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COMBINED EXTRAGRADIENT IMPLICIT RULE FOR A
SYSTEM OF VARIATIONAL INEQUALITIES WITH
VARIATIONAL INCLUSION CONSTRAINT INVOLVING FIXED
POINTS OF PSEUDOCONTRACTIONS

LU-CHUAN CENG*, CHING-FENG WEN', AND JEN-CHIH YAO*

ABSTRACT. In a real Banach space, let the VI denote a variational inclusion for
two accretive operators and let the CFPP indicate a common fixed point problem
of countably many pseudocontractive mappings. In this paper, we introduce a
combined extragradient implicit rule for solving a general system of variational
inequalities (GSVI) with the VI and CFPP constraints. We then prove the strong
convergence of the suggested method to a solution of the GSVI with the VI and
CFPP constraints under some mild conditions. As applications, we apply our
main result to the variational inequality problem (VIP), split feasibility problem
(SFP) and LASSO problem in Hilbert spaces.

1. INTRODUCTION

In a real Hilbert space H, let the inner product and induced norm be denoted
by (-,-) and || - ||, respectively. Given a nonempty closed convex subset C' C H.
Let Po be the metric projection of H onto C. Given a mapping A : C — H.
The classical variational inequality problem (VIP) is to find a point u* € C s.t.
(Au*;v —u*) > 0 Vv € C. We denote by VI(C, A) the solution set of the VIP. In
1976, Korpelevich [24] first designed an extragradient method, i.e., for any given
up € C, the sequence {u;} is generated by

V; = Pc(ul — EAUZ),

1.1
( ) Uj+1 = Pc(’u,i - ﬁA’Uz) Vi > O,

with £ € (0, %), which has been one of the most effective methods for solving the VIP
till now. In the case of VI(C, A) # (), the sequence {u;} has only weak convergence.
Indeed, the convergence of {u;} only requires that the mapping A is monotone and
Lipschitz continuous. To the most of our knowledge, Korpelevich’s extragradient
method has received great attention given by many authors, who improved and
modified it in various ways; see e.g., [1,6,8-22,25,30,35-37,42,43] and references
therein, to name but a few.
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In order to solve the variational inclusion (VI) of finding v* € H s.t. 0 € (A +
B)v*, Takahashi et al. [40] suggested a Halpern-type iterative method, i.e., for any
given vg,u € H, {v;} is the sequence generated by

(12) Vir1 = Biv; + (1 - Bl)(azu + (1 — ozz)Jg (Ui - )\lA’Ul)) Vi > 0,

where A is an a-inverse-strongly monotone operator on H and B is a maximal
monotone operator on H. They proved the strong convergence of {v;} to a solution
v* € (A + B)710 of the VI. Subsequently, Pholasa et al. [31] extended the result
in [40] to the setting of Banach spaces, and proved the strong convergence of {v;}
to a point of (A + B)~10.

Meantime, Takahashi et al. [39] proposed a Mann-type Halpern iterative scheme
for solving the FPP of a nonexpansive mapping S : C — C and the VI for an a-
inverse-strongly monotone mapping A : C' — H and a maximal monotone operator
B:D(B)c C — H,i.e., for any given y; =y € C, {y;} is the sequence generated
by

(13)  yir1 =By + (1= B)S(iy + (1 — i) T2 (i — NiAys)) Vi > 1,

where {\;} C (0,2a) and {o;}, {8} C (0,1) are such that (i) lim; ooy = 0,
Yoy =o00; (i) 0 < a < XN < b < 2 limo(A —Aig1) = 0; and (iii)
0 <c<p; <d< 1. They proved the strong convergence of {y;} to a point of
Fix(S) N (A + B)~to.

Owing to the importance and interesting of the VI, many researchers have pre-
sented and developed a great number of iterative methods for solving the VI in sev-
eral approaches; see e.g., [12,15,16,18,26,28,31,36,39,40] and the references therein.
Moreover, they consider the FPP of finding a point u* € C such that v* = Su*
where S : C' — C is a nonlinear mapping. The solution set of the FPP is denoted
by Fix(S). In the practical life, many mathematical models have been formulated
as this problem. Many mathematicians are now interested in finding a common
solution of the VI and FPP, i.e., find a point u* s.t. u* € Fix(S) N (4 + B)~10.

Suppose that A : C'— H is an inverse-strongly monotone mapping, B : D(B) C
C — 2 is a maximal monotone operator, and S : C — C is a nonexpansive
mapping. In 2011, Manaka and Takahashi [28] suggested an iterative process, i.e.,
for any given ug € C, {u;} is the sequence generated by

(1.4) Uj+1 = O0GU; + (1 - Oél)Sjg (ul — )\ZAul) Vi > 0,

where {a;} C (0,1) and {A\;} C (0,00). They proved the weak convergence of {u;}
to a point of Fix(S) N (A + B)~'0 under some suitable conditions.

Furthermore, assume that ¢ € (1,2] and E is a real Banach space. Let f : E — E
be a p-contraction and S : F — F be a nonexpansive mapping. Let A : £ — F
be an a-inverse-strongly accretive mapping of order ¢ and B : E — 2F be an m-
accretive operator. Very recently, in order to solve the FPP of S and the VI of
finding u* € E s.t. 0 € (A + B)u*, Sunthrayuth and Cholamjiak [36] suggested
a modified viscosity-type extragradient method in the setting of uniformly convex
and g-uniformly smooth Banach space E with g-uniform smoothness coefficient &,
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i.e., for any given ug € E, {u;} is the sequence generated by

(1.5) zi = I (ui — NiAyi + iy — i),
Uip1 = azf(uz) + Biu; +v:Sz; Vi >0,

where Jﬁ =T +NB)7 {ri} {ai}, {8}, {v} € (0,1) and {\;} C (0,00) are such
that: (1) ci+Bi+7y = 1; (il) lim; oo o = 0, Doy oy = 00; (i) {5} C [a,b] C (0,1);
and (iv) 0 < A < N < N/ < < (ag/kg)@ D, 0 < r <r; < 1. They proved
strong convergence of {u;} to a point of Fix(S) N (A+ B)~10, which solves a certain
hierarchical variational inequality (HVI).

On the other hand, let J : E — 2" be the normalized duality mapping from E
into 28" defined by J(z) = {¢ € E* : (x,¢) = ||z||*> = ||¢||*} Vx € E, where (-,-)
represents the generalized duality pairing between F and E*. Recall that if F is
smooth then J is single-valued. Let Bi, Bs : C' — E be two nonlinear mappings in

a smooth Banach space E. The general system of variational inequalities (GSVI)
is to find (z*,y*) € C x C such that

{(mBly* +at -y, J(—2") =20 Vzel,

1.6
(16) (uoBox* +y* —z*, J(x —y*)) >0 Vr e,

where p; is a positive constant for ¢ = 1,2. In particular, if £ = H a real Hilbert
space, it is easy to see that the GSVI (1.6) reduces to the GSVI considered in [19],

' (ueBox* +y* —a*,x —y*) >0 VaeC.

It is known that problem (1.7) has been transformed into a fixed point problem in
the following way.

Lemma 1.1 (see [19]). For given z*,y* € C, (z*,y*) is a solution of problem (1.7)
if and only if x* € GSVI(C, By, Ba), where GSVI(C, By, Bs) is the fixed point set of
the mapping G := Po(I — puB1)Po(I — peBs), and y* = Po(I — paBa)x™.

