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integral equations for a broader class of the integral equations of the convolution
type of Taylor series is extended by Sonin in [18]. A different type fractional de-
rivative is proposed using the generalized cardinal sine function as a non-singular
analytic kernel in [17, 21]. Here a corresponding fractional integral operator is in-
troduced in Legendre orthonormal polynomial basis with the science of Caputo and
Riemann-Liouville.

Furthermore, gradient descent methods for nonlinear optimization using Caputo
fractional derivatives are developed in [24]. The stability of fractional differential
calculus as well as are discussed in [7]. Readers may see [2,3,11,20,22,25,26,29] for
further development in fractional calculus.

In this paper, we have adopted some ideas from [27] and developed the mono-
tonicity results for fractional derivatives in generalized intervals. Some preliminaries
required for the current contribution are discussed in Section 2. Section 3 focuses
on constructing the monotonicity results in interval (1, 2). In Section 4 these results
are generalized for any interval (β, β + 1) where β ∈ N. Some numerical exam-
ples are discussed in Section 3 and 4 to justify the theoretical results developed in
these sections. Finally, some concluding remarks and the scope of future research
is addressed in section 5.

2. Preliminaries

This section starts with some basic definitions, properties, and descriptions of
monotonic function which is helpful for understanding the entire article. Through-
out the discussion, the collection of n times differentiable and n+1 times continuous
functions on [a, b] is denoted by Cn[a, b].

Definition 2.1. [27] Let f ∈ C[a, b], the α order left Riemann-Liouville fractional
derivative for x ∈ [a, b] α > 0 are defined as,

aI
α
x f(x) =

1

Γ(α)

∫ x

a
(x− γ)α−1f(γ)dγ.

Definition 2.2. Let f ∈ C[a, b]. the α order left Riemann-Liouville fractional
derivative for x ∈ [a, b] is formed as,

aD
α
xf(x) =

1

Γ(β − α)

( d

dx

)β ∫ x

a
(x− γ)β−α−1f(γ)dγ,

where α ∈ (β, β + 1), β ∈ N.

Definition 2.3. Let f ∈ C[a, b], the α order Caputo fractional derivative for x ∈
[a, b] is formed as,

c
aD

α
xf(x) =

1

Γ(β − α)

∫ x

a
(x− γ)β−α−1f (β)(γ)dγ,

where α ∈ (β, β + 1), β ∈ N.

The following results hold for the Riemann-Liouville and Caputo fractional de-
rivative:
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(1) The relationship between left Riemann-Liouville and Caputo fractional de-
rivative is

(2.1) aD
α
xf(x) =

c
aD

α
xf(x) +

β∑
i=0

(x− a)i−α

Γ(i− α+ 1)
f (k)(a).

(2) The following rule helds for the left Riemann-Liouville and Caputo fractional
derivative

(2.2) aI
α
x aD

α
xf(x) = f(x)−

β∑
i=0

(x− a)α−i

Γ(α− i+ 1)a
Dα−i

x f(x),

(2.3) aI
α
x

c
aD

α
xf(x) = f(x)−

β∑
i=0

(x− a)i

Γ(i+ 1)
f (i)(a),

where α ∈ (β, β + 1), β ∈ N.

A real-valued function f is said to be monotonic increasing or decreasing in
interval [a, b] if f

′
(x) > 0 or f

′
(x) < 0. If f (n+1)(x) ≥ 0 then concluded that f (n) is

monotonic increasing interval [a, b].

3. Construction of relations between fractional derivatives with
monotonic nature of a function in a specific interval

In this section we develope the following theorems, corollary with the help of
previous basic definitions, properties in a specific interval (1, 2). The results provide
a new idea to develop theorems in generalizing interval which is discussed briefly in
the article.

Theorem 3.1. Let f ∈ C2[a, b] and α ∈ (1, 2) then f ′ is monotonic increasing on
[a, x] iff Caputo fractional derivative that is c

aD
α
xf(x) ≥ 0.

Proof. Let f ′ is monotonic increasing on [a, x], then f
′′
(x) ≥ 0 on [a, x]. Let t ∈

[a, x], and α ∈ (1, 2), therefore (x− t)1−α > 0 and Γ(2− α) > 0.

Now by the definition of the Caputo fractional derivative of order α is,

c
aD

α
xf(x) =

1

Γ(2− α)

∫ x

a
(x− γ)1−αf

′′
(γ)dγ ≥ 0.

For the converse part, let h(x) = c
aD

α
xf(x) ≥ 0. Then,

aI
α
x h(x) =

1

Γ(α)

∫ x

a
(x− γ)α−1h(γ)dγ ≥ 0.

