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Newton method [7,11,19], the semismooth Newton method [22,25], the smoothing-
regularization method [18], the merit function method [4], and the matrix splitting
method [17] etc. Although the effectiveness of some methods has been improved
substantially in recent years, the fact remains that there still have many comple-
mentarity problem require efficient and accurate numerical methods. The penalty
methods are well-known for solving constrained optimization problems which posses
many nice properties. The l1 penalty function [27] and lower order penalty func-
tions [8, 12, 23] possess many nice properties and attract much attention. In [26],
Wang and Yang proposed a power penalty approach for solving the LCPs. By this
approach, LCP can be converted to asymptotic nonlinear equations. The merit of
this approach shows that the solution sequence of the asymptotic nonlinear equa-
tions converge to the solution of the LCP at an exponential rate when the penalty
parameter tends to positive infinity under some mild assumptions. In [20, 21],
Huang and Wang extended the power penalty approach for solving the nonlin-
ear complementarity problem (NCPs) and mixed nonlinear complementarity prob-
lem (MNCPs). In [14, 15], Hao and Wan extended the power penalty approach
for solving the SOCLCPs and second-order cone nonlinear complementarity prob-
lems(SOCNCPs). In [16], the power penalty approach have been extended to the
generalized lower-order penalty approach for solving the second-order cone mixed
complementarity problems(SOCMCPs). Hao and Chen et al. [13] proposed an ap-
proximate lower order penalty approach for solving SOCLCPs, and four kinds of
specific smoothing functions are considered. The four kinds of specific smoothing
functions are based on the convolution integration of the kernel functions by Chen
and Mangasarian [2]. However, in [13], when the power parameter is not equal to 1,
the lower order penalty equations are not smooth in certain point situations. Thus,
the discrete Newton method is used to solve the nonlinear equations in the calcu-
lating process. The inner loop is simultaneously added to realize the algorithm.
Grounded on the study of [13], this paper proposes two new smooth functions,
considering the smooth case that the power parameter is equal to 1. The smooth
Newton method but not discrete Newton method is then used to solve the nonlinear
equations, and a comparison between the proposed two functions and the past four
smooth function in [13] is conducted.

This paper is organized as follows: In Sect. 2, we review some properties related to
the single block SOC which is the basis for our subsequent analysis. In Sect. 3, based
on the four smooth functions proposed by Hao in [13], two new smooth functions
are proposed; In Sect. 4, the lower order penalty function algorithm for solving the
SOCLCP and its convergence analysis are presented. In Sect. 5, the preliminary
numerical experiments are presented, the numerical performance of the new smooth
function and the original smooth function are compared. Finally, we draw the
conclusion in Sect. 6. Throughout this paper, we use int(Kn) and bd(Kn) to denote
the interior and the boundary of SOC Kn respectively. For any x, y in Rn, we
write x ⪰Kn y if x− y ∈ Kn and write x ≻Kn y if x− y ∈ int(Kn). In other words,
we have x ⪰Kn 0 if and only if x ∈ Kn, and x ≻Kn 0 if and only if x ∈ int(Kn). The
notation ∥ · ∥p denotes the usual lp-norm on Rn for any p ≥ 1. In particular, it is
Euclidean norm ∥ · ∥ when p = 2.
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2. Preliminary results

In this section, some preliminary results for a single block SOC K = Kn are
given, since the analysis can be easily extended to the general case (1.2). For
any x = (x1, x2) ∈ R × Rn−1, y = (y1, y2) ∈ R × Rn−1, their Jordan product [1] is
defined as

(2.1) x ◦ y = (xT y, x1y2 + y1x2).

We write x+y to mean the usual componentwise addition vectors and x2 to mean x◦
x. It is easy to see that the Jordan product is commutative and e = (1, 0, . . . , 0)T ∈
Rn is the identity element. The Jordan product is not associative for n > 2 in
general. However, we have x ◦ (x ◦ x) = (x ◦ x) ◦ x for any x ∈ Rn. Thus, for any
positive integer k, the form xk is definite. We define x0 = e if x ̸= 0 and recursively
define the powers of element as xk = x ◦ xk−1 for any integer k ≥ 1. Therefore, the
equality xm+n = xm◦xn holds for any positive integer m and n. Note that Kn is not
closed under the Jordan product for n > 2 in general.

The Jordan product (2.1) associated with Kn results in some useful facts. For
each x = (x1, x2) ∈ R× Rn−1, the trace tr(x) = 2x1 and the determinate det(x) =
x21 − ∥x2∥2. A vector x is invertible if det(x) ̸= 0, the inverse of x is denoted
by x−1, satisfying x ◦ x−1 = e and x−1 = (x1,−x2)/det(x). It is clear that x ∈
intKn if and only if x−1 ∈ intKn. The unique square root of x ∈ Kn is denoted

by x
1
2 , satisfying x

1
2 ∈ Kn, (x

1
2 )2 = x. Direct calculation yields x

1
2 = (s, x2/(2s)),

where s = ((x1 +
√

x21 − ∥x2∥2)/2)
1
2 and the term x2/s is defined to be zero vector

if x2 = 0 and s = 0. For any x ∈ Rn, the absolute value vector of x is denote

by |x| satisfying |x| = (x2)
1
2 . For more details of these concepts, we can refer to

references [1, 3, 10,11].
Next, we introduce the spectral factorization of vectors in Rn associated with Kn [3,