In 2018, using Lemma 1.1, Cai et al. [6] introduced a viscosity implicit rule for
solving the GSVI (1.7) with the FPP constraint of an asymptotically nonexpansive
mapping T with a sequence {6;}, i.e., for any given xy € C, the sequence {z;} is
generated by

u; = sizi + (1 — 83)yi,
2 = Po(u; — paBouy),
yi = Po(zi — p1B1rzi),
Tit1 = Pc[oz,f(ail) + (I — ai,oF)Tiyi] Vi > 0,

where {a;}, {s;} C (0,1] are such that (i) lim; oo ; = 0, > 725 = 00, Y oo [Qip1—
;] < 00; (ii) lim; oo 05/ = 0; (iii) 0 <& < 5 <1, D72, [sit1 — 85| < o0; and (iv)
S 2o IT " y; — Thy;|| < co. They proved that the sequence constructed by (1.8)
converges strongly to a point of GSVI(C, A1, A2) N Fix(T'), which solves a certain
HVIL

(1.8)
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In a real Banach space FE, let the VI indicate a variational inclusion for two
accretive operators and let the CFPP denote a common fixed point problem of
countably many nonexpansive mappings. In this paper, we introduce a generalized
extragradient implicit method for solving the GSVI (1.6) with the VI and CFPP
constraints. We then prove the strong convergence of the suggested method to a
solution of the GSVI (1.6) with the VI and CFPP constraints under some suitable
assumptions. As applications, we apply our main result to the variational inequal-
ity problem (VIP), split feasibility problem (SFP) and LASSO problem in Hilbert
spaces. Our results improve and extend the corresponding results in Manaka and
Takahashi [28], Sunthrayuth and Cholamjiak [36], and Cai et al. [6] to a certain
extent.

2. PRELIMINARIES

Let C' be a nonempty closed convex subset of a real Banach space E with the
dual E*. For simplicity, we shall use the following notations: x, — x indicates
the strong convergence of the sequence {z,} to  and z,, — x denotes the weak
convergence of the sequence {z,} to z. Given a self-mapping 7" on C. We use the
notations R and Fix(T") to stand for the set of all real numbers and the fixed point
set of T', respectively. Recall that T is said to be nonexpansive if ||Tu — Tv|| <
|lu —v|| Yu,v € C. A mapping f : C — C is called a contraction if 3§ € [0, 1)
st || f(u) = f(v)]] < dllu—v| Yu,v € C. Also, recall that the normalized duality
mapping J defined by

(2.1) Jx)={¢ € B : (x,¢) = |z]* = 4|’} VzeE.
is the one from F into the family of nonempty (by Hahn-Banach’s theorem) weak*
compact subsets of E*, satisfying J(7u) = 7J(u) and J(—u) = —J(u) for all 7 > 0
and u € E.

The modulus of convexity of E is the function dg : (0,2] — [0, 1] defined by

. U+ v
p(e) =it (1 - 0w Bl = ol = 1, v 2 6.

The modulus of smoothness of E is the function pg : R4 := [0,00) — R4 defined
by

llu+ Tv]| + |Ju — T0||
{ 2
A Banach space F is said to be uniformly convex if dg(e) > 0 Ve € (0,2]. It is said
to be uniformly smooth if lim, ,o+ pr(7)/7 = 0. Also, it is said to be g-uniformly
smooth with ¢ > 1 if 3¢ > 0 s.t. pg(t) < ct? Vt > 0. If E is g-uniformly smooth,
then ¢ < 2 and FE is also uniformly smooth and if E is uniformly convex, then F is
also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly
smooth. Further, sequence space ¢, and Lebesgue space L, are min{p, 2}-uniformly
smooth for every p > 1 [44].
Let ¢ > 1. The generalized duality mapping J, : £ — 2F" is defined by

(2.2) Jo(x) ={p € B* : (z,0) = ||z]|% |6l = =]},
where (-, -) denotes the generalized duality pairing between E and E*. In particular,
if ¢ = 2, then Jo = J is the normalized duality mapping of E. It is known that

pe(T) = sup —liu,ve B, [luf = o] =1},
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Jy(x) = ||z||972J(x) VYo # 0 and that J, is the subdifferential of the functional
%H -||9. If E is uniformly smooth, the generalized duality mapping .J; is one-to-one
and single-valued. Furthermore, J, satisfies J; = J, 1 where Jp is the generalized
duality mapping of E* with % + % = 1. Note that no Banach space is g-uniformly
smooth for ¢ > 2; see [38] for more details.

Let ¢ > 1 and E be a real normed space with the generalized duality mapping
Jg. Then the following inequality is an immediate consequence of the subdifferential
inequality of the functional %H -4z

(2.3) |z +yll? <|lzl|? + ¢y, jo(x +y)) Yo,y € E, jy(z+y) € Jy(z+y).

Lemma 2.1 (see [23]). If T : C — C is a continuous and strong pseudocontraction
mapping, then T has a unique fized point in C.

The following lemma can be obtained from the result in [44].

Lemma 2.2. Let g > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exist strictly increasing, continuous and convex functions g, h :

Ry — Ry with g(0) =0 and h(0) = 0 such that
(a) [[pu+ (1= p)ol|? < plluf|?+ (1= p)[[o]|? = p(l = w)g(llu—wvll) with p € [0,1];

(b) Al —vl) < lull? = ¢(u, jg(v)) + (g = 1)||v]|?
for all u,v € B, and jq(v) € J4(v), where B, :={y € E: |y|| < r}.

The following lemma is an analogue of Lemma 2.2 (a).

Lemma 2.3. Let ¢ > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exists a strictly increasing, continuous and convexr function
g: Ry — Ry with g(0) =0 such that

[Au 4 po + vwl|? < Alull? + pllo[|* + vljw||* = Aug((lu —v])
for all u,v,w € By and A\, pu,v € [0,1] with A\+ p+v =1.

Proposition 2.4 (see [3]). Let {S,}02 be a sequence of self-mappings on C' such
that Y > supgec [|Sn — Sp—1z|| < 0o. Then for each y € C, {Spy} converges
strongly to some point of C. Moreover, let S be a self-mapping on C defined by
Sy = limy, 00 Spy for ally € C. Then lim,, o0 SUp,cc || Snz — Sz|| = 0.

Proposition 2.5 (see [44]). Let ¢ € (1,2] a fized real number and let E be gq-
uniformly smooth. Then ||z + y||? < ||z||? + q(y, J4(z)) + kqlly||? Yo,y € E, where
Kq s the g-uniform smoothness coefficient of E.

Let D be a subset of C' and let I be a mapping of C' into D. Then II is said to
be sunny if II[II(x) 4+ t(x — II(x))] = II(x), whenever II (x) + t(x — II(x)) € C for
x € Candt > 0. A mapping IT of C into itself is called a retraction if /12 = II. If a
mapping II of C into itself is a retraction, then II(z) = z for each z € R(II), where
R(II) is the range of II. A subset D of C is called a sunny nonexpansive retract of
C if there exists a sunny nonexpansive retraction from C onto D. In terms of [32],
we know that if F/ is smooth and II is a retraction of C' onto D, then the following
statements are equivalent:

(i) II is sunny and nonexpansive;
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(i) I (x) = H()|* < (z —y, J(I (z) — (y))) Y,y € C;

(i) (z — (x),J(y — II(x))) <0Vzx e C,y € D.