Therefore, for given x ≥ a

0 ≤ aI
α
x

c
aD

α
xf(x)

= f(x)−
1∑

j=0

(x− a)j

Γ(j + 1)
f (j)(a), (from (2.3))
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= f(x)− f(a)− (x− a)

Γ(1)
f ′(a)

= f ′(x)− f ′(a).

Hence, f
′
is increasing function on [a, x].

□

Curiosity about knowing more about the condition for the monotonic
decreasing character of a function in terms of Caputo fractional alpha order deriv-
ative is as follows.

Theorem 3.2. Let f ∈ C2[a, b] and α ∈ (1, 2) then f ′ is monotonic decreasing on
[a, x] if and only if Caputo fractional derivative that is c

aD
α
xf(x) ≤ 0.

Proof. The result can be proved by replacing f by −f in Theorem 3.1. □

Corollary 3.3. Let f ∈ C2[a, b] and α ∈ (1, 2), f ′ is monotonic increasing on [a, x],

f(a) < 0 and f
′
(a) ≥ 0 then α order left Reimann-Liouville that is aD

α
xf(x) ≥ 0.

Proof. From the (2.1) for α ∈ (1, 2) is,

aD
α
xf(x) = c

aD
α
xf(x) +

(x− a)−α

Γ(1− α)
f(a) +

(x− a)1−α

Γ(−α)
f

′
(a).

Since f
′
(x) is increasing on [a, x] which implies c

aD
α
xf(x) ≥ 0. Next,

(x−a)−α

Γ(1−α) f(a) ≥ 0 and (x−a)1−α

Γ(−α) f
′
(a) ≥ 0 by the given hypotheses f(a) < 0, 1

Γ(1−α) <

0, f
′
(a) ≥ 0. Hence, we get aD

α
xf(x) ≥ 0. □

In order to find, the basic behavior of function with some conditions and positivity
of alpha order left Riemann-Liouville where alpha is in a specific interval.

Corollary 3.4. Let f ∈ C2[a, b] and α ∈ (1, 2), if α order left Reimann-Liouville

aD
α
xf(x) ≥ 0, f(a) > 0 and f

′
(a) < 0 then f ′ is monotonic increasing on [a, x].

Proof. Calculating from equation (2.3),

c
aD

α
xf(x) = aD

α
xf(x)−

(x− a)−α

Γ(1− α)
f(a)− (x− a)1−α

Γ(−α)
f

′
(a).

Theorem [3.1] states that f ′(x) is monotonic increasing on [a, x] if and only if Caputo
fractional derivative that is c

aD
α
xf(x) ≥ 0 and given aD

α
xf(x) ≥ 0, f(a) > 0 which

completes the proof by simple calculation. □

The following interesting theorem can be proved by combining the above two
corollaries.

Theorem 3.5. Let f ∈ C2[a, b] and α ∈ (1, 2), if f ′ is monotonic increasing on
[a, x], f(a) = 0 if and only if α order left Riemann-Liouville fractional derivative
that is aD

α
xf(x) ≥ 0.
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Furthermore, the α + 1 order Caputo fractional derivative is nothing but one
more extra derivative of the α order Caputo fractional derivative. Functions are
dealt different conditions with Caputo fractional derivative which is discussed here
very briefly.

Theorem 3.6. Let f ∈ C2[a, b] and α ∈ (1, 2), if f ′ is monotonic increasing on
[a, x] then Caputo fractional derivative of order α+ 1, c

aD
α+1
x f(x) ≤ 0.

Proof. Caputo fractional derivative for α ∈ (1, 2) is

c
aD

α
xf(x) =

1

Γ(2− α)

∫ x

a
(x− γ)1−αf

′′
(γ)dγ

it follows that,

c
aD

α+1
x f(x) =

1

Γ(1− α)

∫ x

a
(x− γ)−αf

′′
(γ)dγ.

For 1
Γ(1−α) < 0, (x− t)−α > 0, t ∈ [a, x] and f

′′
(x) > 0, then

c
aD

α+1
x f(x) ≤ 0. □

Theorem 3.7. Let f ∈ C2[a, b] and α ∈ (1, 2), if Caputo fractional derivative
c
aD

α+1
x f(x) ≥ 0 then f ′ is monotonic increasing on [a, x].

Proof. From previous calculation,

c
aD

α+1
x f(x) =

1

Γ(1− α)

∫ x

a
(x− γ)−αf

′′
(γ)dγ ≥ 0.

