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In order to solve the variational inclusion (VI) of finding v∗ ∈ H s.t. 0 ∈ (A +
B)v∗, Takahashi et al. [40] suggested a Halpern-type iterative method, i.e., for any
given v0, u ∈ H, {vi} is the sequence generated by

(1.2) vi+1 = βivi + (1− βi)(αiu+ (1− αi)J
B
λi
(vi − λiAvi)) ∀i ≥ 0,

where A is an α-inverse-strongly monotone operator on H and B is a maximal
monotone operator on H. They proved the strong convergence of {vi} to a solution
v∗ ∈ (A + B)−10 of the VI. Subsequently, Pholasa et al. [31] extended the result
in [40] to the setting of Banach spaces, and proved the strong convergence of {vi}
to a point of (A+B)−10.

Meantime, Takahashi et al. [39] proposed a Mann-type Halpern iterative scheme
for solving the FPP of a nonexpansive mapping S : C → C and the VI for an α-
inverse-strongly monotone mapping A : C → H and a maximal monotone operator
B : D(B) ⊂ C → H, i.e., for any given y1 = y ∈ C, {yi} is the sequence generated
by

(1.3) yi+1 = βiyi + (1− βi)S(αiy + (1− αi)J
B
λi
(yi − λiAyi)) ∀i ≥ 1,

where {λi} ⊂ (0, 2α) and {αi}, {βi} ⊂ (0, 1) are such that (i) limi→∞ αi = 0,∑∞
i=1 αi = ∞; (ii) 0 < a ≤ λi ≤ b < 2α, limi→∞(λi − λi+1) = 0; and (iii)

0 < c ≤ βi ≤ d < 1. They proved the strong convergence of {yi} to a point of
Fix(S) ∩ (A+B)−10.

Owing to the importance and interesting of the VI, many researchers have pre-
sented and developed a great number of iterative methods for solving the VI in sev-
eral approaches; see e.g., [12,15,16,18,26,28,31,36,39,40] and the references therein.
Moreover, they consider the FPP of finding a point u∗ ∈ C such that u∗ = Su∗

where S : C → C is a nonlinear mapping. The solution set of the FPP is denoted
by Fix(S). In the practical life, many mathematical models have been formulated
as this problem. Many mathematicians are now interested in finding a common
solution of the VI and FPP, i.e., find a point u∗ s.t. u∗ ∈ Fix(S) ∩ (A+B)−10.

Suppose that A : C → H is an inverse-strongly monotone mapping, B : D(B) ⊂
C → 2H is a maximal monotone operator, and S : C → C is a nonexpansive
mapping. In 2011, Manaka and Takahashi [28] suggested an iterative process, i.e.,
for any given u0 ∈ C, {ui} is the sequence generated by

(1.4) ui+1 = αiui + (1− αi)SJ
B
λi
(ui − λiAui) ∀i ≥ 0,

where {αi} ⊂ (0, 1) and {λi} ⊂ (0,∞). They proved the weak convergence of {ui}
to a point of Fix(S) ∩ (A+B)−10 under some suitable conditions.

Furthermore, assume that q ∈ (1, 2] and E is a real Banach space. Let f : E → E
be a ρ-contraction and S : E → E be a nonexpansive mapping. Let A : E → E
be an α-inverse-strongly accretive mapping of order q and B : E → 2E be an m-
accretive operator. Very recently, in order to solve the FPP of S and the VI of
finding u∗ ∈ E s.t. 0 ∈ (A + B)u∗, Sunthrayuth and Cholamjiak [36] suggested
a modified viscosity-type extragradient method in the setting of uniformly convex
and q-uniformly smooth Banach space E with q-uniform smoothness coefficient κq,
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i.e., for any given u0 ∈ E, {ui} is the sequence generated by

(1.5)


yi = JB

λi
(ui − λiAui),

zi = JB
λi
(ui − λiAyi + ri(yi − ui)),

ui+1 = αif(ui) + βiui + γiSzi ∀i ≥ 0,

where JB
λi

= (I + λiB)−1, {ri}, {αi}, {βi}, {γi} ⊂ (0, 1) and {λi} ⊂ (0,∞) are such

that: (i) αi+βi+γi = 1; (ii) limi→∞ αi = 0,
∑∞

i=1 αi = ∞; (iii) {βi} ⊂ [a, b] ⊂ (0, 1);

and (iv) 0 < λ ≤ λi < λi/ri ≤ µ < (αq/κq)
1/(q−1), 0 < r ≤ ri < 1. They proved

strong convergence of {ui} to a point of Fix(S)∩ (A+B)−10, which solves a certain
hierarchical variational inequality (HVI).

On the other hand, let J : E → 2E
∗
be the normalized duality mapping from E

into 2E
∗
defined by J(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2} ∀x ∈ E, where 〈·, ·〉

represents the generalized duality pairing between E and E∗. Recall that if E is
smooth then J is single-valued. Let B1, B2 : C → E be two nonlinear mappings in
a smooth Banach space E. The general system of variational inequalities (GSVI)
is to find (x∗, y∗) ∈ C × C such that

(1.6)

{
〈µ1B1y

∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0 ∀x ∈ C,

〈µ2B2x
∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0 ∀x ∈ C,

where µi is a positive constant for i = 1, 2. In particular, if E = H a real Hilbert
space, it is easy to see that the GSVI (1.6) reduces to the GSVI considered in [19],

(1.7)

{
〈µ1B1y

∗ + x∗ − y∗, x− x∗〉 ≥ 0 ∀x ∈ C,

〈µ2B2x
∗ + y∗ − x∗, x− y∗〉 ≥ 0 ∀x ∈ C.

It is known that problem (1.7) has been transformed into a fixed point problem in
the following way.

Lemma 1.1 (see [19]). For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (1.7)
if and only if x∗ ∈ GSVI(C,B1, B2), where GSVI(C,B1, B2) is the fixed point set of
the mapping G := PC(I − µ1B1)PC(I − µ2B2), and y∗ = PC(I − µ2B2)x

∗.

In 2018, using Lemma 1.1, Cai et al. [6] introduced a viscosity implicit rule for
solving the GSVI (1.7) with the FPP constraint of an asymptotically nonexpansive
mapping T with a sequence {θi}, i.e., for any given x0 ∈ C, the sequence {xi} is
generated by

(1.8)


ui = sixi + (1− si)yi,

zi = PC(ui − µ2B2ui),

yi = PC(zi − µ1B1zi),

xi+1 = PC [αif(xi) + (I − αiρF )T iyi] ∀i ≥ 0,

where {αi}, {si} ⊂ (0, 1] are such that (i) limi→∞ αi = 0,
∑∞

i=0 αi = ∞,
∑∞

i=0 |αi+1−
αi| < ∞; (ii) limi→∞ θi/αi = 0; (iii) 0 < ε ≤ si ≤ 1,

∑∞
i=0 |si+1 − si| < ∞; and (iv)∑∞

i=0 ‖T i+1yi − T iyi‖ < ∞. They proved that the sequence constructed by (1.8)
converges strongly to a point of GSVI(C,A1, A2) ∩ Fix(T ), which solves a certain
HVI.
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In a real Banach space E, let the VI indicate a variational inclusion for two
accretive operators and let the CFPP denote a common fixed point problem of
countably many nonexpansive mappings. In this paper, we introduce a generalized
extragradient implicit method for solving the GSVI (1.6) with the VI and CFPP
constraints. We then prove the strong convergence of the suggested method to a
solution of the GSVI (1.6) with the VI and CFPP constraints under some suitable
assumptions. As applications, we apply our main result to the variational inequal-
ity problem (VIP), split feasibility problem (SFP) and LASSO problem in Hilbert
spaces. Our results improve and extend the corresponding results in Manaka and
Takahashi [28], Sunthrayuth and Cholamjiak [36], and Cai et al. [6] to a certain
extent.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with the
dual E∗. For simplicity, we shall use the following notations: xn → x indicates
the strong convergence of the sequence {xn} to x and xn ⇀ x denotes the weak
convergence of the sequence {xn} to x. Given a self-mapping T on C. We use the
notations R and Fix(T ) to stand for the set of all real numbers and the fixed point
set of T , respectively. Recall that T is said to be nonexpansive if ‖Tu − Tv‖ ≤
‖u − v‖ ∀u, v ∈ C. A mapping f : C → C is called a contraction if ∃δ ∈ [0, 1)
s.t. ‖f(u) − f(v)‖ ≤ δ‖u − v‖ ∀u, v ∈ C. Also, recall that the normalized duality
mapping J defined by