Let B : C — 2F be a set-valued operator with Bx # () Vo € C. Let ¢ > 1.
An operator B is said to be accretive if for each z,y € C, Jj,(z — y) € Jy(x — y)
s.t. (u—w,js(z —y)) >0Vu e Bzx,v € By. An accretive operator B is said to be
a-inverse-strongly accretive of order ¢ if for each z,y € C, Jj,(z—y) € Jy(z—y) s.t.
(u—v,jq(x—y)) > aflu—v||9 Vu € Bx,v € By for some o > 0. If E = H a Hilbert
space, then B is called a-inverse-strongly monotone. An accretive operator B is
said to be m-accretive if (I +AB)C = E for all A > 0. For an accretive operator B,
we define the mapping JZ : (I + AB)C — C by JP = (I + AB)~! for each A > 0.
Such J /{3 is called the resolvent of B for A > 0.

Lemma 2.6 (see [16,26]). Let B : C — 2F be an m-accretive operator. Then the
following statements hold:
(i) the resolvent identity: JPx = JP(Ka+ (1 —§)J2x) VA, u >0, z € E;
(ii) of Jf is a resolvent of B for A > 0, then Jf 18 a firmly nonexpansive
mapping with Fix(JP) = B710, where B0 = {x € C : 0 € Bx};
(iii) of E = H a Hilbert space, B is maximal monotone.

Let A: C — FE be an a-inverse-strongly accretive mapping of order ¢ and B :
C — 2F be an m-accretive operator. In the sequel, we will use the notation T) :=
JB(I = NA) = (I+AB)"1(I — AA) VA > 0.

Proposition 2.7 (see [26]). The following statements hold:
(i) Fix(Ty) = (A+ B)~!0 VYA > 0;
(i) ly =Dl <2y — Tyl for O <A< r andy € C.

Proposition 2.8 (see [45]). Let E be uniformly smooth, T : C — C be a non-
expansive mapping with Fix(T) # 0 and f : C — C be a fixed contraction. For
each t € (0,1), let zz € C be the unique fized point of the contraction C' > z —
tf(z)+(1—=t)Tz on C, i.e., zx =tf(z) + (1 —t)Tz. Then {z} converges strongly
to a fized point x* € Fix(T), which solves the hierarchical variational inequality

(HVI): (I — f)z*, J(z* —z)) <0 Vx € Fix(T).

Proposition 2.9 (see [26]). Let E be g-uniformly smooth with q € (1,2]. Suppose
that A : C' — FE is an a-inverse-strongly accretive mapping of order q. Then, for
any giwen A > 0,

(I = AA)u — (I = AA)v||? < [Ju — v]|?7 = Mag — kAT ) || Au — Av||? Yu,v € C,
where kg > 0 is the g-uniform smoothness coefficient of E. In particular, if 0 <

1
A< ()a—1, then I — A\A is nonexpansive.
Kq

Proposition 2.10 (see [35]). Let E be g-uniformly smooth with q € (1,2]. Let Il
be a sunny nonexpansive retraction from E onto C. Suppose that B1,Bs : C' — E
are a-inverse-strongly accretive mapping of order q and B-inverse-strongly accretive
mapping of order q, respectively. Let G : C — C be a mapping defined by G :=
He(I — 1 B1)IIo(I — peBs), and GSVI(C, By, Bs) denote the fized point set of G.

1 1
Ifo<p; < (%)ﬁ and 0 < pug < (q’g)qj, then G is nonerpansive

Kq
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Lemma 2.11 (see [35]). Let E be gq-uniformly smooth with q € (1,2]. Let IIc be
a sunny monexpansive retraction from E onto C. Suppose that B1,Bs : C — E
are two nonlinear mappings. For given x*,y* € C, (z*,y*) is a solution of problem
(1.6) if and only if x* € GSVI(C, By, Ba), where GSVI(C, By, Bs) is the fized point
set of the mapping G := IIc(I — p1B1)IIc(I — peBsa), and y* = (I — paBa)z™.

Lemma 2.12 (see [2]). Let E be smooth, A : C — E be accretive and IIc be a sunny
nonexpansive retraction from E onto C. Then VI(C, A) = Fix(llc(I —AA)) YA > 0,
where VI(C, A) is the solution set of the VIP of finding z € C s.t. (Az,J(z—y)) <
0vyeC.

Recall that if £ = H a Hilbert space, then the sunny nonexpansive retraction Ilx
from E onto C coincides with the metric projection Po from H onto C. Moreover, if
E is uniformly smooth and T is a nonexpansive self-mapping on C with Fix(T') # 0,
then Fix(T') is a sunny nonexpansive retract from E onto C' [33]. By Lemma 2.12
we know that, z* € Fix(T) solves the HVI in Proposition 2.8 if and only if z* solves
the fixed point equation 2* = Iy (7) f(z").

Lemma 2.13 (see [27]). Let {I,} be a sequence of real numbers that does not
decrease at infinity in the sense that there exists a subsequence {I',,} of {I'n} which
satisfies I, < I'n,4+1 for each integer i > 1. Define the sequence {T(n)}n>n, of
integers as follows:
7(n) =max{k <n: Ik < Iki1},

where integer ng > 1 such that {k <ng: Iy < I'y11} # 0. Then, the following hold:

(i) 7(ng) <71(no+1) <--- and 7(n) — oo;

(11) FT(?’L) < Fr(n)+1 and I’y < Fr(n)Jrl Vn > ng.

Lemma 2.14 (see [4]). Let E be strictly convex, and {T,}2, be a sequence of
nonexpansive mappings on C. Suppose that (-, Fix(T,) is nonempty. Let {\,}
be a sequence of positive numbers with Y oo A, = 1. Then a mapping S on C
defined by Sz =3 2 ATz Vo € C is defined well, nonexpansive and Fix(S) =
Mooy Fix(T5,) holds.

Lemma 2.15 (see [45]). Let {an} be a sequence in [0,00) such that an41 < (1 —
Sn)an + Spvn, Y > 0, where {sp} and {v,} satisfy the conditions: (i) {s,} C [0,1],
Yoo o S = 00; (i) limsup,, o vy <0 or Y 07 |spn| < 00. Then lim, o0 ay, = 0.

3. MAIN RESULTS

Throughout this paper, we assume that F is a ¢g-uniformly smooth and uniformly
convex Banach space with ¢ € (1,2]. Let C' be a nonempty closed convex subset
of ¥ and Ilz be a sunny nonexpansive retraction from E onto C. Let f: C — C
be a d-contraction with constant § € [0,1) and {S,}>2, be a countable family of
£-uniformly Lipschitzian pseudocontractive self-mappings on C. Let A : C — E
and B : C — 2F be a o-inverse-strongly accretive mapping of order ¢ and an
m-accretive operator, respectively. Suppose that By, By : € — E are a-inverse-
strongly accretive mapping of order g and [S-inverse-strongly accretive mapping of
order g, respectively. Assume that 2 := (7 Fix(S,) N GSVI(C, By, By) N (A +
B)~10 #£0.
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Algorithmn 3.1. Combined extragradient implicit rule for the GSVI (1.6) with
the VI and CFPP constraints.

Initial Step: Given ¢ € (0,1) and zg € C arbitrarily.