11]. For any vector x = (x1, x2) ∈ R× Rn−1, the vector can be decomposed as

(2.2) x = λ1u
(1) + λ2u

(2),

(2.3) λi = x1 + (−1)i∥x2∥, u(i) =

{ 1
2(1, (−1)i x2

∥x2∥), if x2 ̸= 0,
1
2(1, (−1)iw), if x2 = 0,

i = 1, 2,

where λ1, λ2 are the spectral values and u(1), u(2) are the associated spectral vec-
tors, w is any vector in Rn−1 satisfying ∥w∥ = 1. If x2 ̸= 0, the decomposition (2.2)-

(2.3) is unique. It is obvious that e = u(1) + u(2) and λ1 ≤ λ2. Now we give some
basic properties of spectral factorization.

Property 2.1 ([3,11]). For any x = (x1, x2) ∈ R×Rn−1, suppose that the spectral
factorization of x is given by (2.2)-(2.3). Then the following results hold.

(1) u(1) and u(2) are orthogonal under the Jordan product and have length

1/
√
2, i.e., u(1) ◦ u(2) = 0, ∥u(1)∥ = ∥u(2)∥ = 1/

√
2.

(2) u(1) and u(2) are idempotent under the Jordan product, i.e., u(i) ◦ u(i) =

u(i), i = 1, 2.
(3) λ1 is nonnegative (positive) if and only if x ∈ Kn (x ∈ intKn).
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The spectral factorization (2.2)-(2.3) and the Property 2.1 provide a very useful
tool for evaluating the functions defined by the powers of Jordan product. For
example, we have x2 = (λ1u

(1) + λ2u
(2)) ◦ (λ1u

(1) + λ2u
(2)) = λ2

1u
(1) + λ2

2u
(2) for

any x ∈ Rn. Therefore, the spectral values of x2 are nonnegative and x2 ∈ Kn. On
the contrary, for any x ∈ Kn with spectral factorization (2.2)-(2.3), we have 0 ≤
λ1 ≤ λ2. Let w =

√
λ1u

(1) +
√
λ2u

(2), then w2 = x. By the uniqueness of the
square root, we have x1/2 =

√
λ1u

(1)+
√
λ2u

(2). These show that squaring or taking
square-root on a vector is the same as squaring or taking square-root on the spectral
values, and the associated spectral vectors remain invariant.

By using the spectral factorization (2.2)-(2.3), a scalar function f̂ : R → R can
be extended to an SOC vector-valued function associated with Kn(n ≥ 1) [5, 11],
which is given by

(2.4) f(x) = f̂(λ1)u
(1) + f̂(λ2)u

(2), ∀x = (x1, x2) ∈ R× Rn−1,

where λ1, λ2 are the spectral values and u(1), u(2) are the associated spectral vectors.
For any x ∈ Rn, the nearest-point (in the Euclidean norm) of x onto Kn, denoted

by [x]+, is called the projection of x, i.e., [x]+ ∈ Kn and satisfying

(2.5) ∥x− [x]+∥ = min{∥x− y∥ | y ∈ Kn}.

Clearly, the projection (2.5) reduces to [t]+ = max{0, t} for t ∈ R when n = 1. The
following lemma show that |x| and [x]+ have the form (2.4) (see [11, Proposition
3.3]).

Lemma 2.2. For any x = (x1, x2) ∈ R × Rn−1 with spectral factorization (2.2)-
(2.3), then

(1) |x| = (x2)1/2 = |λ1|u(1) + |λ2|u(2).
(2) The projection of x on Kn can be written as [x]+ = (x+ |x|)/2 = [λ1]+u

(1)+

[λ2]+u
(2), where for any scalar α ∈ R, [α]+ = max{0, α}.

Similar to the concept of projection on Kn, define [7]

[x]− = [λ1]−u
(1) + [λ2]−u

(2)

for any vector x with spectral factorization (2.2)-(2.3), where [λi]− = max{0,−λi}
for i = 1, 2. It is obvious that [x]− means the projection point of −x onto Kn, and
x = [x]+ − [x]−, [x]+, [x]− ∈ Kn and [x]+ ◦ [x]− = 0.

