xn − z∥+ ∥xn − z − en∥)
+ 2[1− αn(1− c)]∥en∥2 − (1− αn)En

+ 2αn⟨g(z)− z, xn+1 − z⟩.

Set

(3.19)

sn = ∥xn − z∥2;
γn = [1− αn(1− c)]∥en∥(∥xn − z∥+ ∥xn − z − en∥)

+ 2[1− αn(1− c)]∥en∥2

+ 2αn⟨g(z)− z, xn+1 − z⟩;

δn = [1− αn(1− c)]
∥en∥

αn(1− c)
(∥xn − z∥+ ∥xn − z − en∥)

+ 2[1− αn(1− c)]
∥en∥2

αn(1− c)
+

2

1− c
⟨g(z)− z, xn+1 − z⟩;

ηn = (1− αn)En.

Then ηn > 0, limn→∞ γn = 0, and (3.18) and (3.19) can be rewritten as the following
two inequalities

sn+1 ≤ [1− αn(1− c)]sn + αn(1− c)δn, n ≥ 1,

sn+1 ≤ sn − ηn + γn, n ≥ 1.

Let {nk} be a subsequence of {n} and suppose that

lim sup
k→∞

ηnk
≤ 0,

i.e.,

lim sup
k→∞

(1− αnk
)Enk

≤ 0.

Then

Enk
→ 0, k → ∞,

and hence

lim
k→∞

∥(I − PC
nk
i
)ynk

∥ = 0, i = 1, 2, . . . , t,(3.20)

lim
k→∞

∥(I − PQ
nk
j
)Ajynk

∥ = 0, j = 1, 2, . . . , r.(3.21)

Since ∂qj , j = 1, 2, . . . , r are bounded on bounded sets and {xnk
} is bounded,

there exists a constant µ > 0 such that ∥ζnk
j ∥ ≤ µ, j = 1, 2, . . . , r, k ∈ N, where
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ζnk
j ∈ ∂qj(ynk

). Note that PQ
nk
j
Ajynk

∈ PQ
nk
j
, (3.21) reads that

(3.22)
qj(Ajynk

) ≤ ⟨ζnk
j , Ajynk

− PQ
nk
j
(Ajynk

)⟩
≤ µ∥(I − PQ

nk
j
)Ajynk

∥ → 0, k → ∞.

Since {ynk
} is bounded, there exists a subsequence {ynkm

} ⊂ {ynk
} such that

ynkm
⇀ x∗ and

(3.23) lim sup
k→∞

⟨g(z)− z, ynk
− z⟩ = lim

m→∞
⟨g(z)− z, ynkm

− z⟩.

Notice that Ajynkm
⇀ Ajx

∗ and qj is weakly lower semi-continuous, by (3.22) we
have

(3.24) qj(Ajx
∗) ≤ lim inf

m→∞
qj(Ajynkm

) ≤ 0.

Hence Ajx
∗ ∈ Qj .

We next prove that x∗ ∈ Ci, i = 1, . . . , t. By the definition of Cnk
i , i = 1, . . . , t,

the assumption (A3) and (3.20), there exists a constant δ > 0 such that

(3.25) ci(ynk
) ≤ ⟨ξnk

i , ynk
− PC

nk
i
(ynk

)⟩ ≤ δ∥ynk
− PC

nk
i
(ynk

)∥ → 0, k → ∞.

Then the weak lower semi-continuity of ci and the existence of {ynkm
} such that

ynkm
⇀ x∗ yields that

(3.26) ci(x
∗) ≤ lim inf

m→∞
ci(ynkm

) ≤ 0.

Therefore x∗ ∈ Ci, i = 1, . . . , t. So x∗ ∈ S.
From (2.5) and (3.23) we obtain:

(3.27)
lim sup
k→∞

⟨g(z)− z, ynk
− z⟩ = lim

m→∞
⟨g(z)− z, ynkm

− z⟩

= ⟨g(z)− z, x∗ − z⟩ ≤ 0.