Step 1: Calculate w, = spzy, + (1 — $5,)((Spwy + (1 — Q)Gwy);

Step 2: Calculate y,, = Jﬁ (upn, — A\pAuy,) with u, = Guy;

Step 3: Calculate z, = Jﬁ (U, — A Ayn + 10 (Yn — un));

Step 4: Calculate z,+1 = anf(zn) + Bnn + 1Gzn, where {r,}, {sn}, {an},

{Bn}s {1} C (0,1] with oo, + B + v = 1 and {A\,} C (0, 00).
Set n:=n + 1 and go to Step 1.

Lemma 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} is
bounded.

Proof. Let p € 2 := (2, Fix(S,)NGSVI(C, By, B2)N(A+B)~'0. Then we observe
that

An
p=Gp=Syp= Jﬁ(p — A\ Ap) = in <(1 —ra)p+ rn<p - TAp)) .

n

By Propositions 2.9 and 2.10, we know that I — pu1 By, I — peBs and G := (I —
u1B1)IIo (I — peBy) are nonexpansive mappings. Moreover, it can be readily seen
that for each n > 0, there is only an element w,, € C s.t.

(3.1) Wp, = Spy + (1 — 5p)((Spwy + (1 — Q) Gwy,).

In fact, consider the mapping Fru = spxy + (1 — s,)((Spu + (1 — ()Gu) Yu € C.
Note that .S, : C — C'is a continuous pseudocontraction. Hence we obtain that for
all u,v € C,

(Fou— Fpu, J(u—v))
= (1= 50){(¢Snu+ (1 = )Gu) = ((Spv + (1 = ()Gv), J(u —v))
= (1 — 8,)[C(Spu — Spv, J(u —v)) + (1 = {){(Gu — Gv, J(u — v))]
< (1= sn)llu— |
Also, from {s,} C (0,1], we get 0 <1 — s, < 1Vn > 0. Thus, F, is a continuous
and strong pseudocontractive self-mapping on C. Using Lemma 2.1, we deduce

that for each n > 0, there is only an element w,, € C, satisfying (3.1). Since each
Sy : C — C is a pseudocontraction mapping, we get

[|wn, — p||2 = sp{(Tn — p, J(wyn —p)) + (1 — $,)((Snwn
+ (1 = ¢)Gwp, — p, J(wy — p))
< snll@n — pllllwn —
(1= sa)[Cllwn — pI + (1= Q) lwn — pI?]
= snllzn = pllllwn = pll + (1 = s0)lwn — %,
and hence
lwn = pl| < [lan —pl|  Vn = 0.
Using u,, = Gwy,, we deduce from the nonexpansivity of G that

(3.2) [un = pl| < [lwn = pll < [lzn —pl| Vn = 0.
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Using Lemma 2.6 (ii) and Proposition 2.9, we have
lyn =PIl = 15, (un = AnAun) = J5, (0 = AuAp) [
(3-3) < = AnA)un — (I = A A)p||?
< un = pl|” = Anlog — kgAE™H) || Auy, — Ap]l%,
which hence leads to

1yn =PIl < llun —pll-
By the convexity of || - || for all ¢ € (1,2] and (3.3), we deduce that

A
_ |l — B _ _n
e —pl* = ||, ((1 )t + 7 (o TnAyn))
by q
Iy, ((1 rn)p+rn(p rnAp))
A A e
< o _ q _ n _ _ n
< (1= ra)lfun = p| o |[(1 =AYy — (1= T2 A)p
q ¢ M /iqA?fl a
(34) < (= r)llun =PI+ ra [lyn — pll* = 22 (g = “2E) | Ay, - A
Tn T’?L

< (L =rn)llun = pl|* + 7 [Ilun = ol = Mal0g — koA || Aun — Apl|?

An g AL !
=22 (g = S Ay~ Apl
= flun = P = ruAa(oq = 5N A — Ap|?
K )\%—1
(79 = "2 ) Ay, — Ap]l°.
T

n

This ensures that
l[2n = pll < [lun = pl|-
So it follows from (3.2) that
|Zn+1 — pll = llan(f(2n) — p) + Bu(@n — ) + Y(Gzn — )|

< apllf(zn) — pll + Bullzsn — pll + ¥l Gzn — pl|
< an(|[f(zn) = FO + 1£() = pl) + Bullzn — pll + 7all Gz — pll
< an(bllan —pll + 1f(p) = pI) + Bullen — pll + wllzn — pll
= (1= an(l =0))llzn — pll + anl f(p) — 1l

< max{”xn ol Hf(p)_— dl } '

1-6

By induction, we get ||z, — p| < max{||zo — p|, W} Vn > 0. Consequently,
{z,} is bounded, and so are {u,}, {wn}, {yn}, {zn}, {Gzn}, {Au,}, {Ayn}. This
completes the proof. O

Theorem 3.3. Let {x,} be the sequence generated by Algorithm 3.1. Suppose that
the following conditions hold:
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(C1) limp—yoo oy =0 and > 07 g ap = 00;
(C2) 0<a<pB,<b<1l,0<c<s,<d<ly
1
(C3)o<r<r<1 and0<)\§)\n<;\f§;t<(%3)qj;
1 1
(C4) 0<pr < (35T and 0 < i < (%’)qﬁ.

Assume that Y7 g sup,cp || Snr12 — Spz|| < 0o for any bounded subset D of C. Let
S :C — C be a mapping defined by Sx = lim,_,o, Spx Vo € C, and suppose that
Fix(S) = N2y Fix(S,). Then x, — z* € 2, which is the unique solution to the
HVI: ((I— f)z*, J(z*—p)) < 0Vp € 12, i.e., the fized point equation x* = Il f(z*).

Proof. First of all, let 2* € 2 and y* = Ilo(z* — paBaz™*). Moreover, we put
Up = (I — poBo)wy, for all n > 0. Then w,, = (I — p1 B1)v, Vn > 0. Using
Proposition 2.9 we get

lon = y*[|* = [[Hc(wn — peBawy) — ez — paBaa™)||?
< flwn = 2*(|” = p2(Bg — kqu§ )| Bowy — Ba* |,
and
[un = &*(|9 = [[Ic(vp — p1 Brvg) — He(y* — pa Bry™)|[|?
< flon = y* |11 = m(ag — kgui )| Bion — Biy"||’
Combining the last two inequalities, we have
lun — 2|9 < Jlwn — 2*(|7 = pa(Bg — gud™")|| Bawn — Baa™ ||
— (g — kgpi™")|[Bio, — Biy*||%.
Using Lemma 2.3, from (2.3), (3.2) and (3.4) we have that
|21 — 2|7 < llan(f(zn) — (&%) + Bn(zn — 27) + 10 (Gzn — 27) ||
+ qom (f(2") — 2%, Jg(Tnt1 — 7))
< anllf(@n) = f@) + Bullan — 7|
+WllGzn — 27| = Baymg(llzn — Gznl)
+ qon(f(z7) — 2%, Jg(zng1 — 27))
< andl[zn — 2|7+ Bullzn — 2T 4+ Ynlllun — 27|

— rpAn(0q — ’fq)‘gz_l)HAUn — Az™ ||

AL §
~An ("q R )||Ayn — Az = Buyng([lzn — Gznl))

n
+ qon (f(z7) — 2%, Jg(zny1 — 27))

(3.5) < andl|zn — (|7 + Bnl|zn — 27|
+ Ynlllzn — 2|7 = p2(Bg — kqu§ )| Bowy, — Bax™ ||
— mi(ag = kgui )| Bivy — Biy*|?
— rpAn(oq — I{q)\%_l)HAun — Az™||?