Putting these analyses for a single block SOC Kni , i = 1, . . . , r into (1.2), we
can extend them to the general case K = Kn1 × · · · × Knr . More specifically, for
any x = (x1, . . . , xr) ∈ Rn1×. . .×Rnr , y = (y1, . . . , yr) ∈ Rn1×. . .×Rnr , their Jordan
product is defined as

x ◦ y := (x1 ◦ y1, . . . , xr ◦ yr).
Let [x]+, [x]− respectively denote the projection of x onto K and the projection
of −x onto the dual cone K∗ = K, then

(2.6) [x]+ := ([x1]+, . . . , [xr]+), [x]− := ([x1]−, . . . , [xr]−).

where [xi]+, [xi]−, i = 1, . . . , r respectively denote the projection of xi onto the
single block SOC Kni and the projection of −xi onto (Kni)∗.
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3. Two new classes of smooth functions

This section is devoted to propose two new smooth functions. Based on the
four smooth functions presented by Hao in [13], this study constructs the novel
smoothing functions by referring to the method proposed by Chen and Managsar-
ian [2]. Specifically, the kernel functions are convoluted to be either the plus func-
tion [t]+ = max{0, t} or minus function [t]− = max{0,−t}. First, we consider the
piecewise continuous function d(t) with finite number of pieces, which is a den-
sity (kernel) function. In other words, it satisfies

(3.1) d(t) ≥ 0,

∫ +∞

−∞
d(t)dt = 1.

Next, we define ŝ(µ, t) := 1
µd(

t
µ), where µ is a positive parameter. If

∫ +∞
−∞ |t|d(t)dt <

+∞, then a smoothing approximation for [t]+ is formed. In particular,

(3.2) ϕ+(µ, t) =

∫ +∞

−∞
(t− s)+ŝ(µ, s)ds =

∫ t

−∞
(t− s)ŝ(µ, s)ds ≈ [t]+.

The following proposition states the properties of ϕ+(µ, t), whose proofs can be
found in [2, Proposition 2.2].

Proposition 3.1. Let d(t) be a density function satisfying (3.1) and ŝ(µ, t) :=
1
µd(

t
µ) with positive parameter µ. If d(t) is piecewise continuous with finite number

of pieces and
∫ +∞
−∞ |t|d(t)dt < +∞. Then, the function ϕ+(µ, t) defined by (3.2) pos-

sesses the following properties.

(1) ϕ+(µ, t) is continuously differentiable.
(2) −D2µ ≤ ϕ+(µ, t)− [t]+ ≤ D1µ, where

D1 =

∫ 0

−∞
|t|d(t)dt, D2 = max{

∫ +∞

−∞
td(t)dt, 0}.

(3) ∂
∂tϕ

+(µ, t) is bounded satisfying 0 ≤ ∂
∂tϕ

+(µ, t) ≤ 1.

Applying the above way of generating smoothing function to approximate [t]− =
max{0,−t}, we also achieve a smoothing approximation

(3.3) ϕ−(µ, t) =

∫ −t

−∞
(−t− s)ŝ(µ,−s)ds =

∫ +∞

t
(s− t)ŝ(µ, s)ds ≈ [t]−.

Similar to Proposition 3.1, we have the below properties for ϕ−(µ, t) (see [13, Propo-
sition 3.2]).

Proposition 3.2. Let d(t) and ŝ(µ, t) be as in Proposition 3.1 with the same as-
sumptions. Then, the function ϕ−(µ, t) defined by (3.3) possesses the following
properties.

(1) ϕ−(µ, t) is continuously differentiable.
(2) −D2µ ≤ ϕ−(µ, t)− [t]+ ≤ D1µ, where

D1 =

∫ ∞

0
|t|d(t)dt, D2 = max{

∫ +∞

−∞
td(t)dt, 0}.

(3) ∂
∂tϕ

−(µ, t) is bounded satisfying −1 ≤ ∂
∂tϕ

−(µ, t) ≤ 0.
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From (3.2),(3.3) and Proposition 3.1, Proposition 3.2, we know that ϕ+(µ, t)
defined by (3.2) and ϕ−(µ, t) define by (3.3), are the smoothing functions of [t]+
and [t]−, respectively, i.e.,

lim
µ→0+

ϕ+(µ, t) = [t]+,(3.4)

lim
µ→0+

ϕ−(µ, t) = [t]−.(3.5)

The following are the four specific smoothing functions of [t]− proposed by Hao
et al, [13]

ϕ−
1 (µ, t) = −t+ µ ln

(
1 + e

t
µ

)
.(3.6)

ϕ−
2 (µ, t) =


0 if t ≥ µ

2 ,
1
2µ

(
−t+ µ

2

)2
if − µ

2 < t < µ
2 ,

−t if t ≤ −µ
2 .

(3.7)

ϕ−
3 (µ, t) =

√
4µ2 + t2 − t

2
.(3.8)

ϕ−
4 (µ, t) =


0 if t > 0,
t2

2µ if − µ ≤ t ≤ 0,

−t− µ
2 if t < −µ.

(3.9)

where the corresponding kernel function are

d1(t) =
et

(1 + et)2
.

d2(t) =

{
1 if − 1

2 ≤ t ≤ 1
2 ,

0 otherwise.

d3(t) =
2

(t2 + 4)
3
2

.

d4(t) =

{
1 if − 1 ≤ t ≤ 0,
0 otherwise.