On the other hand, by (C3), we have

(3.28) ∥yn − xn∥ = ∥en∥ → 0, n → ∞.

A direct estimation gives that

∥xn+1 − xn∥
= ∥αn(g(yn)− xn) + (1− αn)(yn − τn∇fn(yn)− xn)∥
≤ αn∥g(yn)− xn∥+ (1− αn)∥yn − xn∥+ (1− αn)τn∥∇fn(yn)∥.

Thus

(3.29) ∥xnk+1 − xnk
∥ → 0, k → ∞.

From (3.27), (3.28) and (3.29), we derive that

(3.30) lim sup
k→∞

⟨g(z)− z, xnk+1 − z⟩ ≤ 0.

Then (C3) and (3.30) implies that

(3.31) lim sup
k→∞

δnk
≤ 0.

Using Lemma 2.6, we conclude that xn → z. The proof is complete.
□
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Next, we present the algorithm with the self-adaptive step size.

Algorithm 2.

(3.32)
yn = xn + en,

xn+1 = αng(yn) + (1− αn)(yn − τn∇fn(yn)), n ≥ 1,

where {αn} ⊂ (0, 1), ∇fn is given in (1.19), τn = ρnfn(yn)
∥∇fn(yn)∥2+εn

, {εn} is a sequence

of positive numbers, and g : H → H is a strict contraction mapping H into itself
with the contraction coefficient c ∈ [0, 1).

The strong convergence of Algorithm 2 is established in the following theorem.

Theorem 3.2. Let H and Hj be real Hilbert spaces, {Ci}ti=1 and {Qj}rj=1 be
nonempty, closed and convex subsets of H and Hj. Let Aj : H → Hj be a bounded
linear operator with its adjoint A∗

j . Assume that {αn}, {en}, {ρn} satisfy the fol-
lowing conditions:

(C4) lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞;

(C5) inf
n∈N

ρn(4− ρn) > 0;

(C6)
∑∞

n=1 ∥en∥ < +∞, lim
n→∞

||en||
αn

= 0;

(C7) {εn} is bounded.

Then the sequence {xn} generated by Algorithm 2 converges strongly to z ∈ S,

where S =
∩t

i=1Ci∩(
∩r

j=1A
−1
j (Qj)), and z is the unique solution to the variational

inequality:

(3.33) ⟨(I − g)(z), y − z⟩ ≥ 0 ∀y ∈ S.

Proof. Similar with the proof of Theorem 3.1, the variational inequality(3.33) has
a unique solution, denoted by z, such that z = PSg(z).

Since I − PCn
i
, i = 1, 2, . . . , t and I − PQn

j
, j = 1, 2, . . . , r are firmly nonexpansive

and ∇fn(z) = 0 for every n ∈ N, we have

(3.34)

⟨∇fn(yn), yn − z⟩

= ⟨
t∑

i=1

li(yn − PCn
i
(yn)) +

r∑
j=1

λjA
∗
j (I − PQn

j
)Ajyn, yn − z⟩

=
t∑

i=1

li⟨(I − PCn
i
)yn, yn − z⟩+

r∑
j=1

λj⟨(I − PQn
j
)Ajyn, Ajyn −Ajz⟩

≥
t∑

i=1

li∥(I − PCn
i
)yn∥2 +

r∑
j=1

λj∥(I − PQn
j
)Ajyn∥2

= 2fn(yn).
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So we obtain that

(3.35)

∥yn − τn∇fn(yn)− z∥2

= ∥yn − z∥2 + τ2n∥∇fn(yn)∥2 − 2τn⟨∇fn(yn), yn − z⟩
≤ ∥yn − z∥2 + τ2n∥∇fn(yn)∥2 − 4τnfn(yn)

= ∥yn − z∥2 + ρ2n
f2
n(yn)

(∥∇fn(yn)∥2 + εn)2
∥∇fn(yn)∥2 − 4ρn

f2
n(yn)

∥∇fn(yn)∥2 + εn

≤ ∥yn − z∥2 + ρ2n
f2
n(yn)

∥∇fn(yn)∥2 + εn
− 4ρn

f2
n(yn)

∥∇fn(yn)∥2 + εn

= ∥yn − z∥2 − ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + εn
.