(2.1) J(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2} ∀x ∈ E.

is the one from E into the family of nonempty (by Hahn-Banach’s theorem) weak∗

compact subsets of E∗, satisfying J(τu) = τJ(u) and J(−u) = −J(u) for all τ > 0
and u ∈ E.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf{1− ‖u+ v‖
2

: u, v ∈ E, ‖u‖ = ‖v‖ = 1, ‖u− v‖ ≥ ϵ}.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R+ defined
by

ρE(τ) = sup{‖u+ τv‖+ ‖u− τv‖
2

− 1 : u, v ∈ E, ‖u‖ = ‖v‖ = 1}.

A Banach space E is said to be uniformly convex if δE(ϵ) > 0 ∀ϵ ∈ (0, 2]. It is said
to be uniformly smooth if limτ→0+ ρE(τ)/τ = 0. Also, it is said to be q-uniformly
smooth with q > 1 if ∃c > 0 s.t. ρE(t) ≤ ctq ∀t > 0. If E is q-uniformly smooth,
then q ≤ 2 and E is also uniformly smooth and if E is uniformly convex, then E is
also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly
smooth. Further, sequence space ℓp and Lebesgue space Lp are min{p, 2}-uniformly
smooth for every p > 1 [44].

Let q > 1. The generalized duality mapping Jq : E → 2E
∗
is defined by

(2.2) Jq(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖q, ‖ϕ‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. In particular,
if q = 2, then J2 = J is the normalized duality mapping of E. It is known that
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Jq(x) = ‖x‖q−2J(x) ∀x 6= 0 and that Jq is the subdifferential of the functional
1
q‖ · ‖

q. If E is uniformly smooth, the generalized duality mapping Jq is one-to-one

and single-valued. Furthermore, Jq satisfies Jq = J−1
p , where Jp is the generalized

duality mapping of E∗ with 1
p + 1

q = 1. Note that no Banach space is q-uniformly

smooth for q > 2; see [38] for more details.
Let q > 1 and E be a real normed space with the generalized duality mapping

Jq. Then the following inequality is an immediate consequence of the subdifferential
inequality of the functional 1

q‖ · ‖
q:

(2.3) ‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x+ y)〉 ∀x, y ∈ E, jq(x+ y) ∈ Jq(x+ y).

Lemma 2.1 (see [23]). If T : C → C is a continuous and strong pseudocontraction
mapping, then T has a unique fixed point in C.

The following lemma can be obtained from the result in [44].

Lemma 2.2. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exist strictly increasing, continuous and convex functions g, h :
R+ → R+ with g(0) = 0 and h(0) = 0 such that

(a) ‖µu+(1−µ)v‖q ≤ µ‖u‖q +(1−µ)‖v‖q −µ(1−µ)g(‖u− v‖) with µ ∈ [0, 1];
(b) h(‖u− v‖) ≤ ‖u‖q − q〈u, jq(v)〉+ (q − 1)‖v‖q

for all u, v ∈ Br and jq(v) ∈ Jq(v), where Br := {y ∈ E : ‖y‖ ≤ r}.

The following lemma is an analogue of Lemma 2.2 (a).

Lemma 2.3. Let q > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exists a strictly increasing, continuous and convex function
g : R+ → R+ with g(0) = 0 such that

‖λu+ µv + νw‖q ≤ λ‖u‖q + µ‖v‖q + ν‖w‖q − λµg(‖u− v‖)
for all u, v, w ∈ Br and λ, µ, ν ∈ [0, 1] with λ+ µ+ ν = 1.

Proposition 2.4 (see [3]). Let {Sn}∞n=0 be a sequence of self-mappings on C such
that

∑∞
n=1 supx∈C ‖Snx − Sn−1x‖ < ∞. Then for each y ∈ C, {Sny} converges

strongly to some point of C. Moreover, let S be a self-mapping on C defined by
Sy = limn→∞ Sny for all y ∈ C. Then limn→∞ supx∈C ‖Snx− Sx‖ = 0.

Proposition 2.5 (see [44]). Let q ∈ (1, 2] a fixed real number and let E be q-
uniformly smooth. Then ‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + κq‖y‖q ∀x, y ∈ E, where
κq is the q-uniform smoothness coefficient of E.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to
be sunny if Π [Π (x) + t(x− Π (x))] = Π (x), whenever Π (x) + t(x− Π (x)) ∈ C for
x ∈ C and t ≥ 0. A mapping Π of C into itself is called a retraction if Π 2 = Π . If a
mapping Π of C into itself is a retraction, then Π (z) = z for each z ∈ R(Π ), where
R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive retract of
C if there exists a sunny nonexpansive retraction from C onto D. In terms of [32],
we know that if E is smooth and Π is a retraction of C onto D, then the following
statements are equivalent:

(i) Π is sunny and nonexpansive;
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(ii) ‖Π (x)− Π (y)‖2 ≤ 〈x− y, J(Π (x)− Π (y))〉 ∀x, y ∈ C;
(iii) 〈x− Π (x), J(y − Π (x))〉 ≤ 0 ∀x ∈ C, y ∈ D.

Let B : C → 2E be a set-valued operator with Bx 6= ∅ ∀x ∈ C. Let q > 1.
An operator B is said to be accretive if for each x, y ∈ C, ∃jq(x − y) ∈ Jq(x − y)
s.t. 〈u − v, jq(x − y)〉 ≥ 0 ∀u ∈ Bx, v ∈ By. An accretive operator B is said to be
α-inverse-strongly accretive of order q if for each x, y ∈ C, ∃jq(x−y) ∈ Jq(x−y) s.t.
〈u− v, jq(x− y)〉 ≥ α‖u− v‖q ∀u ∈ Bx, v ∈ By for some α > 0. If E = H a Hilbert
space, then B is called α-inverse-strongly monotone. An accretive operator B is
said to be m-accretive if (I +λB)C = E for all λ > 0. For an accretive operator B,
we define the mapping JB

λ : (I + λB)C → C by JB
λ = (I + λB)−1 for each λ > 0.

Such JB
λ is called the resolvent of B for λ > 0.

Lemma 2.6 (see [16, 26]). Let B : C → 2E be an m-accretive operator. Then the
following statements hold:

(i) the resolvent identity: JB
λ x = JB

µ (µλx+ (1− µ
λ )J

B
λ x) ∀λ, µ > 0, x ∈ E;

(ii) if JB
λ is a resolvent of B for λ > 0, then JB

λ is a firmly nonexpansive

mapping with Fix(JB
λ ) = B−10, where B−10 = {x ∈ C : 0 ∈ Bx};

(iii) if E = H a Hilbert space, B is maximal monotone.

Let A : C → E be an α-inverse-strongly accretive mapping of order q and B :
C → 2E be an m-accretive operator. In the sequel, we will use the notation Tλ :=
JB
λ (I − λA) = (I + λB)−1(I − λA) ∀λ > 0.

Proposition 2.7 (see [26]). The following statements hold:

(i) Fix(Tλ) = (A+B)−10 ∀λ > 0;
(ii) ‖y − Tλy‖ ≤ 2‖y − Try‖ for 0 < λ ≤ r and y ∈ C.