We now give two new specific smoothing functions for [t]−:

ϕ−
5 (µ, t) =


0 if t ≥ µ,

µ
2 [ln(1 + ( t

µ)
2) + 1− ln2]− t

2 if − µ < t < µ,

−t if t ≤ −µ,
(3.10)

ϕ−
6 (µ, t) =

1

2
(µ2 + t2)

1
2 − µ

2
− t

2
,(3.11)

where the corresponding kernel function are

d5(t) =

{
1−t2

(1+t2)2
if − 1 < t < 1,

0 otherwise,

d6(t) =
1

2(t2 + 1)
3
2

.
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For those specific function (3.6)-(3.11), they certainly obey Proposition 3.2 and
(3.5). The grapes of [t]− and ϕ−

i (µ, t), i = 1, . . . , 6 with µ = 0.1 are depicted in Fig.
1.

Figure 1. Graphs of [t]− and ϕ−
i (µ, t), i = 1, . . . , 6 with µ = 0.1

From Fig. 1, we see that, for a fixed µ > 0, the function ϕ−
2 (µ, t) seems the one

which best approximate the function [t]− among all ϕ−
i (µ, t), i = 1, . . . , 6. Indeed,

for a fixed µ > 0 and all t ∈ R, we have

(3.12) ϕ−
3 (µ, t) ≥ ϕ−

1 (µ, t) ≥ ϕ−
5 (µ, t) ≥ ϕ−

2 (µ, t) ≥ [t]− ≥ ϕ−
4 (µ, t), ϕ−

6 (µ, t).

For any fixed µ > 0, it is clear that

lim
t→∞

|ϕ−
i (µ, t)− [t]−| = 0, i = 1, 2, 3, 5.

The functions ϕ−
i (µ, t)− [t]−, i = 1, 3 have no stable point but unique non-differenti-

able point t = 0, and ϕ−
2 (µ, t) − [t]− is non-zero only on the interval (−µ/2, µ/2)

with maxt∈(−µ/2,µ/2)

∣∣ϕ−
2 (µ, t)− [t]−

∣∣ = ϕ−
2 (µ, 0), and ϕ−

5 (µ, t)−[t]− is non-zero only

on the interval (−µ, µ) with maxt∈(−µ,µ)

∣∣ϕ−
5 (µ, t)− [t]−

∣∣ = ϕ−
5 (µ, 0). These imply

that

max
t∈R

|ϕ−
i (µ, t)− [t]−| = ϕ−

i (µ, 0), i = 1, 2, 3, 5.

Therefore, in the sense of the infinite norm, we have

∥ϕ−
1 (µ, t)− [t]−∥∞ = (ln 2)µ ≈ 0.7µ,

∥ϕ−
2 (µ, t)− [t]−∥∞ = µ/8,

∥ϕ−
3 (µ, t)− [t]−∥∞ = µ,

∥ϕ−
5 (µ, t)− [t]−∥∞ =

µ(1− ln 2)

2
≈ 0.3µ.

On the other hand, it is obvious that

∥ϕ−
4 (µ, t)− [t]−∥∞ = maxt∈R|ϕ−

4 (µ, t)− [t]−| = µ/2,

∥ϕ−
6 (µ, t)− [t]−∥∞ = maxt∈R|ϕ−

6 (µ, t)− [t]−| = µ/2.

In summary, we have

(3.13)
∥ϕ−

3 (µ, t)− [t]−∥∞ > ∥ϕ−
1 (µ, t)− [t]−∥∞ > ∥ϕ−

4 (µ, t)− [t]−∥∞
= ∥ϕ−

6 (µ, t)− [t]−∥∞ > ∥ϕ−
5 (µ, t)− [t]−∥∞ > ∥ϕ−

2 (µ, t)− [t]−∥∞.
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The orderings of (3.12) and (3.13) indicate the behavior of ϕ−
i (µ, t), i = 1, . . . , 6 for

fixed µ > 0. When taking µ → 0+, we know limµ→0+ ϕ−
i (µ, t) = [t]−, i = 1, . . . , 6,

which can be verified by geometric views depicted as in Fig. 2.

Figure 2. Graphs of [t]− and ϕ−
i (µ, t), i = 1, . . . , 6 with µ

Through the above discussion, for any x = (x1, . . . , xr) ∈ Rn1 × · · · ×Rnr , we are
ready to show how to construct a smoothing function for vectors [x]+, and [x]− asso-
ciated with K = Kn1 ×· · ·×Knr . We start by constructing a smoothing function for
vectors [xi]+, [xi]− on a single block SOC Kni , i = 1 . . . , r since [x]+ and [x]− are
show as (2.6) . First, given smoothing functions ϕ+, ϕ− in (3.2), (3.3) and xi ∈
Rn1 , i = 1 . . . , r, we define vector-value function Φ+

i , Φ
−
i : R++ × Rni → Rni :

(3.14) Φ+
i (µ, xi) := ϕ+(µ, λ1(xi))u

(1)
xi

+ ϕ+(µ, λ2(xi))u
(2)
xi

,

(3.15) Φ−
i (µ, xi) := ϕ−(µ, λ1(xi))u

(1)
xi

+ ϕ−(µ, λ2(xi))u
(2)
xi

,

where µ ∈ R++ is a parameter, λ1(xi), λ2(xi) are the spectral values, and u
(1)
xi , u