Since ρn ∈ (0, 4), ∀n ∈ N, it follows that

(3.36) ∥yn − τn∇fn(yn)− z∥ ≤ ∥yn − z∥.

Similar with the proof of Theorem 3.1, it holds that

(3.37) ∥xn+1−z∥ ≤ [1−αn(1−c)]∥xn−z∥+αn(1−c)
∥g(z)− z∥+ 1−αn(1−c)

αn
∥en∥

1− c
,

and thus {xn} and {yn} are bounded.
By Lemma 2.4, we see similarly that

(3.38) ∥∇fn(yn)∥ = ∥∇fn(yn)−∇fn(z)∥ ≤ L∥yn − z∥,

where L =
∑t

i=1 li +
∑r

j=1 λj∥Aj∥2. That means {∇fn(yn)} is also bounded.

Similar with (3.15), we have by (3.35) that

(3.39)

∥xn+1 − z∥2

= (1− αn)⟨yn − τn∇fn(yn)− z, xn+1 − z⟩+ αn⟨g(yn)− z, xn+1 − z⟩

≤ 1− αn

2
(∥xn+1 − z∥2 + ∥yn − τn∇fn(yn)− z∥2)

+
αn

2
(∥g(yn)− g(z)∥2 + ∥xn+1 − z∥2) + αn⟨g(z)− z, xn+1 − z⟩

≤ 1− αn

2
(∥xn+1 − z∥2 + ∥yn − z∥2 − ρn(4− ρn)

f2
n(yn)

∥∇fn(yn)∥2 + εn
)

+
αn

2
(c∥yn − z∥2 + ∥xn+1 − z∥2) + αn⟨g(z)− z, xn+1 − z⟩,

which is rearranged to obtain
(3.40)

∥xn+1 − z∥2 = [1− αn(1− c)]∥yn − z∥2 − (1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + εn
+ 2αn⟨g(z)− z, xn+1 − z⟩.
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Substituting (3.14) into (3.40) yields that
(3.41)

∥xn+1 − z∥2

≤ [1− αn(1− c)][∥xn − z∥2 + (∥xn − z∥2 − ∥xn − z − en∥2) + 2∥en∥2]

− (1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + εn
+ 2αn⟨g(z)− z, xn+1 − z⟩

≤ [1− αn(1− c)]∥xn − z∥2 + [1− αn(1− c)]∥en∥(∥xn − z∥+ ∥xn − z − en∥)

+ 2[1− αn(1− c)]∥en∥2 − (1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + εn
+ 2αn⟨g(z)− z, xn+1 − z⟩.

Set
(3.42)

sn = ∥xn − z∥2;
γn = [1− αn(1− c)]∥en∥(∥xn − z∥+ ∥xn − z − en∥) + 2[1− αn(1− c)]∥en∥2

+ 2αn⟨g(z)− z, xn+1 − z⟩;

δn = [1− αn(1− c)]
∥en∥

αn(1− c)
(∥xn − z∥+ ∥xn − z − en∥)

+ 2[1− αn(1− c)]
∥en∥2

αn(1− c)
+

2

1− c
⟨g(z)− z, xn+1 − z⟩;

ηn = (1− αn)ρn(4− ρn)
f2
n(yn)

∥∇fn(yn)∥2 + εn
.

Then (3.42) can be rewritten as follows:

sn+1 ≤ [1− αn(1− c)]sn + αn(1− c)δn, n ≥ 1,

sn+1 ≤ sn − ηn + γn, n ≥ 1.

Let {nk} be a subsequence of {n} and suppose that

lim sup
k→∞

ηnk
≤ 0.