/@q/\%_l

—1
h

= Mn(0q = ") [ Aya — Az |7 = Burng(llzn — Gzll)
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T gan(F(@) — 2, Ty — 7))
=1 —an(1=9))lzn — 2"
— Ynlua2(Bg — kg ")||Bawy, — Boz™||?
+ pa(ag = rgpd )| Bion, — Buy*||?
+ ran(0q — kAIH || Auy — Az*|2

—1
Kq A\

)
X

+ M (00 = P2 ) [ Ay — A2 7] = Bung (1 — Gl

+qan(f(z¥) — 2%, Jg(@ns1 — 27)).
For each n > 0, we set

Iy = |lzn — 2%,

en = ap(l =19),
M = Yulp2(8a — kg )| Bawn — Boa™||” + pa(aq — kguf )| Bro — Buy'||?
g—1
g = g ) A — A9+ 0 (5 = S22 g — e )
+ Bnvng([lzn — Gznll)
0 = qanl(f — D), Jy(tnr — ).
Then (3.5) can be rewritten as the following formula:
(3.6) Fni1 <(I—e))ly—np+6, ¥Yn>0,
and hence
(3.7) i <(—-e)ln+9, ¥n>0.

We next show the strong convergence of {I,} by the following two cases:

Case 1. Suppose that there exists an integer ng > 1 such that {I},} is non-
increasing. Then
ry,—rIh11—0.
From (3.6), we get
0<n, < Fn_Fn+1+5n_5nFn-
Since €, — 0 and §,, — 0, we have 7, — 0. This ensures that

lim g([|lzn, — Gznl]) =0,
n—oo

(3.8) lim ||Bow, — Boz*|| = lim ||Byv, — B1y*|| =0
n—00 n—00
and
(3.9) lim ||Au, — Az*|| = lim ||Ay, — Az™|| = 0.
n—oo n—oo

Note that ¢ is a strictly increasing, continuous and convex function with ¢g(0) = 0.
So it follows that

(3.10) lim ||z, — Gz,|| = 0.
n— o0
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On the other hand, using Lemma 2.2 (b) and the firm nonexpansivity of Il-, we
have
lon = y*||* = [[Hc(wn — peBawy) — Ho(x™ — peBaa™) ||
< (wn — paBown — (2" — paBax™), Jo(vn — y"))
= (wn — 2", Jg(vn — 7)) + pa(Baz™ — Boywn, Jo(vn — y"))

1 i .
5[Ilwn =29+ (g = Dljvn — ¥4

IN

— hn(|lwp = & = vn + )]
+ p2(B2x™ — Bown, Jg(vn — y")),
which hence attains
lon = y* |17 < llwn = 2|7 = ha(|[wn = v — 2" + y7])
+ qpa|| Boa™ — Bawn||[|on — y* ||
In a similar way, we get
[un — 2|7 = | o (vn — prBron) — o (y™ — pa Biy®) ||
< (vn — p1Brop — (y° — p1B1y™), Jo(un — 27))
= (vn = y", Jg(un — %)) + p1(B1ry”™ — Bron, Jg(un — 7))
< <l =71+ g = Dl ="
— ha(|[vn = y* — up + 2*)]
+ 1 (B1y* — Bivp, Jg(un — z¥)),
which hence attains
lun = 2|7 < JJon =y (| = ha(llvn — y* — up + 2*]))
+qu || Bry* — Buog| [lun — 2|77
(3.11) < lwn = 2*|17 = ha(flwn — vn — 2 +y7|])
+ qua|| Baz™ — Bawy||||vn — y*Hq_l
= ha(J|lvn = u + 2 = y*|))
+qu||Bry* — Brog||[lup — 2|7
Since J )i is firmly nonexpansive (due to Lemma 2.6 (ii)), by Lemma 2.2 (b) we get
g — 119 = T2 (= AnAtin) — B (2* = A Az
< ((un — AAuy) — (2 — \yAz™), Jy(yn — 2¥))
;[H(un — AnAup) — (2" = A Az) | + (¢ = Dlyn — 2|
— ha(llun — An(Aun — Az™) = yn|)],
which together with (3.3), implies that
[y — 2¥[|* < [[(un — AnAun) — (27 — An Az7)||

<
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= hi([lun — An(Auy — Az™) — ynl|)
< un = 29 = ha([Jun — An(Aup — Az™) — ynl]).
This together with (3.4) and (3.11), implies that
[2nt1 — 277 < aml|f(2n) = 2|9 + Bullzn — 2™ + || Gzn — 27|
< anllf(zn) = 2N + Ballzn — 2|7 + n[(1 = ro)lJun — 27|
+ Tnllyn — 27|
< anllf(zn) = 27N+ Bullzn — 277 + {1 = ra)lun — 27|
+ ralllun — 2" = ha((Jun — An(Aun — Az™) —ynl)]}
= anllf(zn) — 2|7 + Bullon — 2" + y{llun — ™[
= rnha([lun — An(Aup — Az™) —yn|))}
< ol fzn) = 279 4 Bullen — 2™
+{llzn — 27 = ha(lwn = vp — 2" +y*|)
— ha(lon — up +2* = y*[) + qua || Bry* — Brog|l|Jun — 2|97
+ qpa|| Baa™ — Bawy||[[on — y* (|7
— rpha(([un — An(Aup — Az™) —yn|) }
< gl f@n) = ¥+ 2 — 2| = v {Pa(wn = va — 2% +4*])
+ B2(H1’n —tp + 2" = Y7 |) + raha([Jun — An(Auy — Az™) — ynl)) }
+qu || Bry* — Biog|[lug — 2|77
+ qpa| Boa™ — Bawn||lvn — y|177,
which immediately yields
’)’n{hl(Hwn —vp — 2" +y[) + FLQ(an —Up + 2" =y
+ raha([lun — An(Auy — Az™) —yn|))}
< ap| f(zn) — ¥4+ Iy — Tog1 + qua | Bry™ — Buvg|||lun — %771
+ qua|| Bex™ — Bawn||f|on — v
Since iLleg and hj are strictly increasing, continuous and convex functions with
h1(0) = ha(0) = h1(0) = 0, from (3.8) and (3.9) we conclude that ||w, — v, — z* +

y*| = 0, ||vp — up +2* —y*|| — 0 and ||uy, — ynl| = 0 as n — oco. This immediately
implies that

(3.12) Tim_ [, — | = lim_[, — | = 0.
Furthermore, we put p,, := (Spw, + (1 — {)Gw, for all n > 0. Then we obtain that
lwn — 277 = (span + (1 = $)((Snwp + (1 = Q)Gwn) — 27, Jg(wn — 2¥))
< splxn — 2%, Jg(w, — 7))
+ (1 = sn){(((Snwn + (1 = ()Gwn) — a7, Jo(wn — 7))

< Sn<xn - l'*, Jq(wn - ,I*)> + (1 - Sn)Hwn - m*Hq
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Using Lemma 2.2 (b), we get

[wn — 2| < (zn — 27, Jg(wn — 27))
1 * *
< llzn =27+ (g = Dlfwn = 2% = hs(llzn = wnl)]

This together with (3.2) implies that
(3.13) Jun — ™| < Jlwp — 2|7 < [lan — 2"(|* = ha([len — wnl]).
In a similar way, we have
|2 — 2*||7 = Hj)i(un — M AyYn + 10 (Yn — un)) — J)i (" — A Ax™)||?
< {(un = AnAyn + 70 (Yn — un)) — (2% = Ay Az”), Jo(2n — 27))

1 * *
g[H(un = M Ayn + 1o (Yn — un)) — (2% — N Az™)[|?