(2)
xi are

the spectral vectors of xi.
Consequently, Φ+

i (µ, xi), Φ
−
i (µ, xi) are also smooth on R++ ×Rni [5]. Moreover,

it is easy to assert that

(3.16) lim
µ→0+

Φ+
i (µ, xi) = [λ1(xi)]+u

(1)
xi

+ [λ2(xi)]+u
(2)
xi

= [xi]+,

(3.17) lim
µ→0+

Φ−
i (µ, xi) = [λ1(xi)]−u

(1)
xi

+ [λ2(xi)]−u
(2)
xi

= [xi]−,

which means each function Φ+
i (µ, xi), Φ−

i (µ, xi) serves as a smoothing function
of [xi]+, [xi]− associated with single SOC Kni , i = 1 . . . , r, respectively.

Now we construct smoothing function for vector [x]+ and [x]− associated with
general cone (1.2). To this end, we define vector-valued function Φ+, Φ−: R++ ×
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Rn → Rn:

(3.18) Φ+(µ, x) := (Φ+
1 (µ, x1), . . . ,Φ

+
r (µ, xr)),

(3.19) Φ−(µ, x) := (Φ−
1 (µ, x1), . . . ,Φ

−
r (µ, xr)),

where Φ+
i (µ, xi), Φ−

i (µ, xi), i = 1, . . . , r are defined by (3.14), (3.15), respectively.
Therefore, from (3.16), (3.17) and (2.6), Φ+(µ, x), Φ−(µ, x) serves as a smoothing
function for [x]+, [x]− associated with K = Kn1 × · · · × Knr , respectively.

Lemma 3.3 (see [13]). Suppose that Φ+(µ, x) and Φ−(µ, x) are defined by (3.18),
(3.19), respectively. Then, Φ+(µ, x) ∈ K,Φ−(µ, x) ∈ K.

4. Smooth-type algorithm and convergence analysis

In this section, using the six smooth functions of [t]− proposed in Section 3,
we present the lower order penalty smooth-type algorithm for SOCLCPs and the
corresponding convergence analysis.

We consider the lower order penalty smooth-type equations (LOPEs):

(4.1) Ax− αΦ−(µ, x) = b,

where α ≥ 1 is a penalty parameter, µ > 0 is a smoothing parameter and Φ−(µ, x) is
defined as (3.19). The penalty term αΦ−(µ, x) penalizes the ‘negative part’ of x
when α → +∞ and µ → 0+. By Lemma 3.3, it is easy to see that Axµ,α − b ⪰K
0 is always satisfied due to αΦ−(µ, α) ∈ K. Our goal is to show that the solution
sequence {xµ,α} converges to the solution of SOCLCP (1.1) when α → +∞ and µ →
0+. Thus we convert SOCLCP (1.1) into LOPEs (4.1).

Equations (4.1) are different from Ax− αΦ−(µ, x)σ = b, the lower order penalty
equations described in Hao [13]. Superficially, (4.1) is a special form of σ = 1.
However, for solving the nonlinear equations with σ ̸= 1 in [13], it is still require
to add an inner loop to transform them into σ = 1. By taking σ = 1 in (4.1), it is
not necessary the inner loop. Additionally, the equations Ax − αΦ−(µ, x)σ = b in
reference [13] are approximately smooth, and the discrete Newton method is used
to solve the nonlinear equations. By contrast, the equations (4.1) in this paper are
generally smooth, and the smooth Newton method is used to solve the equations.

Similar to reference [13], we make the assumption for matrix A as below.

Assumption 4.1. The matrix A is positive definite, but not necessarily symmet-
ric, i.e., there exist a constant a0 > 0, such that

(4.2) yTAy ≥ a0∥y∥2, ∀y ∈ Rn.

Under Assumption 4.1, the SOCLCP (1.1) has a unique solution and the LOPEs
(4.1) also has a unique solution, see for more details in [13]. Throughout this section,
let xµ,α represent the unique solution of (4.1).

Since two new smooth functions of [t]− proposed in Section 3, ϕ−
5 (µ, t), ϕ

−
6 (µ, t) and

four smooth functions proposed by Hao in reference [13] are obtained by convolution
integrals of their kernel functions, and they all satisfy Propositions 3.2 and (3.5),
Therefore, the convergence analysis of the lower order penalty equations formed
by ϕ−

5 (µ, t), ϕ
−
6 (µ, t) is the same as that described in [13]. We only present the

convergent result, while the detailed proof can be found in [13].
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Proposition 4.2. For any α ≥ 1, and sufficiently small µ, the solution of LOPEs
(4.1) is bounded, i.e., there exists a positive constant M , independent of xµ,α, α and µ,
such that ∥xµ,α∥ ≤ M .

Proposition 4.3. For any α ≥ 1, and sufficiently small µ, there exists a positive
constant C, independent of xµ,α, α and µ, such that

(4.3) ∥Φ−(µ, xµ,α)∥ ≤ C

α
.