That is

lim sup
k→∞

(1− αnk
)ρnk

(4− ρnk
)

f2
nk
(ynk

)

∥∇fnk
(ynk

)∥2 + εn
≤ 0,

which by conditions (C4) and (C5) implies

lim
k→∞

f2
nk
(ynk

)

∥∇fnk
(ynk

)∥2 + εn
= 0.

Since {∥∇fnk
(ynk

)∥2 + εn} is bounded, then fnk
(ynk

) → 0, k → ∞, which indicates
that

lim
k→∞

∥(I − PC
nk
i
)ynk

∥ = 0, i = 1, 2, . . . , t,(3.43)

lim
k→∞

∥(I − PQ
nk
j
)Ajynk

∥ = 0, j = 1, 2, . . . , r.(3.44)
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Similar proof as Theorem 3.1 insures that any weak cluster x∗ of {ynk
} satisfies

x∗ ∈ Ci, i = 1, 2, . . . , t, Ajx
∗ ∈ Qj , j = 1, 2, . . . , r, and hence x∗ ∈ S. It follows that

(3.45)
lim sup
k→∞

⟨g(z)− z, ynk
− z⟩ = lim

m→∞
⟨g(z)− z, ynkm

− z⟩

= ⟨g(z)− z, x∗ − z⟩ ≤ 0.

On the other hand, the condition (C6) reads that

(3.46) ∥yn − xn∥ = ∥en∥ → 0, n → ∞.

Hence, we have
(3.47)

∥xn+1 − xn∥
= ∥αn(g(yn)− xn) + (1− αn)(yn − τn∇fn(yn)− xn)∥
≤ αn∥g(yn)− xn∥+ (1− αn)∥yn − xn∥+ (1− αn)τn∥∇fn(yn)∥

= αn∥g(yn)− xn∥+ (1− αn)∥en∥+ (1− αn)ρn
fn(yn)

∥∇fn(yn)∥2 + εn
∥∇fn(yn)∥,

which indicates that

(3.48) ∥xnk+1 − xnk
∥ → 0, k → ∞.

Combining (3.45), (3.46) and (3.48) leads to

(3.49) lim sup
k→∞

⟨g(z)− z, xnk+1 − z⟩ ≤ 0,

which together with the condition (C6) yields that

(3.50) lim sup
k→∞

δnk
≤ 0.

Using Lemma 2.6, we conclude that xn → z. We thus complete the proof.
□

Remark 3.3. The strong convergence of the two algorithms still hold when en = 0.
This implies that the two algorithms are both bounded perturbation resilience.

Remark 3.4. It is easy to see that the two algorithms generalize some existed
iterative schemes. If Aj = A, j = 1, 2, . . . , r and g is identity operator, Algorithms
2 is reduced to the algorithm for the MSSFP in [24]; if i = 1 and en = 0, the
Algorithm 1 is reduced to a variant of the algorithm solving the SFP with multiple
output sets in [20]; and if i = j = 1, the algorithms are the reduced to solve the
SFP [29].

4. Corollaryies

4.1. The split common fixed point problem for nonexpansive mappings
with multiple output sets. Let H, Hj , j = 1, 2, . . . , r, be real Hilbert spaces and
let Aj : H → Hj , j = 1, 2, . . . , r, be bounded linear operators. Let Bi : H → H, i =
1, . . . , t and Tj : Hj → Hj , j = 1, . . . , r, be nonexpansive mappings. We consider
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the following split common fixed point problem with multiple output sets: Find an
element x∗ ∈ H such that

(4.1) x∗ ∈ S :=
t∩

i=1

Fix(Bi) ∩ (
r∩

j=1

A−1
j Fix(Tj)),

where Fix(B) denotes the sets of fixed points of operator B.
Let Ci = Fix(Bi), i = 1, 2, . . . , t and Qj = Fix(Tj), j = 1, 2, . . . , r. Note that the

set of fixed points of a nonexpansive operator is closed and convex, then problem
(4.1) becomes Problem (1.7). Thus we obtain the following corollary for solving
Problem (4.1).