+ (g = 1)llzn — ™|
— hao(([un + ra(Yn — un) — An(Ayn — Az™) — z0|))],
which together with (3.4), implies that
[zn = ™| < [[(un = AnAyn 4+ mn(yn — un)) — (2" — AnAz™) ||
— ha(lun + 1 (Yn — un) — An(Ayn — Az™) — 20|
< Jup — 2™
— ho(llun + 1 (Yn — un) — An(Ayn — Az™) — zp|)).
This together with (3.13), ensures that
[#ni1 — 2|9 < anllf(2n) = 2|9 + Bullzn — 2™ + || Gzn — 27|
< apllf(zn) — 277+ Bullwn — 2"(|7 + ynlllun — 2|7
— ho([lun + r(Yn — un) — An(Ayn — Az™) — 2, |))]
< apllf(zn) — 277+ Bullon — 279 + ynlllon — 27|
— ha(l|zn — wall)
= ha([[un + ra(yn — un) = An(Ayn — Az") — 2, |))]
< apllf(zn) = 277+ o — 27| — mlhs((lon — wnl)
+ ha(llun + ra(yn — un) = An(Ayn — Az™) — 24 )],
which immediately leads to
Yolhs([|zn — wnll) + ho([lun + 1o (Yn — un) — An(Ayn — Az™) — 25])]
< apllf(zn) — 2|9+ I — o

Note that ho and hg are strictly increasing, continuous and convex functions with
h2(0) = h3(0) = 0. Using (3.9) and (3.12), we obtain

(3.14) lm ||z, — wpl| = lim |lu, — 2,] = 0.
n—o0 n—00

IN

So, it follows from (3.10), (3.12) and (3.14) that

|zn — 2l < |20 — wall + lwn — wnl| + [Jup — 2za]] =0 (0 — 00),
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and hence
|20 — G| < |lzn — Gznll + |Gz — Gy
(3.15) < |lxn — Gznll + |20 — 2n|l = 0 (0 — 00).
Since wy, = $pxy + (1 — sp)pn and p, = (Spwy, + (1 — )y, from (3.12) and (3.14)
we get

Sn

Ipn = wnl| = [z —wall < 20 = wnll =0 (n = o0),

1—s, 1—-d

and hence

CllSnwn — wn|l = [lpn — wn — (1 = () (un — wn) ||
< lpn = wall + lun — wnll = 0 (n = o0).
Since {5y, }22 is (-uniformly Lipschitzian on C, we deduce from (3.14) that
[Snzn — Znll < |Snan — Snwn|| + [[Snwn — wa| + [[wn — 24|
(3.16) < (U +1)||zp — wy| + ||Snwn —wyp|| =0 (n— o0).

We next claim that ||z, — Sz,| — 0 as n — oo where S := (2 — §)~1. In
fact, it is first clear that S : C' — C' is pseudocontractive and ¢-Lipschitzian where
Sz = limy, 00 Spx Vo € C. We claim that lim,_, ||Sx, — 25| = 0. Using the
boundedness of {z,} and setting D = conv{z, : n > 0} (the closed convex hull of
the set {x,, : n > 0}), by the assumption we have > >, sup,¢p || Snz—Sp—12|| < o0.
Hence, by Proposition 2.4 we get lim,,_,oc Sup,cp ||Spx — Sz|| = 0, which immedi-

ately arrives at
lim ||Spzn — Szp| = 0.

n—oo

Thus, from (3.16) we have

(3.17) |z — San|| < ||zn — Snznll + [|Snxn — Sznll =0 (n — 00).
Now, let us show that if we define S = (20—-9)", then S : C — C is nonexpansive,
Fix(S) = Fix(S) = N, Fix(Sy) and limy, e ||2n — Szp|| = 0. As a matter of fact,
put S~:: (2I — S)~!, where I is~the identity operator of F. Then it is known

that S is nonexpansive and Fix(S) = Fix(S) = [, Fix(S,) as a consequence
of [29, Theorem 6]. From (3.17) it follows that

|n — §an = ”gg_lxn - §an < ”g_lxn — Ty |
(3.18) = [(2] — S)zp, — x| = |xn — Szp|]| = 0 (n — 00).
For each n > 0, we put Ty, := J (I — A\, A). Then from (3.12) and (3.14) we get
|20 — Th,@nll < 20 — un|l + lun — T, unll + [|Th, un — Tx, x|
< 2f[zn — unll + lun — ynl
< 2([|lzn — wall + [lwn = unll) + [Jtn —yall = 0 (0 — o0).

Noticing 0 < A < A, for all n > 0 and using Proposition 2.7 (ii), we obtain
(3.19) I Th@n — znll < 2|1, 2n — xn|| = 0 (N — 0).
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We define the mapping ¥ : C — C by ¥z := 91§x+02Gx+(1—91—6’2)T,\:U Ve e C
with 6; + 62 < 1 for constants 61,62 € (0,1). Then by Lemma 2.14 and Proposi-
tion 2.7 (i), we know that ¥ is nonexpansive and

Fix(¥) = Fix(S) N Fix(G) N Fix(T))

= () Fix(Sn) NGSVI(C, By, B2) N (A + B) 10 (=: ).
n=0

Taking into account that

[Pan — xp| < 91H§mn = | + O2|Gan — xnll + (1 = 01 — 02) || Than — @l
we deduce from (3.15), (3.18) and (3.19) that
(3.20) lim || ¥z, — x,|| =0.

n—o0

Let zs = sf(zs) + (1 —s) ¥z, Vs € (0,1). Then it follows from Proposition 2.8 that
{zs} converges strongly to a point x* € Fix(¥) = 2, which solves the HVT:

(I = f)a", J(@" —p)) <0 Vpe L.
Also, from (2.3) we get
l2s = nl|” = [Is(f(2s) — @n) + (1 = $)(¥2s — an)||*
< (1 =98)UVzs — xpl|? + q5(f(25) — Tn, Jy(25 — n))
= (1 = 8)|¥zs — |7 + qs(f(25) — 25, Jg(25 — Tn))
+ q5(2s — Tn, Jo(2s — Tn))
S (1= 8)U(||[¥zs — Yaul| + [[Ton — an|)?
+ qs(f(2s) — 25, Jg(2s — xn)) + qsl[25 — @|?
< (1= 8)U|lzs = nll + | ¥an — zal])?
+qs(f(2s) — 25, Jg(2s — zn)) + qszs — zn|?,
which immediately attains

<f(zs) — Zs, Jq(xn - Zs))

1—s)4 gs —1

<

=T gs (Izs = znll + | P2y — 20]))? + |25 — 2%
From (3.20), we have
1— s) 1
lim sup(f(zs) — 2s, Jg(@n — 25)) < (1=s) M+E "y
n—00 qs qs
1—8)9+gs—1
(3.21) Sl B
qs

where M is a constant such that |zs — z,]|? < M for all n > 0 and s € (0,1). It
is easy to see that ((1 —s)?+¢s—1)/gs — 0 as s — 0. Since J,; is norm-to-norm
uniformly continuous on bounded subsets of E and z; — z*, we get

[ g(n = 25) = Jg(xn —27)| 2 0 (s = 0).
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So we obtain
[(F(20) = 200 Jal@a = 22)) — (F(@) =27, Ty(an — )
= [(f(zs) = f(27), Jg(zn — 25)) + (f(2") — 2%, Jg(n — 25))
+(x™ — zs, Jg(zn — 25)) (f(2") — 2%, Jy(xn — 27))|
< f(a") — 2", Ty — z5) — Jy(@n — 27))]|
+[{f(zs) = f(@"), Jg(zn — zs))| + 2" — 25, Jg(zn — 25))]
<N f®) = ([ Jg(an — 25) = Jg(zn — 27)]|
+(1 4 6)||zs — *||||lzn — 2s]|7 L
Hence, for each n > 0, we get

i (F(24) = 20, Tyl = 22)) = (Fa*) = &, Jyan = 2°).