Theorem 4.4. For any α ≥ 1 and sufficiently small µ, let xµ,α and x∗ be the
solution of LOPEs (4.1) and SOCLCP (1.1) respectively. Then, there exists a
positive constant C, independent of x∗, xµ,α, α and µ, such that

(4.4) ∥x∗ − xµ,α∥ ≤ C

α
.

According to Theorem 4.4, we given the algorithm as following.

Algorithm 4.5.

Step 0 Given a vector b ∈ Rn, and a matrix A ∈ Rn satisfying Assumption 4.1.
Set x̃ = 0 ∈ Rn.

Step 1 If b ⪯K 0, go to step 5; else, go to step 2.
Step 2 Given the penalty parameter α≥ 1, the smoothing parameter 0< µ< 1,

the error bound eps and the multiple parameter c1 > 1 and

0 < c2 < 1, select an initial point x(0) = (x
(0)
1 , . . . , x

(0)
r ) ∈ Rn1 ×· · ·×Rnr

with x
(0)
i = (x

(0)
i1 , x

(0)
i2 ) ∈ R×Rni−1 by taking x

(0)
i2 ̸= 0 while x

(0)
i1 ≤ 0, i =

1, . . . , r.
Step 3 For the parameters α, µ and the initial point x(0), solve the nonlinear

equations

(4.5) Ax− αΦ−(µ, x) = b.

Suppose that xµ,α is the solution of (4.5) and let Tol = |xTµ,α(Axµ,α− b)|.
Step 4 If Tol ≤ eps, set x̃ = xµ,α, go to step 5; else, let x(0) = xµ,α,α = c1α and

µ = c2µ, go to step 3.
Step 5 The vector x̃ is the approximate optimal solution of SOCLCP (1.1), stop.

5. Numerical experiments

5.1. Numerical examples. We test some examples to show the efficiency of Al-
gorithm 4.5. We use smooth Newton method to solve nonlinear equations for all
examples. All numerical experiments are performed under the MATLAB 2012a
running on PC with Intel(R) Core(TM)i5-2410M CPU 2.3GHz.

In the following numerical experiments, we mainly compare the two newly pro-
posed novel functions ϕ−

5 (µ, t), ϕ
−
6 (µ, t) and the functions ϕ−

2 (µ, t), [t]−. This is be-
cause numerical experiments in [13] have demonstrated that ϕ−

2 (µ, t) is the function
with the best numerical performance among all ϕ−

i (µ, t), i = 1, 2, 3, 4, and they’re
all based on [t]−.
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Example 5.1. Consider the SOCLCP (1.1) on K2, where

A =

(
1 1
0 2

)
, b =

(
0
4

)
.

Nothing that the exact solution of this problem is x∗ = (1, 1)T , we take an

initial point x(0) = (0, 2)T and consider the tendency of numerical results while
parameters µ, α change. In the following two tables, “Err” denotes ∥x̃− x∗∥, “Val”
denotes x̃T (Ax̃− b), where x̃ is the numerical solution.

We do the numerical experiment according to the following two steps:

1. First, we take µ = 1e− 5 and some α = 100, 400, 1600, 6400, 25600, 102400,
the numerical results are listed in Table 5.1;

2. Second, we take α = 1000 and some µ = 0.5, 0.2, 0.1, 0.01, 0.001, 0.0001, the
numerical results are listed in Table 5.2.

According to Table 5.1, it can be seen that Err decreases as α increases and the
values of Val are all negative, which indicates that the value of µ should decrease
while the value of α increases. From Table 5.2, it can be seen that the overall
situation is that as µ decreases, Val changes from positive to negative, and Err
decreases but the trend is not obvious after Val becomes negative. For ϕ−

5 for
example, Val is positive when µ = 0.2, but negative when µ = 0.1, which shows
that µ = 0.1 is sufficiently small when α = 1000, and what is needed is to increase
the value of α to obtain better numerical results. Therefore, it is necessary to
increase the value of α while decreasing the value of µ, which is consistent with the
results of Algorithm 4.5.

Table 5.1 The numerical results for α change (µ = 1e− 5)
α → 100 400 1600 6400 25600 102400

ϕ−
2 Err 0.031310 0.007886 0.001975 4.9403e-4 1.2352e-4 3.0881e-5

Val -0.078424 -0.019900 -0.004994 -0.001250 -3.1248e-4 -7.8123e-5
ϕ−
5 Err 0.031310 0.007886 0.001975 4.9403e-4 1.2352e-4 3.0881e-5

Val -0.078424 -0.019900 -0.004994 -0.001250 -3.1248e-4 -7.8123e-5
ϕ−
6 Err 0.031310 0.008230 0.001975 0.011545 0.045312 0.181034

Val -0.078424 -0.021904 -0.004994 -0.032998 -0.124221 -0.446544

Table 5.2 The numerical results for µ change (α = 1000)
µ → 0.5 0.2 0.1 0.01 0.001 0.0001

ϕ−
2 Err 0.146497 0.047199 0.017107 0.003115 0.003159 0.003159

Val 0.387781 0.121187 0.043513 -0.007872 -0.007984 -0.007984
ϕ−
5 Err 0.228305 0.071374 0.026004 0.002897 0.003159 0.003159