Proposition 2.8 (see [45]). Let E be uniformly smooth, T : C → C be a non-
expansive mapping with Fix(T ) 6= ∅ and f : C → C be a fixed contraction. For
each t ∈ (0, 1), let zt ∈ C be the unique fixed point of the contraction C 3 z 7→
tf(z) + (1− t)Tz on C, i.e., zt = tf(zt) + (1− t)Tzt. Then {zt} converges strongly
to a fixed point x∗ ∈ Fix(T ), which solves the hierarchical variational inequality
(HVI): 〈(I − f)x∗, J(x∗ − x)〉 ≤ 0 ∀x ∈ Fix(T ).

Proposition 2.9 (see [26]). Let E be q-uniformly smooth with q ∈ (1, 2]. Suppose
that A : C → E is an α-inverse-strongly accretive mapping of order q. Then, for
any given λ ≥ 0,

‖(I − λA)u− (I − λA)v‖q ≤ ‖u− v‖q − λ(αq − κqλ
q−1)‖Au−Av‖q ∀u, v ∈ C,

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 ≤
λ ≤ ( qακq

)
1

q−1 , then I − λA is nonexpansive.

Proposition 2.10 (see [35]). Let E be q-uniformly smooth with q ∈ (1, 2]. Let ΠC

be a sunny nonexpansive retraction from E onto C. Suppose that B1, B2 : C → E
are α-inverse-strongly accretive mapping of order q and β-inverse-strongly accretive
mapping of order q, respectively. Let G : C → C be a mapping defined by G :=
ΠC(I − µ1B1)ΠC(I − µ2B2), and GSVI(C,B1, B2) denote the fixed point set of G.

If 0 ≤ µ1 ≤ ( qακq
)

1
q−1 and 0 ≤ µ2 ≤ ( qβκq

)
1

q−1 , then G is nonexpansive
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Lemma 2.11 (see [35]). Let E be q-uniformly smooth with q ∈ (1, 2]. Let ΠC be
a sunny nonexpansive retraction from E onto C. Suppose that B1, B2 : C → E
are two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem
(1.6) if and only if x∗ ∈ GSVI(C,B1, B2), where GSVI(C,B1, B2) is the fixed point
set of the mapping G := ΠC(I − µ1B1)ΠC(I − µ2B2), and y∗ = ΠC(I − µ2B2)x

∗.

Lemma 2.12 (see [2]). Let E be smooth, A : C → E be accretive and ΠC be a sunny
nonexpansive retraction from E onto C. Then VI(C,A) = Fix(ΠC(I−λA)) ∀λ > 0,
where VI(C,A) is the solution set of the VIP of finding z ∈ C s.t. 〈Az, J(z− y)〉 ≤
0 ∀y ∈ C.

Recall that if E = H a Hilbert space, then the sunny nonexpansive retraction ΠC

from E onto C coincides with the metric projection PC from H onto C. Moreover, if
E is uniformly smooth and T is a nonexpansive self-mapping on C with Fix(T ) 6= ∅,
then Fix(T ) is a sunny nonexpansive retract from E onto C [33]. By Lemma 2.12
we know that, x∗ ∈ Fix(T ) solves the HVI in Proposition 2.8 if and only if x∗ solves
the fixed point equation x∗ = ΠFix(T )f(x

∗).

Lemma 2.13 (see [27]). Let {Γn} be a sequence of real numbers that does not
decrease at infinity in the sense that there exists a subsequence {Γni} of {Γn} which
satisfies Γni < Γni+1 for each integer i ≥ 1. Define the sequence {τ(n)}n≥n0 of
integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where integer n0 ≥ 1 such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 ∀n ≥ n0.

Lemma 2.14 (see [4]). Let E be strictly convex, and {Tn}∞n=0 be a sequence of
nonexpansive mappings on C. Suppose that

⋂∞
n=0 Fix(Tn) is nonempty. Let {λn}

be a sequence of positive numbers with
∑∞

n=0 λn = 1. Then a mapping S on C
defined by Sx =

∑∞
n=0 λnTnx ∀x ∈ C is defined well, nonexpansive and Fix(S) =⋂∞

n=0 Fix(Tn) holds.

Lemma 2.15 (see [45]). Let {an} be a sequence in [0,∞) such that an+1 ≤ (1 −
sn)an + snνn ∀n ≥ 0, where {sn} and {νn} satisfy the conditions: (i) {sn} ⊂ [0, 1],∑∞

n=0 sn = ∞; (ii) lim supn→∞ νn ≤ 0 or
∑∞

n=0 |snνn| < ∞. Then limn→∞ an = 0.

3. Main results

Throughout this paper, we assume that E is a q-uniformly smooth and uniformly
convex Banach space with q ∈ (1, 2]. Let C be a nonempty closed convex subset
of E and ΠC be a sunny nonexpansive retraction from E onto C. Let f : C → C
be a δ-contraction with constant δ ∈ [0, 1) and {Sn}∞n=0 be a countable family of
ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C. Let A : C → E
and B : C → 2E be a σ-inverse-strongly accretive mapping of order q and an
m-accretive operator, respectively. Suppose that B1, B2 : C → E are α-inverse-
strongly accretive mapping of order q and β-inverse-strongly accretive mapping of
order q, respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(C,B1, B2) ∩ (A +

B)−10 6= ∅.



272 L.-C. CENG, C.-F. WEN, AND J.-C. YAO

Algorithmn 3.1. Combined extragradient implicit rule for the GSVI (1.6) with
the VI and CFPP constraints.

Initial Step: Given ζ ∈ (0, 1) and x0 ∈ C arbitrarily.
Step 1: Calculate wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn);
Step 2: Calculate yn = JB

λn
(un − λnAun) with un = Gwn;

Step 3: Calculate zn = JB
λn
(un − λnAyn + rn(yn − un));

Step 4: Calculate xn+1 = αnf(xn) + βnxn + γnGzn, where {rn}, {sn}, {αn},
{βn}, {γn} ⊂ (0, 1] with αn + βn + γn = 1 and {λn} ⊂ (0,∞).

Set n := n+ 1 and go to Step 1.

Lemma 3.2. Let {xn} be the sequence generated by Algorithm 3.1. Then {xn} is
bounded.

Proof. Let p ∈ Ω :=
⋂∞

n=0 Fix(Sn)∩GSVI(C,B1, B2)∩(A+B)−10. Then we observe
that

p = Gp = Snp = JB
λn
(p− λnAp) = JB

λn

(
(1− rn)p+ rn

(
p− λn

rn
Ap

))
.

By Propositions 2.9 and 2.10, we know that I − µ1B1, I − µ2B2 and G := ΠC(I −
µ1B1)ΠC(I − µ2B2) are nonexpansive mappings. Moreover, it can be readily seen
that for each n ≥ 0, there is only an element wn ∈ C s.t.

(3.1) wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn).

In fact, consider the mapping Fnu = snxn + (1 − sn)(ζSnu + (1 − ζ)Gu) ∀u ∈ C.
Note that Sn : C → C is a continuous pseudocontraction. Hence we obtain that for
all u, v ∈ C,

〈Fnu− Fnv, J(u− v)〉
= (1− sn)〈(ζSnu+ (1− ζ)Gu)− (ζSnv + (1− ζ)Gv), J(u− v)〉
= (1− sn)[ζ〈Snu− Snv, J(u− v)〉+ (1− ζ)〈Gu−Gv, J(u− v)〉]
≤ (1− sn)‖u− v‖2.