From (3.21), as s — 0, it follows that

(3.22) limsup(f(z*) — z*, Jy(xzn — 2¥)) < 0.
n—0o0
By (C1) and (3.10), we get
”xn+1 - xn” = Hanf(xn) + Bnan + ’YnGZn - fl:n”
(3‘23) = Han(f(xn) - xn) + 'Yn(GZn - xn)”

< anllf(@n) — 2ol + Wl Gzn — 2pll = 0 (0 — 00).
Using (3.22) and (3.23), we have
(3.24) limsup(f(z*) — 2%, Jg(@pn41 — ™)) < 0.

n—00

Using Lemma 2.15 and (3.24), we can infer that I, — 0 as n — oo. Thus, =, — z*
as n — 0o.

Case 2. Suppose that 3{I3, } C {I}} s.t. [, < [,+1 Vk € N, where N is the
set of all positive integers. Define the mapping 7: N — N by
7(i) :=max{j <i: I < Ij1}.
Using Lemma 2.13, we get
iy < Iy and I < Iy

Putting I; = ||x; — 2*||? Vi € N and using the same inference as in Case 1, we can
obtain
(3.25) dim [z = 20 =0
and
(3.26) lim sup(F(57) — &, Jy ey 11 — o)) 0.
1—00

Owing to I';(;y < I'(j)+1 and a;(; > 0, we conclude from (3.7) that

T (f(a*) - &*, Ty(@r(iysr — 2%)

27y — z*]|7 < 1—s
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and hence

limsup ||z, — z*[|?7 < 0.
i—>00

Thus, we get

lim ||z — || = 0.
1—00
Using Proposition 2.5 and (3.25), we obtain

[ ()+1 = 2|7 = |27 — 27|

S (@r(i) 11 — Tra)s Jg(Tr) — 7))+ KgllTry+1 — Tl

< dllzr@y1 — T lere — 2177+ wallzry 11 — T@ 19— 0 (i = 00).

Noticing I < I%(;)41, we get
i — 2|7 < |27y 41 — 277

< ey = 19+ gllzryen = 2 lllare — 2177

+ KgllTr )41 — T2 |-

It is easy to see from (3.25) that xz; — x* as ¢ — oo. This completes the proof.

g

We also obtain the strong convergence result for the combined extragradient
implicit rule in a real Hilbert space H. It is well known that k2 = 1 [44]. Thus, by

Theorem 3.3 we derive the following conclusion.

Corollary 3.4. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let f: C — C be a 0-contraction with constant § € [0,1) and {Sp}7>, be
a countable family of £-uniformly Lipschitzian pseudocontractive self-mappings on
C. Let A: C — H and B : C — 2% be a o-inverse-strongly monotone mapping
and a mazximal monotone operator, respectively. Suppose that By, By : C — H are
a-inverse-strongly monotone mapping and [B-inverse-strongly monotone mapping,

respectively. Assume that 2 := (o2, Fix(S,) N GSVI(C, By, B2) N (A+ B)~10 # 0.

For any given o € C and ¢ € (0,1), let {x,}22, be the sequence generated by

Wy, = Spy + (1 — $p)((Spwy, + (1 — () Gwy,),
Up = G,

(3.27) Yn = an (up, — A\pAuy),

Zp = J)]i (Un — A Ay, + Tn(yn - un)),

Tnt1 = nf(xn) + Bnxn + WGz, Yn >0,

where in = (I+XB)7 Y {rn}, {sn )y {an}, {Bn}, {n} € (0, 1] with oy + B+ = 1

and {\,} C (0,00). Suppose that the following conditions hold:
(C1) limy oo o =0 and 07 oy = 00;
(C2) 0<a<fBp,<b<land0<c<s,<d<]1;
(C3) 0<r<r,<land0 <A<\, <22 <pu<20;
(C4) 0 < p1 <2a and 0 < pg < 20.
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Assume that > 07 g sup,ep ||Snt12 — Spz|| < 0o for any bounded subset D of C. Let
S : C — C be a mapping defined by St = lim,,_,oc Spx Vo € C, and suppose that
Fix(S) = N2, Fix(Sn). Then z, — x* € 2, which is the unique solution to the
HVI: (I — fz*,p—2*) > 0 Vp € 02, i.e., the fixred point equation x* = Pq f(x*).

Remark 3.5. Compared with the corresponding results in Manaka and Takahashi
[28], Sunthrayuth and Cholamjiak [36], and Cai et al. [6], our results improve and
extend them in the following aspects.

(i) The problem of solving the VI for two monotone operators A, B with the
FPP constraint of a nonexpansive mapping S in [28, Theorem 3.1] is ex-
tended to develop our problem of solving the GSVI (1.6) with the constraints
of the VI for two accretive operators A, B and the CFPP of countably many
pseudocontractive mappings {5y, }22,. The Mann-type iterative scheme with
weak convergence in [28, Theorem 3.1] is extended to develop our combined
extragradient implicit rule with strong convergence.

(ii) The problem of solving the GSVI (1.7) with the FPP constraint of an asymp-
totically nonexpansive mapping T in [6, Theorem 3.1], is extended to develop
our problem of solving the GSVI (1.6) with the constraints of the VI for two
accretive operators A, B and the CFPP of countably many pseudocontrac-
tive mappings {5y, }22,. The modified viscosity implicit rule in [6, Theorem
3.1] is extended to develop our combined extragradient implicit rule.

(iii) The problem of solving the VI for two accretive operators A, B with the FPP
constraint of a nonexpansive mapping S in [36, Theorem 3.3] is extended
to develop our problem of solving the GSVI (1.6) with the constraints of
the VI for two accretive operators A, B and the CFPP of countably many
pseudocontractive mappings {S,}22,. The modified viscosity-type extra-
gradient method in [36, Theorem 3.3] is extended to develop our combined
extragradient implicit rule.

4. SOME APPLICATIONS

In this section, we give some applications of Corollary 3.4 to important mathe-
matical problems in the setting of Hilbert spaces.

4.1. Application to variational inequality problem. Given a nonempty closed
convex subset C' C H and a nonlinear monotone operator A : C' — H. Consider
the classical VIP of finding u* € C s.t.

(4.1) (Au* ;v —u*) >0 Yo e C.