Val 0.619269 0.184638 -0.007322 -0.078424 -0.078423 -0.078423
ϕ−
6 Err 0.321071 0.013340 0.028655 0.031310 0.031310 0.031310

Val 0.894722 0.112603 0.047199 0.002091 0.003159 0.003159

The following two test examples are employed in [6], which will be solved by
Algorithm 4.5. In our tests, we employ eps = 1e−6 as the termination criterion. In
the following tables, IP(x(0)) denotes the initial points, Val dentes |x̃T (Ax̃ − b)|,
where x̃ is the numerical solution.
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Example 5.2. Consider the SOCLCP (1.1) on K5, where

A =


15 −5 −1 4 −5
0 5 0 0 1
−1 −3 8 2 −3
2 −4 2 9 −4
0 −5 0 0 10

 , b =


0
0
0
0
1

 .

In this example, the matrix A is positive definite, but not symmetric, i.e., As-
sumption 4.1 holds. The exact solution x∗ ≈ (0.049185, −0.0030997, 0.009
6024, 0.0031883, 0.048033)T [6]. For different initial points, by taking c1 = 10, c2 =
0.1, initial α = 100 and initial µ = 1e− 5, the test results are listed in Table 5.3.

Table 5.3 Numerical results for different initial points

IP(x(0)) Val(ϕ−
2 ) Val(ϕ−

5 ) Val(ϕ−
6 ) Val([t]−)

(1, 1, 1, 1, 1) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7
(−1, . . . ,−1) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7
(10, . . . , 10) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7

(−10, . . . ,−10) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7
(103, . . . , 103) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7
(106, . . . , 106) 5.3303e-7 5.3303e-7 7.7896e-7 5.3303e-7

Example 5.3. Consider the SOCLCP (1.1) on K3, where

A =

21 −9 18
−9 4 −7
18 −7 9

 , b =

−3
−7
−1

 .

In this example, the symmetric matric A is positive semidefinite, but not positive
definite. As indicated in [6], it has one solution x∗ ≈ (0.183606,
−0.154346, −0.099440)T . For different initial points, we test this problem by taking
c1 = 10, c2 = 0.1, initial α = 100 and initial µ = 1e − 6, the results are listed in
Table 5.4. This example indicates that, the Algorithm 4.5 is also applicable to those
SOCLCPs, in which the matric A is only positive semidefinite.

Table 5.4 Numerical results for different initial points

IP(x(0)) Val(ϕ−
2 ) Val(ϕ−

5 ) Val(ϕ−
6 ) Val([t]−)

(1, 1, 1) 8.3325e-8 8.3325e-7 9.9999e-7 8.3325e-7
(−1,−1,−1) 8.3325e-8 8.3325e-7 9.3721e-7 8.3325e-7
(10, 10, 10) 8.3328e-8 8.3328e-7 9.1295e-7 8.3328e-7

(−10,−10,−10) 8.3328e-8 8.3328e-7 9.1532e-7 8.3328e-7
(103, 103, 103) 8.3328e-8 8.3328e-7 9.1295e-7 8.3328e-7
(106, 106, 106) 8.3323e-8 8.3323e-7 9.9824e-7 8.3323e-7

The results in Table 5.3 and 5.4 show that Algorithm 4.5 does not have high
requirements for initial points. Example 5.2 and 5.3 are two example of SOCLCP
with SOC K = Kn. Next, we consider two examples of the SOCLCP (1.1) with

multiple SOCs. In the following tables, IP(x(0)) denotes the initial points, Val
dentes |x̃T (Ax̃ − b)|, “-”denotes the Jacobian matrix closed to singular or badly
scaled.

Example 5.4. Consider the SOCLCP (1.1) on K3 × K2, where A is show as in
Example 5.2, and b = (3, 0, 2, 2, 5)T .
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The Assumption 4.1 also holds in this example. As indicated in [13], it has one
solution x∗ ≈ (0.255103, −0.053464, 0.249438, 0.367316, 0.367316)T . For different
initial points, we test this problem by taking c1 = 10, c2 = 0.1, initial α = 100 and
initial µ = 1e− 6, the results are listed in Table 5.5.

Table 5.5 Numerical results for different initial points

IP(x(0)) Val(ϕ−
2 ) Val(ϕ−

5 ) Val(ϕ−
6 ) Val([t]−)

(1, 1, 1, 1, 1, 1, 1) 2.6994e-7 2.7001e-7 5.8123e-7 -
(−1, . . . ,−1) - 2.6997e-7 5.8150e-7 2.6996e-7
(10, . . . , 10) 2.7001e-7 2.7014e-7 5.8106e-7 -

(−10, . . . ,−10) - 2.6997e-7 5.8126e-7 2.6994e-7
(103, . . . , 103) 2.7001e-7 2.7014e-7 5.8110e-7 -
(106, . . . , 106) 2.7001e-7 2.7014e-7 5.8115e-7 -