Also, from {sn} ⊂ (0, 1], we get 0 ≤ 1 − sn < 1 ∀n ≥ 0. Thus, Fn is a continuous
and strong pseudocontractive self-mapping on C. Using Lemma 2.1, we deduce
that for each n ≥ 0, there is only an element wn ∈ C, satisfying (3.1). Since each
Sn : C → C is a pseudocontraction mapping, we get

‖wn − p‖2 = sn〈xn − p, J(wn − p)〉+ (1− sn)〈ζSnwn

+ (1− ζ)Gwn − p, J(wn − p)〉
≤ sn‖xn − p‖‖wn − p‖
+ (1− sn)[ζ‖wn − p‖2 + (1− ζ)‖wn − p‖2]

= sn‖xn − p‖‖wn − p‖+ (1− sn)‖wn − p‖2,
and hence

‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 0.

Using un = Gwn, we deduce from the nonexpansivity of G that

(3.2) ‖un − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 0.
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Using Lemma 2.6 (ii) and Proposition 2.9, we have

‖yn − p‖q = ‖JB
λn
(un − λnAun)− JB

λn
(p− λnAp)‖q

≤ ‖(I − λnA)un − (I − λnA)p‖q(3.3)

≤ ‖un − p‖q − λn(σq − κqλ
q−1
n )‖Aun −Ap‖q,

which hence leads to
‖yn − p‖ ≤ ‖un − p‖.

By the convexity of ‖ · ‖q for all q ∈ (1, 2] and (3.3), we deduce that

‖zn − p‖q =
∥∥∥∥JB

λn

(
(1− rn)un + rn

(
yn − λn

rn
Ayn

))
−JB

λn

(
(1− rn)p+ rn

(
p− λn

rn
Ap

))∥∥∥∥q
≤ (1− rn)‖un − p‖q + rn

∥∥∥∥(I − λn

rn
A
)
yn −

(
I − λn

rn
A
)
p

∥∥∥∥q
≤ (1− rn)‖un − p‖q + rn

[
‖yn − p‖q − λn

rn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q

]
(3.4)

≤ (1− rn)‖un − p‖q + rn

[
‖un − p‖q − λn(σq − κqλ

q−1
n )‖Aun −Ap‖q

− λn

rn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q

]
= ‖un − p‖q − rnλn(σq − κqλ

q−1
n )‖Aun −Ap‖q

− λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ap‖q.

This ensures that
‖zn − p‖ ≤ ‖un − p‖.

So it follows from (3.2) that

‖xn+1 − p‖ = ‖αn(f(xn)− p) + βn(xn − p) + γn(Gzn − p)‖
≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖Gzn − p‖
≤ αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + βn‖xn − p‖+ γn‖Gzn − p‖
≤ αn(δ‖xn − p‖+ ‖f(p)− p‖) + βn‖xn − p‖+ γn‖xn − p‖
= (1− αn(1− δ))‖xn − p‖+ αn‖f(p)− p‖

≤ max

{
‖xn − p‖, ‖f(p)− p‖

1− δ

}
.

By induction, we get ‖xn − p‖ ≤ max{‖x0 − p‖, ∥f(p)−p∥
1−δ } ∀n ≥ 0. Consequently,

{xn} is bounded, and so are {un}, {wn}, {yn}, {zn}, {Gzn}, {Aun}, {Ayn}. This
completes the proof. □
Theorem 3.3. Let {xn} be the sequence generated by Algorithm 3.1. Suppose that
the following conditions hold:
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(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1, 0 < c ≤ sn ≤ d < 1;

(C3) 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn
rn

≤ µ < (σqκq
)

1
q−1 ;

(C4) 0 < µ1 < (αqκq
)

1
q−1 and 0 < µ2 < (βqκq

)
1

q−1 .

Assume that
∑∞

n=0 supx∈D ‖Sn+1x−Snx‖ < ∞ for any bounded subset D of C. Let
S : C → C be a mapping defined by Sx = limn→∞ Snx ∀x ∈ C, and suppose that
Fix(S) =

⋂∞
n=0 Fix(Sn). Then xn → x∗ ∈ Ω, which is the unique solution to the

HVI: 〈(I−f)x∗, J(x∗−p)〉 ≤ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = ΠΩf(x
∗).

Proof. First of all, let x∗ ∈ Ω and y∗ = ΠC(x
∗ − µ2B2x

∗). Moreover, we put
vn := ΠC(I − µ2B2)wn for all n ≥ 0. Then un = ΠC(I − µ1B1)vn ∀n ≥ 0. Using
Proposition 2.9 we get

‖vn − y∗‖q = ‖ΠC(wn − µ2B2wn)− ΠC(x
∗ − µ2B2x

∗)‖q

≤ ‖wn − x∗‖q − µ2(βq − κqµ
q−1
2 )‖B2wn −B2x

∗‖q,
and

‖un − x∗‖q = ‖ΠC(vn − µ1B1vn)− ΠC(y
∗ − µ1B1y

∗)‖q

≤ ‖vn − y∗‖q − µ1(αq − κqµ
q−1
1 )‖B1vn −B1y

∗‖q.
Combining the last two inequalities, we have

‖un − x∗‖q ≤ ‖wn − x∗‖q − µ2(βq − κqµ
q−1
2 )‖B2wn −B2x

∗‖q

− µ1(αq − κqµ
q−1
1 )‖B1vn −B1y

∗‖q.
Using Lemma 2.3, from (2.3), (3.2) and (3.4) we have that

‖xn+1 − x∗‖q ≤ ‖αn(f(xn)− f(x∗)) + βn(xn − x∗) + γn(Gzn − x∗)‖q

+ qαn〈f(x∗)− x∗, Jq(xn+1 − x∗)〉
≤ αn‖f(xn)− f(x∗)‖q + βn‖xn − x∗‖q

+ γn‖Gzn − x∗‖q − βnγng(‖xn −Gzn‖)
+ qαn〈f(x∗)− x∗, Jq(xn+1 − x∗)〉

≤ αnδ‖xn − x∗‖q + βn‖xn − x∗‖q + γn[‖un − x∗‖q

− rnλn(σq − κqλ
q−1
n )‖Aun −Ax∗‖q

− λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q]− βnγng(‖xn −Gzn‖)

+ qαn〈f(x∗)− x∗, Jq(xn+1 − x∗)〉
≤ αnδ‖xn − x∗‖q + βn‖xn − x∗‖q(3.5)

+ γn[‖xn − x∗‖q − µ2(βq − κqµ
q−1
2 )‖B2wn −B2x

∗‖q

− µ1(αq − κqµ
q−1
1 )‖B1vn −B1y

∗‖q

− rnλn(σq − κqλ
q−1
n )‖Aun −Ax∗‖q

− λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q]− βnγng(‖xn −Gzn‖)
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+ qαn〈f(x∗)− x∗, Jq(xn+1 − x∗)〉
= (1− αn(1− δ))‖xn − x∗‖q

− γn[µ2(βq − κqµ
q−1
2 )‖B2wn −B2x

∗‖q

+ µ1(αq − κqµ
q−1
1 )‖B1vn −B1y

∗‖q

+ rnλn(σq − κqλ
q−1
n )‖Aun −Ax∗‖q

+ λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q]− βnγng(‖xn −Gzn‖)

+ qαn〈f(x∗)− x∗, Jq(xn+1 − x∗)〉.
For each n ≥ 0, we set

Γn = ‖xn − x∗‖q,
εn = αn(1− δ),

ηn = γn[µ2(βq − κqµ
q−1
2 )‖B2wn −B2x

∗‖q + µ1(αq − κqµ
q−1
1 )‖B1vn −B1y

∗‖q

+ rnλn(σq − κqλ
q−1
n )‖Aun −Ax∗‖q + λn

(
σq − κqλ

q−1
n

rq−1
n

)
‖Ayn −Ax∗‖q]

+ βnγng(‖xn −Gzn‖)
δn = qαn〈(f − I)x∗, Jq(xn+1 − x∗)〉.

Then (3.5) can be rewritten as the following formula:

(3.6) Γn+1 ≤ (1− εn)Γn − ηn + δn ∀n ≥ 0,

and hence

(3.7) Γn+1 ≤ (1− εn)Γn + δn ∀n ≥ 0.