The solution set of problem (4.1) is denoted by VI(C, A). It is clear that u* € C
solves VIP (4.1) if and only if it solves the fixed point equation u* = Po(u* — AAu*)
with A > 0. Let i¢ be the indicator function of C defined by

io(u) = 0 fued,
T o itugC

We use N¢(u) to indicate the normal cone of C at u € H, i.e., No(u) = {w €
H: (w,v—wu) <0Vve C}. It is known that i¢ is a proper, convex and lower
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semicontinuous function and its subdifferential dic is a maximal monotone mapping
[10]. We define the resolvent operator szc of dic for A > 0 by

JY€ (2) = (I + \ic) H(z) Va € H,
where
Jic(u) = {weH:ic(u)+ (w,v—u) <ic(v) Yve H}
{we H: (w,v—u) <0VveC}=Nc(u) YuceC.
Hence, we get
u= inc(:z:) &z —u€ ANg(u)

& (r—uv—u)<0 Ywedl

& u= Po(x),
where Pg is the metric projection of H onto C. Moreover, we also have (A +

dic)~10 = VI(C, A) [39)].
Thus, putting B = 0i¢ in Corollary 3.4, we obtain the following result:

Theorem 4.1. Let f, A, B1, By and {S,}72 be the same as in Corollary 3.4. Sup-
pose that 2 = (2, Fix(S,) N GSVI(C, By, B2) N VI(C, A) # 0. For any given
zo € C and ¢ € (0,1), let {x,}52, be the sequence generated by

(W, = $p2n + (1= 5,)(CSpwn + (1 — C)Guwy),
Uy, = G,

(4.2) Yn = Po(un — M\Auy,),

zn = Po(un — A Ayn + mn(Yn — un)),

Tnt1 = W f(Tn) + Bnxn + Gz, VYn >0,

where the sequences {ry},{sn},{an},{Bn},{m} C (0,1] with a, + By, +vn =1 and
{An} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.4 hold. Then
Ty — x* € 2, which is the unique solution to the HVI: ((I—f)x*,p—z*) > 0Vp € 2,
i.e., the fized point equation x* = Pqf(x*).

4.2. Application to split feasibility problem. Let H; and Hy be two real
Hilbert spaces. Consider the following split feasibility problem (SFP) of finding

(4.3) weCstTuceQ,

where C' and ) are closed convex subsets of H; and Hs, respectively, and T :
Hy — Hs is a bounded linear operator with its adjoint 7. The solution set of
SFP is denoted by U := CNT!Q = {u € C : Tu € Q}. In 1994, Censor
and Elfving [7] first introduced the SFP for modeling inverse problems of radiation
therapy treatment planning in a finite dimensional Hilbert space, which arise from
phase retrieval and in medical image reconstruction.

It is known that z € C solves the SFP (4.3) if and only if z is a solution of the
minimization problem: minyec g(y) = %HTy — PoTyl||?. Note that the function g
is differentiable convex and has the Lipschitzian gradient defined by Vg = T*(I —

Pg)T'. Moreover, Vg is W—inverse—stmngly monotone, where ||T||? is the spectral
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radius of T*T' [5]. So, z € C solves the SFP if and only if it solves the variational
inclusion problem of finding z € Hj s.t.

0€Vyg(z)+0ic(z) & 0€z+ Nig(z) —(z—AVg(2))
& z2—AVyg(z) € 24+ Nic(z)
& 2= (T4 Mic) Yz - AVyg(2))
& z=Po(z—AVyg(2)).

Now, setting A = Vg, B = 0i¢c and o = ”T1”2 in Corollary 3.4, we obtain the

following result:

Theorem 4.2. Let f, By, By and {S,}22, be the same as in Corollary 3.4. Assume
that 2 = (2, Fix(S,) N GSVI(C, By, B2) N U # 0. For any given zy € C and
C€(0,1), let {zp}r2 be the sequence generated by

(W, = span + (1 = sp)(CSpwp + (1 — ¢)Gwy,),
Uy, = Gy,
(4.4) Yo = Pe(un — MT*(I — Po)Tun),
zn = Po(un — MT*(I — PQ)Tyn + 10 (Yn — un)),
Tnt1 = anf(xn) + Bntn + WGz Vn >0,
where the sequences {ry},{sn},{an},{Bn},{m} C (0,1] with v, + By, + v =1 and

{An} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.4 hold where
o= W Then x, — x* € (2, which is the unique solution to the HVI: ((I —

Hx*,p—a*) >0Vp € 2, i.e., the fixred point equation x* = P f(x*).

4.3. Application to LASSO problem. In this subsection, we first recall the least
absolute shrinkage and selection operator (LASSO) [41], which can be formulated
as a convex constrained optimization problem:

1
(4.5) min o [Ty — b3 subject to [lylls < s,

where T : H — H is a bounded operator on H, b is a fixed vector in H and s > 0.
Let U be the solution set of LASSO (4.5). The LASSO has received much attention
because of the involvement of the ¢; norm which promotes sparsity, phenomenon of
many practical problems arising in statics model, image compression, compressed
sensing and signal processing theory.

In terms of the optimization theory, ones know that the solution to the LASSO
problem (4.5) is a minimizer of the following convex unconstrained minimization
problem so-called Basis Pursuit denoising problem:

Séi}} 9(y) + h(y), (4.6)

where g(y) := 5| Ty — b3, h(y) := Ally|l1 and A > 0 is a regularization parameter.

It is known that Vg(y) = T*(Ty — b) is ﬁ—inverse—strongly monotone. Hence,
we have that z solves the LASSO if and only if z solves the variational inclusion
problem of finding z € H s.t.

0€Vyg(z)+0h(z) & 0€z+A0h(z)—(z—AVyg(z))
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& z—AVyg(z) € 2+ AOh(z)

& z=(I+4+Xh) Yz - AVy(2))

&z =prox,(z — A\Vg(2)),
where proxy, (y) is the proximal of h(y) := A||y||1 given by

. 1
prox;, (y) = argmin,e r {Alully + S llu —yl3} ¥y € H,
which is separable in indices. Then, for y € H,

prox,(y) = proxy.,(y)
= (proxy|(y1), Proxy|.|(¥2); -, Proxy|. | (yn)),

where prox, |, (yi) = sgn(y;) max{|y;| — A, 0} for i =1,2,...,n.

In 2014, Xu [46] suggested the following proximal-gradient algorithm (PGA):

Tpr1 = proxy (xp — NI (Lxg, — 1)).

He proved the weak convergence of the PGA to a solution of the LASSO problem
(4.5).

Next, putting C' = H, A = Vg, B = 0h and ¢ = Ww in Corollary 3.4, we
obtain the following result:
Theorem 4.3. Let f, B, By and {Sp}72, be the same as in Corollary 3.4 with
C = H. Assume that 2 := (2, Fix(S,) NGSVI(H, By, B2)NU # . For any given
xo € H and ¢ € (0,1), let {z,}02, be the sequence generated by

Wy, = Spy + (1 = ) ((Spwn + (1 — ) Gwy,),
Uy, = Gy,
(4.6) Yn = proxy, (uy, — AT (Tuy, — b)),
zn, = Proxy, (un, — A T*(Typn — b) 4+ 1o (yn — un)),
[ Znt1 = anf(zn) + Bntn + Gz ¥Yn >0,
where the sequences {rn},{sn}, {an},{Bn}, {7} C (0,1] with a,, + Bn, + v =1 and

{An} C (0,00) are such that the conditions (C1)-(C4) in Corollary 3.4 hold where
0= T Then x, — x* € {2, which is the unique solution to the HVI: ((I —

fx*,p—a*) >0Vp e 2, i.e., the fired point equation x* = Pq f(x*).
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