Example 5.5. Consider the SOCLCP (1.1) on K3 ×K4, where

A =



2.9825 −0.1495 −1.1296 0.0953 −0.9764 0.2920 0.2027
−0.1495 4.1709 −0.8850 −0.8571 0.0150 −0.1140 −0.9578
−1.1296 −0.8850 3.6707 −0.7818 −0.2644 −0.2435 −0.2995
0.0923 −0.8571 −0.7818 3.6308 0.5886 −1.8208 −0.1765
−0.9764 0.0150 −0.2644 0.5886 3.3823 −1.1758 −0.9048
0.2920 −0.1140 −0.2435 −1.8208 −1.1758 5.2118 −0.4727
0.2027 −0.9578 −0.2995 −0.1765 −0.9048 −0.4722 5.0411


and b = (2,−1, 3,−2, 4,−1, 3)T .

The Assumption 4.1 also holds since A is symmetry positive definite. the exact
solution is about x∗ ≈ (1.723509, 0.465966, 1.659325, 0.996148, 0.831870,
0.212798, 0.504995)T . For different initial points, we test this problem by taking
c1 = 10, c2 = 0.1, initial α = 100 and initial µ = 1e − 6, the results are listed in
Table 5.6.

Table 5.6 Numerical results for different initial points

IP(x(0)) Val(ϕ−
2 ) Val(ϕ−

5 ) Val(ϕ−
6 ) Val([t]−)

(1, 1, 1, 1, 1) 3.5406e-7 3.5406e-7 - 3.5406e-7
(−1, . . . ,−1) 3.5099e-7 3.5099e-7 - 3.5099e-7
(10, . . . , 10) 3.5525e-7 3.5525e-7 - 3.5525e-7

(−10, . . . ,−10) 3.4620e-7 3.4620e-7 - 3.4620e-7
(103, . . . , 103) 3.2642e-7 3.2642e-7 - 3.2642e-7
(106, . . . , 106) 3.4341e-7 3.4341e-7 - 3.4341e-7

Examples 5.4 and 5.5 illustrate that Algorithm 4.5 is applicable to the SO-
CLCP (1.1) with multiple SOCs.

5.2. Performance profile of different ϕ−
i (µ, t). According to [13], ϕ−

2 (µ, t) is

the function closest to [t]− among all ϕ−
i (µ, t) i = 1, 2, 3, 4. Therefore, we only

compare the performance of ϕ−
2 (µ, t) with ϕ−

5 (µ, t), ϕ
−
6 (µ, t) proposed in this paper.

In order to compare the performance of function ϕ−
i (µ, t) i = 2, 5, 6, we consider

the performance profile which is introduced in [9] as a means. Assume that there
are ns solvers and np test problems from the test set P. We are interested in using
computing time or iteration number as a performance measure. In the following, we
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Figure 3. Performance profile of ϕi(µ, t), i = 2, 5, 6

take computing time as a performance measure. For each problem p and solver s,
we define

fp,s = computer time required to solved problem p by solver s.

We employ the performance ratio

rp,s =
fp,s

min{fp,s|s ∈ S}
,

where S is the solver set. We assume that a parameter rM , such that rM ≥ rp,s for
all p, s is chosen, and rM = rp,s if and only if solver s does not solve problem p.
The choice of rM does not affect the performance evaluation. In order to obtain an
overall assessment for each solver, we define

ρs(τ) =
1

np
size{p ∈ P|rp,s ≤ τ}.

The function ρs(τ) is the cumulative performance ratio, which is called the perfor-
mance profile. In the performance profile, we use functions ϕ−

i (µ, t), i = 2, 5, 6 as
three solvers, and take randomly generated 40 SOCLCPs with single SOC, in which
the matrices are symmetric positive definite. The performance plot based on com-
puting time is depicted in Fig. 3. By overall looking, from Fig. 3, we see that the
function ϕ−

5 (µ, t) has the best performance, then followed by ϕ−
2 (µ, t). Note that the

time efficiency of ϕ−
6 (µ, t) is the worst. In other words, in view of computing time,

there has
ϕ−
5 (µ, t) > ϕ−

2 (µ, t) > ϕ−
6 (µ, t),

where “>” means “better performance”. In summary, for the SOCLCPs (1.1),
when we use Algorithm 4.5 by applying functions ϕ−

i (µ, t) i = 2, 5, 6, the func-

tion ϕ−
5 (µ, t) is the best choice.

6. Conclusions

Based on the four smooth functions in [13], two new smooth functions are pro-
posed in this paper. The proposed functions are applied to the lower order penalty
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function algorithm for the SOCLCP (1.1). The general idea is to transform the
SOCLCP (1.1) into a sequence of LOPEs (4.1) and to employ the smooth New-
ton method to solve the LOPEs. Under Assumption 4.1, the solution sequence
of LOPEs (4.1) converges to the solution of SOCLCP (1.1). Numerical experiments
indicates that the proposed two new smooth functions can be used in Algorithm
4.1 to solve the SOCLCP (1.1), and ϕ−

5 (µ, t) has reached the best performance
among ϕ−

i (µ, t), i = 2, 5, 6.
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