We next show the strong convergence of {Γn} by the following two cases:

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-
increasing. Then

Γn − Γn+1 → 0.

From (3.6), we get
0 ≤ ηn ≤ Γn − Γn+1 + δn − εnΓn.

Since εn → 0 and δn → 0, we have ηn → 0. This ensures that

lim
n→∞

g(‖xn −Gzn‖) = 0,

(3.8) lim
n→∞

‖B2wn −B2x
∗‖ = lim

n→∞
‖B1vn −B1y

∗‖ = 0

and

(3.9) lim
n→∞

‖Aun −Ax∗‖ = lim
n→∞

‖Ayn −Ax∗‖ = 0.

Note that g is a strictly increasing, continuous and convex function with g(0) = 0.
So it follows that

(3.10) lim
n→∞

‖xn −Gzn‖ = 0.
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On the other hand, using Lemma 2.2 (b) and the firm nonexpansivity of ΠC , we
have

‖vn − y∗‖q = ‖ΠC(wn − µ2B2wn)− ΠC(x
∗ − µ2B2x

∗)‖q

≤ 〈wn − µ2B2wn − (x∗ − µ2B2x
∗), Jq(vn − y∗)〉

= 〈wn − x∗, Jq(vn − y∗)〉+ µ2〈B2x
∗ −B2wn, Jq(vn − y∗)〉

≤ 1

q
[‖wn − x∗‖q + (q − 1)‖vn − y∗‖q

− h̃1(‖wn − x∗ − vn + y∗‖)]
+ µ2〈B2x

∗ −B2wn, Jq(vn − y∗)〉,
which hence attains

‖vn − y∗‖q ≤ ‖wn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖)
+ qµ2‖B2x

∗ −B2wn‖‖vn − y∗‖q−1.

In a similar way, we get

‖un − x∗‖q = ‖ΠC(vn − µ1B1vn)− ΠC(y
∗ − µ1B1y

∗)‖q

≤ 〈vn − µ1B1vn − (y∗ − µ1B1y
∗), Jq(un − x∗)〉

= 〈vn − y∗, Jq(un − x∗)〉+ µ1〈B1y
∗ −B1vn, Jq(un − x∗)〉

≤ 1

q
[‖vn − y∗‖q + (q − 1)‖un − x∗‖q

− h̃2(‖vn − y∗ − un + x∗‖)]
+ µ1〈B1y

∗ −B1vn, Jq(un − x∗)〉,
which hence attains

‖un − x∗‖q ≤ ‖vn − y∗‖q − h̃2(‖vn − y∗ − un + x∗‖)
+ qµ1‖B1y

∗ −B1vn‖‖un − x∗‖q−1

≤ ‖xn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖)(3.11)

+ qµ2‖B2x
∗ −B2wn‖‖vn − y∗‖q−1

− h̃2(‖vn − un + x∗ − y∗‖)
+ qµ1‖B1y

∗ −B1vn‖‖un − x∗‖q−1.

Since JB
λn

is firmly nonexpansive (due to Lemma 2.6 (ii)), by Lemma 2.2 (b) we get

‖yn − x∗‖q = ‖JB
λn
(un − λnAun)− JB

λn
(x∗ − λnAx

∗)‖q

≤ 〈(un − λnAun)− (x∗ − λnAx
∗), Jq(yn − x∗)〉

≤ 1

q
[‖(un − λnAun)− (x∗ − λnAx

∗)‖q + (q − 1)‖yn − x∗‖q

− h1(‖un − λn(Aun −Ax∗)− yn‖)],

which together with (3.3), implies that

‖yn − x∗‖q ≤ ‖(un − λnAun)− (x∗ − λnAx
∗)‖q
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− h1(‖un − λn(Aun −Ax∗)− yn‖)
≤ ‖un − x∗‖q − h1(‖un − λn(Aun −Ax∗)− yn‖).

This together with (3.4) and (3.11), implies that

‖xn+1 − x∗‖q ≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn‖Gzn − x∗‖q

≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn[(1− rn)‖un − x∗‖q

+ rn‖yn − x∗‖q]
≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn{(1− rn)‖un − x∗‖q

+ rn[‖un − x∗‖q − h1(‖un − λn(Aun −Ax∗)− yn‖)]}
= αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn{‖un − x∗‖q

− rnh1(‖un − λn(Aun −Ax∗)− yn‖)}
≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q

+ γn{‖xn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖)

− h̃2(‖vn − un + x∗ − y∗‖) + qµ1‖B1y
∗ −B1vn‖‖un − x∗‖q−1

+ qµ2‖B2x
∗ −B2wn‖‖vn − y∗‖q−1

− rnh1(‖un − λn(Aun −Ax∗)− yn‖)}

≤ αn‖f(xn)− x∗‖q + ‖xn − x∗‖q − γn{h̃1(‖wn − vn − x∗ + y∗‖)

+ h̃2(‖vn − un + x∗ − y∗‖) + rnh1(‖un − λn(Aun −Ax∗)− yn‖)}
+ qµ1‖B1y

∗ −B1vn‖‖un − x∗‖q−1

+ qµ2‖B2x
∗ −B2wn‖‖vn − y∗‖q−1,

which immediately yields

γn{h̃1(‖wn − vn − x∗ + y∗‖) + h̃2(‖vn − un + x∗ − y∗‖)
+ rnh1(‖un − λn(Aun −Ax∗)− yn‖)}

≤ αn‖f(xn)− x∗‖q + Γn − Γn+1 + qµ1‖B1y
∗ −B1vn‖‖un − x∗‖q−1

+ qµ2‖B2x
∗ −B2wn‖‖vn − y∗‖q−1.

Since h̃1, h̃2 and h1 are strictly increasing, continuous and convex functions with
h̃1(0) = h̃2(0) = h1(0) = 0, from (3.8) and (3.9) we conclude that ‖wn − vn − x∗ +
y∗‖ → 0, ‖vn−un+x∗− y∗‖ → 0 and ‖un− yn‖ → 0 as n → ∞. This immediately
implies that

(3.12) lim
n→∞

‖wn − un‖ = lim
n→∞

‖un − yn‖ = 0.

Furthermore, we put pn := ζSnwn +(1− ζ)Gwn for all n ≥ 0. Then we obtain that

‖wn − x∗‖q = 〈snxn + (1− sn)(ζSnwn + (1− ζ)Gwn)− x∗, Jq(wn − x∗)〉
≤ sn〈xn − x∗, Jq(wn − x∗)〉
+ (1− sn)〈(ζSnwn + (1− ζ)Gwn)− x∗, Jq(wn − x∗)〉

≤ sn〈xn − x∗, Jq(wn − x∗)〉+ (1− sn)‖wn − x∗‖q.
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Using Lemma 2.2 (b), we get

‖wn − x∗‖q ≤ 〈xn − x∗, Jq(wn − x∗)〉

≤ 1

q
[‖xn − x∗‖q + (q − 1)‖wn − x∗‖q − h3(‖xn − wn‖)].

This together with (3.2) implies that

(3.13) ‖un − x∗‖q ≤ ‖wn − x∗‖q ≤ ‖xn − x∗‖q − h3(‖xn − wn‖).
In a similar way, we have

‖zn − x∗‖q = ‖JB
λn
(un − λnAyn + rn(yn − un))− JB

λn
(x∗ − λnAx

∗)‖q

≤ 〈(un − λnAyn + rn(yn − un))− (x∗ − λnAx
∗), Jq(zn − x∗)〉

≤ 1

q
[‖(un − λnAyn + rn(yn − un))− (x∗ − λnAx

∗)‖q

+ (q − 1)‖zn − x∗‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)],

which together with (3.4), implies that

‖zn − x∗‖q ≤ ‖(un − λnAyn + rn(yn − un))− (x∗ − λnAx
∗)‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)
≤ ‖un − x∗‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖).