Corollary 4.1. Let {xn} be the sequence generated by Algorithm 1 with Ci =
Fix(Bi), i = 1, 2, . . . , t and Qj = Fix(Tj), j = 1, 2, . . . , r, respectively. If the se-
quences {αn}, {τn} and {en} satisfy the conditions (C1)-(C3), then the sequence
{xn} converges strongly to z ∈ S, which is the unique solution to the variational
inequality

⟨(I − g)(z), y − z⟩ ≥ 0, ∀y ∈ S.

Corollary 4.2. Let {xn} be the sequence generated by Algorithm 2 with Ci =
Fix(Bi), i = 1, 2, . . . , t and Qj = Fix(Tj), j = 1, 2, . . . , r, respectively. If the se-
quences {αn}, {ρn}, {en} and {εn} satisfy the conditions (C4)-(C7), then the se-
quence {xn} converges strongly to z ∈ S, which is the unique solution to the varia-
tional inequality

⟨(I − g)(z), y − z⟩ ≥ 0, ∀y ∈ S.

4.2. Variational inequality problem with multiple output sets. Let A : H →
H be an operator from the Hilbert space H into itself and let D be a nonempty,
closed and convex subset of H. The variational inequality problem (VIP) is to find
an element x∗ ∈ D such that

(4.2) ⟨Ax∗, x− x∗⟩ ≥ 0, ∀ x ∈ D.

We denote by VIP(A,D) the solution set of this problem.

It is known that VIP(A,D) = Fix(PD(I − λA)), where λ > 0. If A is a β-inverse
strongly monotone (ism for short) operator, that is, there exists a positive real
number β such that

(4.3) ⟨Ax−Ay, x− y⟩ ≥ β∥Ax−Ay∥2, ∀ x, y ∈ H

then I − λA is a nonexpansive mapping for λ ∈ (0, 2β], and hence the solution set
VIP(A,D) is closed and convex.

Let H, Hj , j = 1, 2, . . . , r, be real Hilbert spaces and let Aj : H → Hj , j =
1, 2, . . . , r, be bounded linear operators. Let Ti : H → H, i = 1, . . . , t, be βi-ism
operators and let Bj : Hj → Hj , j = 1, 2, . . . , r, be β̃j-ism operators. Let Di, i =

1, 2, . . . , t be nonempty, closed and convex subsets of H, and D̃j , j = 1, 2, . . . , r be
nonempty, closed and convex subsets of Hj , respectively. We consider the following
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variational inequality problem with multiple output sets: Find an element x∗ ∈ H
such that

(4.4) x∗ ∈ S :=
t∩

i=1

VIP(Ti, Di) ∩ (

r∩
j=1

A−1
j VIP(Bj , D̃j)).

Let Ci = VIP(Ti, Di), i = 1, 2, . . . , t and Qj = VIP(Bj , D̃j), j = 1, 2, . . . , r. Then
problem (4.4) becomes Problem (1.7). Thus we obtain the following corollary for
solving Problem (4.4).

Corollary 4.3. Let {xn} be the sequence generated by Algorithm 1 with Ci =

VIP(Ti, Di), i = 1, 2, . . . , t and Qj = VIP(Bj , D̃j), j = 1, 2, . . . , r, respectively. If the
sequences {αn}, {τn} and {en} satisfy the conditions (C1)-(C3), then the sequence
{xn} converges strongly to z ∈ S, which is the unique solution to the variational
inequality

⟨(I − g)(z), y − z⟩ ≥ 0, ∀y ∈ S.

Corollary 4.4. Let {xn} be the sequence generated by Algorithm 2 with Ci =

VIP(Ti, Di), i = 1, 2, . . . , t and Qj = VIP(Bj , D̃j), j = 1, 2, . . . , r, respectively. If
the sequences {αn}, {ρn}, {en} and {εn} satisfy the conditions (C4)-(C7), then
the sequence {xn} converges strongly to z ∈ S, which is the unique solution to the
variational inequality

⟨(I − g)(z), y − z⟩ ≥ 0, ∀y ∈ S.