This together with (3.13), ensures that

‖xn+1 − x∗‖q ≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn‖Gzn − x∗‖q

≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn[‖un − x∗‖q

− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)]
≤ αn‖f(xn)− x∗‖q + βn‖xn − x∗‖q + γn[‖xn − x∗‖q

− h3(‖xn − wn‖)
− h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)]

≤ αn‖f(xn)− x∗‖q + ‖xn − x∗‖q − γn[h3(‖xn − wn‖)
+ h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)],

which immediately leads to

γn[h3(‖xn − wn‖) + h2(‖un + rn(yn − un)− λn(Ayn −Ax∗)− zn‖)]
≤ αn‖f(xn)− x∗‖q + Γn − Γn+1.

Note that h2 and h3 are strictly increasing, continuous and convex functions with
h2(0) = h3(0) = 0. Using (3.9) and (3.12), we obtain

(3.14) lim
n→∞

‖xn − wn‖ = lim
n→∞

‖un − zn‖ = 0.

So, it follows from (3.10), (3.12) and (3.14) that

‖xn − zn‖ ≤ ‖xn − wn‖+ ‖wn − un‖+ ‖un − zn‖ → 0 (n → ∞),
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and hence

‖xn −Gxn‖ ≤ ‖xn −Gzn‖+ ‖Gzn −Gxn‖
≤ ‖xn −Gzn‖+ ‖zn − xn‖ → 0 (n → ∞).(3.15)

Since wn = snxn+(1−sn)pn and pn = ζSnwn+(1−ζ)un, from (3.12) and (3.14)
we get

‖pn − wn‖ =
sn

1− sn
‖xn − wn‖ ≤ d

1− d
‖xn − wn‖ → 0 (n → ∞),

and hence

ζ‖Snwn − wn‖ = ‖pn − wn − (1− ζ)(un − wn)‖
≤ ‖pn − wn‖+ ‖un − wn‖ → 0 (n → ∞).

Since {Sn}∞n=0 is ℓ-uniformly Lipschitzian on C, we deduce from (3.14) that

‖Snxn − xn‖ ≤ ‖Snxn − Snwn‖+ ‖Snwn − wn‖+ ‖wn − xn‖
≤ (ℓ+ 1)‖xn − wn‖+ ‖Snwn − wn‖ → 0 (n → ∞).(3.16)

We next claim that ‖xn − S̃xn‖ → 0 as n → ∞ where S̃ := (2I − S)−1. In
fact, it is first clear that S : C → C is pseudocontractive and ℓ-Lipschitzian where
Sx = limn→∞ Snx ∀x ∈ C. We claim that limn→∞ ‖Sxn − xn‖ = 0. Using the
boundedness of {xn} and setting D = conv{xn : n ≥ 0} (the closed convex hull of
the set {xn : n ≥ 0}), by the assumption we have

∑∞
n=1 supx∈D ‖Snx−Sn−1x‖ < ∞.

Hence, by Proposition 2.4 we get limn→∞ supx∈D ‖Snx − Sx‖ = 0, which immedi-
ately arrives at

lim
n→∞

‖Snxn − Sxn‖ = 0.

Thus, from (3.16) we have

(3.17) ‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖ → 0 (n → ∞).

Now, let us show that if we define S̃ := (2I−S)−1, then S̃ : C → C is nonexpansive,

Fix(S̃) = Fix(S) =
⋂∞

n=0 Fix(Sn) and limn→∞ ‖xn− S̃xn‖ = 0. As a matter of fact,

put S̃ := (2I − S)−1, where I is the identity operator of E. Then it is known

that S̃ is nonexpansive and Fix(S̃) = Fix(S) =
⋂∞

n=0 Fix(Sn) as a consequence
of [29, Theorem 6]. From (3.17) it follows that

‖xn − S̃xn‖ = ‖S̃S̃−1xn − S̃xn‖ ≤ ‖S̃−1xn − xn‖
= ‖(2I − S)xn − xn‖ = ‖xn − Sxn‖ → 0 (n → ∞).(3.18)

For each n ≥ 0, we put Tλn := JB
λn
(I−λnA). Then from (3.12) and (3.14) we get

‖xn − Tλnxn‖ ≤ ‖xn − un‖+ ‖un − Tλnun‖+ ‖Tλnun − Tλnxn‖
≤ 2‖xn − un‖+ ‖un − yn‖
≤ 2(‖xn − wn‖+ ‖wn − un‖) + ‖un − yn‖ → 0 (n → ∞).

Noticing 0 < λ ≤ λn for all n ≥ 0 and using Proposition 2.7 (ii), we obtain

(3.19) ‖Tλxn − xn‖ ≤ 2‖Tλnxn − xn‖ → 0 (n → ∞).
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We define the mapping Ψ : C → C byΨx := θ1S̃x+θ2Gx+(1−θ1−θ2)Tλx ∀x ∈ C
with θ1 + θ2 < 1 for constants θ1, θ2 ∈ (0, 1). Then by Lemma 2.14 and Proposi-
tion 2.7 (i), we know that Ψ is nonexpansive and

Fix(Ψ) = Fix(S̃) ∩ Fix(G) ∩ Fix(Tλ)

=

∞⋂
n=0

Fix(Sn) ∩GSVI(C,B1, B2) ∩ (A+B)−10 (=: Ω).

Taking into account that

‖Ψxn − xn‖ ≤ θ1‖S̃xn − xn‖+ θ2‖Gxn − xn‖+ (1− θ1 − θ2)‖Tλxn − xn‖,

we deduce from (3.15), (3.18) and (3.19) that

(3.20) lim
n→∞

‖Ψxn − xn‖ = 0.

Let zs = sf(zs) + (1− s)Ψzs ∀s ∈ (0, 1). Then it follows from Proposition 2.8 that
{zs} converges strongly to a point x∗ ∈ Fix(Ψ) = Ω , which solves the HVI:

〈(I − f)x∗, J(x∗ − p)〉 ≤ 0 ∀p ∈ Ω .

Also, from (2.3) we get

‖zs − xn‖q = ‖s(f(zs)− xn) + (1− s)(Ψzs − xn)‖q

≤ (1− s)q‖Ψzs − xn‖q + qs〈f(zs)− xn, Jq(zs − xn)〉
= (1− s)q‖Ψzs − xn‖q + qs〈f(zs)− zs, Jq(zs − xn)〉
+ qs〈zs − xn, Jq(zs − xn)〉

≤ (1− s)q(‖Ψzs −Ψxn‖+ ‖Ψxn − xn‖)q

+ qs〈f(zs)− zs, Jq(zs − xn)〉+ qs‖zs − xn‖q

≤ (1− s)q(‖zs − xn‖+ ‖Ψxn − xn‖)q

+ qs〈f(zs)− zs, Jq(zs − xn)〉+ qs‖zs − xn‖q,

which immediately attains

〈f(zs)− zs, Jq(xn − zs)〉

≤ (1− s)q

qs
(‖zs − xn‖+ ‖Ψxn − xn‖)q +

qs− 1

qs
‖zs − xn‖q.