5. Numerical experiments

In this section, we present some numerical simulations to show the validity of
Algorithm 1 and Algorithm 2. In the experiments, we set en to be the inertial term,
i.e., en = βn(xn − xn−1), where

βn =


θn

||xn − xn−1||
, ||xn − xn−1|| > 1

θn, ||xn − xn−1|| ≤ 1.

It can be proved (see [26]) that if θn ≥ 0 and
∑∞

n=0 θn < +∞, the corresponding
algorithms are still strongly convergent.
The codes are written in Matlab R2018b and run on Inter(R) Core(TM) i9-12900H

CPU @ 2.50 GHz , RAM 16.00 GB.

Example. Consider the following problem: find an element x∗ ∈ R5 such that

x∗ ∈ S =
t∩

i=1

Ci ∩ (
r∩

j=1

A−1
j (Qj)),

where Ci = {u ∈ R5 : ⟨ai, u⟩ ≤ bi}, Qj = {u ∈ R5(j+1) : ⟨ej , u⟩ ≤ dj}, the
coordinates of ai, ej are randomly generated in the closed interval [−1, 1], bi, dj are
randomly generated in the closed interval [0, 1] for all i = 1, 2, . . . , t, j = 1, 2, . . . , r,

and Aj : R5 → R5(j+1) be bounded linear operators, of which the elements are
randomly generated in the closed interval [−5, 5].
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Define the function TOL

(5.1) TOL =
1

t+ r
(

t∑
i=1

∥xn − PCixn∥2 +
r∑

j=1

∥Ajxn − PQjAjxn∥2)

for all n ≥ 1. Note that if at the n-th step, TOL = 0, then xn ∈ S, that is, xn is a
solution to this problem. Take TOL < 10−6 as the stopping criterion.
Set t = 20, r = 30, ρn = 0.3, αn = 1

n0.5 , θn = 1
n1.2 , εn = 0.1, g(x) = 0.7x, li =

λj =
1

t+r and e the vector of corresponding dimension whose coordinates are all 1.
First, we examine the impact of different choices of step sizes and the inertial

terms on the convergence. Denote by Alg.1.1 and Alg.2.1 the proposed Algorithm
1 and Algorithm 2; and by Alg.1.2 and Alg.2.2 the ones without inertial term. We
choose different initial points and examine the convergence of the sequences {xn}
which is generated by Alg.1.1, Alg.2.1, Alg.1.2 and Alg.2.2 The results of numerical
experiments are reported in Table 1, Table 2 and Fig 1, Fig 2.
From the tables and the figures we know that the inertial perturbation can im-

prove the convergence of the algorithms, and that self-adaptive step size is more
efficient.

Table 1. The numerical results for Alg.1.1 and Alg.1.2

Alg.1.1 Alg.1.2

Initial Point n Time(s) n Time(s)

x0 = x1 =
1
10 ∗ e 12 0.1138 19 0.1755

x0 = x1 = e 48 0.3867 63 0.5679
x0 = x1 = 2 ∗ rand(5, 1) 72 0.6326 90 0.8166
x0 = x1 = 5 ∗ rand(5, 1) 97 0.8948 110 0.9863

Table 2. The numerical results for Alg.2.1 and Alg.2.2

Alg.2.1 Alg.2.2

Initial Point n Time(s) n Time(s)

x0 = x1 =
1
10e 8 0.0556 12 0.0769

x0 = x1 = e 22 0.1308 28 0.1589
x0 = x1 = 2 ∗ rand(5, 1) 27 0.2000 32 0.2020
x0 = x1 = 5 ∗ rand(5, 1) 32 0.2136 35 0.2382

Next, we consider the impact of αn on the the convergence in Algorithm 1. For
αn = 1

n0.5 , αn = 1
n0.6 or αn = 1

n0.7 , with other parameters retaining the same values
as above, the numerical result is Fig. 3(a). It seems that the gradient descent part
dominates the convergence.
Now we consider the impact of ρn in Algorithm 2, which is the parameter of the

self-adaptive step size. For ρn = 0.3, ρn = 1, ρn = 2, ρn = 3 or ρn = 3.95, with
other parameters retaining the same values as above, the result is shown in Fig 3(b).
It seems that the algorithm converges faster if the value of ρn is taken around the
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Figure 1. Comparison of different choices of initial point.

Figure 2. Comparison of different choices of initial point.

midpoint of the interval (0, 4), and that the error becomes smaller if ρn is closed to
4.

Example. Consider the following problem: find an element x∗ ∈ R10 such that

x∗ ∈ S =
t∩

i=1

Ci ∩ (
r∩

j=1

A−1
j (Qj)),

where

Ci = {x ∈ R10 : ∥x− ci∥2 ≤ a2i }

Qj = {Ajx ∈ R10(j+1) : ∥Ajx− bj∥2 ≤ d2j}
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Figure 3. Comparison of different choices of αn and ρn.

where ci ∈ R10, bj ∈ R10(j+1), of which the coordinates are randomly generated in
the closed interval [−1, 1]; ai, dj ∈ R are randomly generated in the closed interval

[5, 10] and [10, 20], respectively; Aj : R10 → R10(j+1), of which the elements are
randomly generated in the closed interval [−5, 5].

In this case, from (1.16), we can obtain Cn
i and Qn

j as follows:

Cn
i = {x ∈ R10 : ∥xn − ci∥2 − a2i ≤ 2⟨xn − ci, xn − x⟩}

Qn
j = {y ∈ R10(j+1) : ∥Ajxn − bj∥2 − d2j ≤ 2⟨Ajxn − bj , Ajxn − y⟩}.

Set t = 10, r = 20, ρn = 0.3, αn = 1
n0.7 , θn = 1

n1.2 , εn = 0.1, g(x) = 0.7x, li =

λj =
1

t+r , and e is a vector of corresponding dimension of which the coordinates are
all 1.
Take TOL < 10−4 as the stopping criterion, the fuction TOL be given in (5.1).
The comparison of the convergence of the sequences {xn} which is generated

by Alg.1.1, Alg.2.1, Alg.1.2 and Alg.2.2 is carried out. The results of numerical
experiments are reported in Table 3, Table 4, Fig 4 and Fig 5. We see again that
the algorithms with inertial terms and self-adaptive step sizes has advantage over
the ones without them. However, it should also be noted that the convergence can
not always be obviously accelerated by the inertial terms. In this case, we might
need the the alternated inertial technique or two-step inertial technique, etc, which
will be discussed in future.

Table 3. The numerical results for Alg.1.1 and Alg.1.2

Alg.1.1 Alg.1.2

Initial Point n Time(s) n Time(s)

x0 = x1 = rand(10, 1) 18 0.2510 24 0.3320
x0 = x1 = 5 ∗ rand(10, 1) 38 0.5395 43 0.5828
x0 = x1 = 10 ∗ rand(10, 1) 48 0.6695 52 0.6908
x0 = x1 = 20 ∗ rand(10, 1) 59 0.8556 62 0.8792

Acknowledgment. The authors would also like to thank the editors and the re-
viewers for their hard work and valuable comments.
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Table 4. The numerical results for Alg.2.1 and Alg.2.2

Alg.2.1 Alg.2.2

Initial Point n Time(s) n Time(s)

x0 = x1 = rand(10, 1) 15 0.1516 22 0.2143
x0 = x1 = 5 ∗ rand(10, 1) 32 0.3337 37 0.3998
x0 = x1 = 10 ∗ rand(10, 1) 45 0.4794 49 0.5112
x0 = x1 = 20 ∗ rand(10, 1) 50 0.5218 53 0.5543

Figure 4. Comparison of different choices of initial point.
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