From (3.20), we have

lim sup
n→∞

〈f(zs)− zs, Jq(xn − zs)〉 ≤
(1− s)q

qs
M +

qs− 1

qs
M

= (
(1− s)q + qs− 1

qs
)M,(3.21)

where M is a constant such that ‖zs − xn‖q ≤ M for all n ≥ 0 and s ∈ (0, 1). It
is easy to see that ((1 − s)q + qs − 1)/qs → 0 as s → 0. Since Jq is norm-to-norm
uniformly continuous on bounded subsets of E and zs → x∗, we get

‖Jq(xn − zs)− Jq(xn − x∗)‖ → 0 (s → 0).
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So we obtain

|〈f(zs)− zs, Jq(xn − zs)〉 − 〈f(x∗)− x∗, Jq(xn − x∗)〉|
= |〈f(zs)− f(x∗), Jq(xn − zs)〉+ 〈f(x∗)− x∗, Jq(xn − zs)〉

+〈x∗ − zs, Jq(xn − zs)〉〈f(x∗)− x∗, Jq(xn − x∗)〉|
≤ |〈f(x∗)− x∗, Jq(xn − zs)− Jq(xn − x∗)〉|
+|〈f(zs)− f(x∗), Jq(xn − zs)〉|+ |〈x∗ − zs, Jq(xn − zs)〉|

≤ ‖f(x∗)− x∗‖‖Jq(xn − zs)− Jq(xn − x∗)‖
+(1 + δ)‖zs − x∗‖‖xn − zs‖q−1.

Hence, for each n ≥ 0, we get

lim
s→0

〈f(zs)− zs, Jq(xn − zs)〉 = 〈f(x∗)− x∗, Jq(xn − x∗)〉.

From (3.21), as s → 0, it follows that

(3.22) lim sup
n→∞

〈f(x∗)− x∗, Jq(xn − x∗)〉 ≤ 0.

By (C1) and (3.10), we get

‖xn+1 − xn‖ = ‖αnf(xn) + βnxn + γnGzn − xn‖
= ‖αn(f(xn)− xn) + γn(Gzn − xn)‖(3.23)

≤ αn‖f(xn)− xn‖+ γn‖Gzn − xn‖ → 0 (n → ∞).

Using (3.22) and (3.23), we have

(3.24) lim sup
n→∞

〈f(x∗)− x∗, Jq(xn+1 − x∗)〉 ≤ 0.

Using Lemma 2.15 and (3.24), we can infer that Γn → 0 as n → ∞. Thus, xn → x∗

as n → ∞.

Case 2. Suppose that ∃{Γik} ⊂ {Γi} s.t. Γik < Γik+1 ∀k ∈ N, where N is the
set of all positive integers. Define the mapping τ : N → N by

τ(i) := max{j ≤ i : Γj < Γj+1}.

Using Lemma 2.13, we get

Γτ(i) ≤ Γτ(i)+1 and Γi ≤ Γτ(i)+1.

Putting Γi = ‖xi − x∗‖q ∀i ∈ N and using the same inference as in Case 1, we can
obtain

(3.25) lim
i→∞

‖xτ(i)+1 − xτ(i)‖ = 0

and

(3.26) lim sup
i→∞

〈f(x∗)− x∗, Jq(xτ(i)+1 − x∗)〉 ≤ 0.

Owing to Γτ(i) ≤ Γτ(i)+1 and ατ(i) > 0, we conclude from (3.7) that

‖xτ(i) − x∗‖q ≤ q

1− δ
〈f(x∗)− x∗, Jq(xτ(i)+1 − x∗)〉
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and hence

lim sup
i→∞

‖xτ(i) − x∗‖q ≤ 0.

Thus, we get

lim
i→∞

‖xτ(i) − x∗‖q = 0.

Using Proposition 2.5 and (3.25), we obtain

‖xτ(i)+1 − x∗‖q − ‖xτ(i) − x∗‖q

≦ 〈xτ(i)+1 − xτ(i), Jq(xτ(i) − x∗)〉+ κq‖xτ(i)+1 − xτ(i)‖q

≤ q‖xτ(i)+1 − xτ(i)‖‖xτ(i) − x∗‖q−1 + κq‖xτ(i)+1 − xτ(i)‖q → 0 (i → ∞).

Noticing Γi ≤ Γτ(i)+1, we get

‖xi − x∗‖q ≤ ‖xτ(i)+1 − x∗‖q

≤ ‖xτ(i) − x∗‖q + q‖xτ(i)+1 − xτ(i)‖‖xτ(i) − x∗‖q−1

+ κq‖xτ(i)+1 − xτ(i)‖q.

It is easy to see from (3.25) that xi → x∗ as i → ∞. This completes the proof.
□

We also obtain the strong convergence result for the combined extragradient
implicit rule in a real Hilbert space H. It is well known that κ2 = 1 [44]. Thus, by
Theorem 3.3 we derive the following conclusion.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : C → C be a δ-contraction with constant δ ∈ [0, 1) and {Sn}∞n=0 be
a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on
C. Let A : C → H and B : C → 2H be a σ-inverse-strongly monotone mapping
and a maximal monotone operator, respectively. Suppose that B1, B2 : C → H are
α-inverse-strongly monotone mapping and β-inverse-strongly monotone mapping,
respectively. Assume that Ω :=

⋂∞
n=0 Fix(Sn)∩GSVI(C,B1, B2)∩ (A+B)−10 6= ∅.

For any given x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by

(3.27)



wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn),

un = Gwn,

yn = JB
λn
(un − λnAun),

zn = JB
λn
(un − λnAyn + rn(yn − un)),

xn+1 = αnf(xn) + βnxn + γnGzn ∀n ≥ 0,

where JB
λn

= (I+λnB)−1, {rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1] with αn+βn+γn = 1
and {λn} ⊂ (0,∞). Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1 and 0 < c ≤ sn ≤ d < 1;
(C3) 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn

rn
≤ µ < 2σ;

(C4) 0 < µ1 < 2α and 0 < µ2 < 2β.
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Assume that
∑∞

n=0 supx∈D ‖Sn+1x−Snx‖ < ∞ for any bounded subset D of C. Let
S : C → C be a mapping defined by Sx = limn→∞ Snx ∀x ∈ C, and suppose that
Fix(S) =

⋂∞
n=0 Fix(Sn). Then xn → x∗ ∈ Ω, which is the unique solution to the

HVI: 〈(I − f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x
∗).

Remark 3.5. Compared with the corresponding results in Manaka and Takahashi
[28], Sunthrayuth and Cholamjiak [36], and Cai et al. [6], our results improve and
extend them in the following aspects.

(i) The problem of solving the VI for two monotone operators A,B with the
FPP constraint of a nonexpansive mapping S in [28, Theorem 3.1] is ex-
tended to develop our problem of solving the GSVI (1.6) with the constraints
of the VI for two accretive operators A,B and the CFPP of countably many
pseudocontractive mappings {Sn}∞n=0. The Mann-type iterative scheme with
weak convergence in [28, Theorem 3.1] is extended to develop our combined
extragradient implicit rule with strong convergence.

(ii) The problem of solving the GSVI (1.7) with the FPP constraint of an asymp-
totically nonexpansive mapping T in [6, Theorem 3.1], is extended to develop
our problem of solving the GSVI (1.6) with the constraints of the VI for two
accretive operators A,B and the CFPP of countably many pseudocontrac-
tive mappings {Sn}∞n=0. The modified viscosity implicit rule in [6, Theorem
3.1] is extended to develop our combined extragradient implicit rule.

(iii) The problem of solving the VI for two accretive operators A,B with the FPP
constraint of a nonexpansive mapping S in [36, Theorem 3.3] is extended
to develop our problem of solving the GSVI (1.6) with the constraints of
the VI for two accretive operators A,B and the CFPP of countably many
pseudocontractive mappings {Sn}∞n=0. The modified viscosity-type extra-
gradient method in [36, Theorem 3.3] is extended to develop our combined
extragradient implicit rule.

4. Some applications

In this section, we give some applications of Corollary 3.4 to important mathe-
matical problems in the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed
convex subset C ⊂ H and a nonlinear monotone operator A : C → H. Consider
the classical VIP of finding u∗ ∈ C s.t.

(4.1) 〈Au∗, v − u∗〉 ≥ 0 ∀v ∈ C.

The solution set of problem (4.1) is denoted by VI(C,A). It is clear that u∗ ∈ C
solves VIP (4.1) if and only if it solves the fixed point equation u∗ = PC(u

∗−λAu∗)
with λ > 0. Let iC be the indicator function of C defined by

iC(u) =

{
0 if u ∈ C,

∞ if u 6∈ C.

We use NC(u) to indicate the normal cone of C at u ∈ H, i.e., NC(u) = {w ∈
H : 〈w, v − u〉 ≤ 0 ∀v ∈ C}. It is known that iC is a proper, convex and lower
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semicontinuous function and its subdifferential ∂iC is a maximal monotone mapping

[10]. We define the resolvent operator J∂iC
λ of ∂iC for λ > 0 by

J∂iC
λ (x) = (I + λ∂iC)

−1(x) ∀x ∈ H,

where

∂iC(u) = {w ∈ H : iC(u) + 〈w, v − u〉 ≤ iC(v) ∀v ∈ H}
= {w ∈ H : 〈w, v − u〉 ≤ 0 ∀v ∈ C} = NC(u) ∀u ∈ C.

Hence, we get

u = J∂iC
λ (x) ⇔ x− u ∈ λNC(u)

⇔ 〈x− u, v − u〉 ≤ 0 ∀v ∈ C

⇔ u = PC(x),

where PC is the metric projection of H onto C. Moreover, we also have (A +
∂iC)

−10 = VI(C,A) [39].
Thus, putting B = ∂iC in Corollary 3.4, we obtain the following result:

Theorem 4.1. Let f,A,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4. Sup-
pose that Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(C,B1, B2) ∩ VI(C,A) 6= ∅. For any given

x0 ∈ C and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by

(4.2)



wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn),

un = Gwn,

yn = PC(un − λnAun),

zn = PC(un − λnAyn + rn(yn − un)),

xn+1 = αnf(xn) + βnxn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1] with αn + βn + γn = 1 and
{λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.4 hold. Then
xn → x∗ ∈ Ω, which is the unique solution to the HVI: 〈(I−f)x∗, p−x∗〉 ≥ 0 ∀p ∈ Ω,
i.e., the fixed point equation x∗ = PΩf(x

∗).

4.2. Application to split feasibility problem. Let H1 and H2 be two real
Hilbert spaces. Consider the following split feasibility problem (SFP) of finding

(4.3) u ∈ C s.t Tu ∈ Q,

where C and Q are closed convex subsets of H1 and H2, respectively, and T :
H1 → H2 is a bounded linear operator with its adjoint T ∗. The solution set of
SFP is denoted by ℧ := C ∩ T−1Q = {u ∈ C : Tu ∈ Q}. In 1994, Censor
and Elfving [7] first introduced the SFP for modeling inverse problems of radiation
therapy treatment planning in a finite dimensional Hilbert space, which arise from
phase retrieval and in medical image reconstruction.

It is known that z ∈ C solves the SFP (4.3) if and only if z is a solution of the
minimization problem: miny∈C g(y) := 1

2‖Ty − PQTy‖2. Note that the function g
is differentiable convex and has the Lipschitzian gradient defined by ∇g = T ∗(I −
PQ)T . Moreover, ∇g is 1

∥T∥2 -inverse-strongly monotone, where ‖T‖2 is the spectral
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radius of T ∗T [5]. So, z ∈ C solves the SFP if and only if it solves the variational
inclusion problem of finding z ∈ H1 s.t.

0 ∈ ∇g(z) + ∂iC(z) ⇔ 0 ∈ z + λ∂iC(z)− (z − λ∇g(z))

⇔ z − λ∇g(z) ∈ z + λ∂iC(z)

⇔ z = (I + λ∂iC)
−1(z − λ∇g(z))

⇔ z = PC(z − λ∇g(z)).

Now, setting A = ∇g, B = ∂iC and σ = 1
∥T∥2 in Corollary 3.4, we obtain the

following result:

Theorem 4.2. Let f,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4. Assume
that Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(C,B1, B2) ∩ ℧ 6= ∅. For any given x0 ∈ C and

ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by

(4.4)



wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn),

un = Gwn,

yn = PC(un − λnT
∗(I − PQ)Tun),

zn = PC(un − λnT
∗(I − PQ)Tyn + rn(yn − un)),

xn+1 = αnf(xn) + βnxn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1] with αn + βn + γn = 1 and
{λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.4 hold where
σ = 1

∥T∥2 . Then xn → x∗ ∈ Ω, which is the unique solution to the HVI: 〈(I −
f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x

∗).

4.3. Application to LASSO problem. In this subsection, we first recall the least
absolute shrinkage and selection operator (LASSO) [41], which can be formulated
as a convex constrained optimization problem:

(4.5) min
y∈H

1

2
‖Ty − b‖22 subject to ‖y‖1 ≤ s,

where T : H → H is a bounded operator on H, b is a fixed vector in H and s > 0.
Let ℧ be the solution set of LASSO (4.5). The LASSO has received much attention
because of the involvement of the ℓ1 norm which promotes sparsity, phenomenon of
many practical problems arising in statics model, image compression, compressed
sensing and signal processing theory.

In terms of the optimization theory, ones know that the solution to the LASSO
problem (4.5) is a minimizer of the following convex unconstrained minimization
problem so-called Basis Pursuit denoising problem:

min
y∈H

g(y) + h(y), (4.6)

where g(y) := 1
2‖Ty − b‖22, h(y) := λ‖y‖1 and λ ≥ 0 is a regularization parameter.

It is known that ∇g(y) = T ∗(Ty − b) is 1
∥T ∗T∥ -inverse-strongly monotone. Hence,

we have that z solves the LASSO if and only if z solves the variational inclusion
problem of finding z ∈ H s.t.

0 ∈ ∇g(z) + ∂h(z) ⇔ 0 ∈ z + λ∂h(z)− (z − λ∇g(z))
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⇔ z − λ∇g(z) ∈ z + λ∂h(z)

⇔ z = (I + λ∂h)−1(z − λ∇g(z))

⇔ z = proxh(z − λ∇g(z)),

where proxh(y) is the proximal of h(y) := λ‖y‖1 given by

proxh(y) = argminu∈H{λ‖u‖1 +
1

2
‖u− y‖22} ∀y ∈ H,

which is separable in indices. Then, for y ∈ H,

proxh(y) = proxλ∥·∥1(y)

= (proxλ|·|(y1), proxλ|·|(y2), ..., proxλ|·|(yn)),

where proxλ|·|(yi) = sgn(yi)max{|yi| − λ, 0} for i = 1, 2, ..., n.

In 2014, Xu [46] suggested the following proximal-gradient algorithm (PGA):

xk+1 = proxh(xk − λkΓ
∗(Γxk − b)).

He proved the weak convergence of the PGA to a solution of the LASSO problem
(4.5).

Next, putting C = H, A = ∇g, B = ∂h and σ = 1
∥T ∗T∥ in Corollary 3.4, we

obtain the following result:

Theorem 4.3. Let f,B1, B2 and {Sn}∞n=0 be the same as in Corollary 3.4 with
C = H. Assume that Ω :=

⋂∞
n=0 Fix(Sn)∩GSVI(H,B1, B2)∩℧ 6= ∅. For any given

x0 ∈ H and ζ ∈ (0, 1), let {xn}∞n=0 be the sequence generated by

(4.6)



wn = snxn + (1− sn)(ζSnwn + (1− ζ)Gwn),

un = Gwn,

yn = proxh(un − λnT
∗(Tun − b)),

zn = proxh(un − λnT
∗(Tyn − b) + rn(yn − un)),

xn+1 = αnf(xn) + βnxn + γnGzn ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1] with αn + βn + γn = 1 and
{λn} ⊂ (0,∞) are such that the conditions (C1)-(C4) in Corollary 3.4 hold where
σ = 1

∥T ∗T∥ . Then xn → x∗ ∈ Ω, which is the unique solution to the HVI: 〈(I −
f)x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω, i.e., the fixed point equation x∗ = PΩf(x

∗).
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