Let c
aD

α+1
x f(x) = c

aD
α
xh(x) ≥ 0 where h(x) = f ′(x). We know, for given x ≥ a,

0 ≤ aI
α
x

c
aD

α
xh(x)

= g(x)−
1∑

i=0

(x− a)i

Γ(j + 1)
gi(a), (from (2.3))

= g(x)− g(a)

Γ(1)
− (x− a)

Γ(1)
g
′
(a)

= g(x)− g(a)

= f
′
(x)− f

′
(a).

Thus f
′
is monotonic increasing functions. □

Theorem 3.8. Let f ∈ C2[a, b] and α ∈ (1, 2), if f ′(x) is monotonic decreasing on
[a, x] then Caputo fractional derivative of order α+ 1, c

aD
α+1
x f(x) ≥ 0.

Proof. From the definition of Caputo fractional derivative,

c
aD

α+1
x f(x) =

1

Γ(1− α)

∫ x

a
(x− γ)−αf

′′
(γ)dγ.

Note that, 1
Γ(1−α) < 0, f ′(x) is monotonic decreasing implies f

′′
(x) ≤ 0 that is

c
aD

α+1
x f(x) ≥ 0. This proves the theorem. □

Theorem 3.9. Let f ∈ C2[a, b] and α ∈ (1, 2), if Caputo fractional derivative that
is c

aD
α+1
x f(x) ≤ 0 then f ′ is monotonic decreasing on [a, x].



226 B. SHAW AND M. A. T. ANSARY

Proof. Let, c
aD

α+1
x f(x) = c

aD
α
x h(x) ≤ 0 where h(x) = f ′(x). For any x ≤ a,

0 ≥ aI
α
x

c
aD

α
xh(x)

= g(x)−
1∑

i=0

(x− a)i

Γ(i+ 1)
gi(a), (from (2.3))

= g(x)− g(a)− (x− a)g′(a)

= f ′(x)− f ′(a)

Thus, f
′
is monotonic decreasing. □

Next theorems state monotonic results for α order Caputo fractional derivative
with some basic assumptions. More required corollary data also helps to provide
monotonic increasing or decreasing behavior of Caputo fractional derivatives.

Theorem 3.10. Let f ∈ C2[a, b] and α ∈ (1, 2), if f ′(x) is monotonic decreasing on

[a, x], f
′′
(a) ≥ 0 then α order Caputo fractional derivative, c

aD
α
xf(x) is monotonic

increasing on [a, x].

Proof. It is sufficient to show that the derivative of Caputo fractional is greater than
equal to zero,

d

dx
[caD

α
xf(x)] =

d

dx

1

Γ(2− α)

∫ x

a
(x− γ)1−αf

′′
(γ)dγ

=
1

Γ(1− α)

∫ x

a
(x− γ)1−αf

′′
(γ)dγ

+
1

Γ(2− α)
(x− a)f

′′
(a).

Since f
′′ ≤ 0 and 1

Γ(1−α) ≤ 0, then d
dx [

c
aD

α
xf(x)] ≥ 0 for x ≥ a. Therefore, α order

Caputo’s fractional derivative of f is monotonic increasing on [a, x].
□

Theorem 3.11. Let f ∈ C2[a, b] and α ∈ (1, 2), if f ′ is monotonic increasing

on [a, x], f
′′
(a) ≤ 0 then α order Caputo fractional derivative that is c

aD
α
xf(x) is

monotonic decreasing on [a, x].

Proof. By a similar process, we can easily show that d
dx [

c
aD

α
xf(x)] ≤ 0

then it follows that Caputo fractional derivatives are monotonic decreasing on [a, x].
□

Corollary 3.12. Let f ∈ C2[a, b] and α ∈ (1, 2) if f ′ is monotonic decreasing
on [a, x], f(a) ≥ 0, f ′(a) ≤ 0, f ′′(a) ≥ 0 then left Riemann-Liouville fractional
derivative of order α+ 1 that is aD

α+1
x f(x) ≥ 0.

Proof. The relationship between left Riemann-Liouville and Caputo fractional de-
rivative (2.1) for 2 < α < 3 is,

aD
α+1
x f(x) = c

aD
α+1
x f(x) +

2∑
i=0

(x− a)i−(α+1)

Γ(i− (α+ 1) + 1)
f (i)(a)
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Figure 1. Plot of α order Caputo fractional derivative of f(x) = x3

6 .

= c
aD

α+1
x f(x) +

(x− a)−(α+1)

Γ(−α)
f(a) +

(x− a)−α

Γ(1− α)
f

′
(a)

+
(x− a)1−α

Γ(2− α)
f

′′
(a).

Since, Γ(1 − α) < 0 and Γ(−α) > 0, then by simple calculation left Riemann-
Liouville fractional derivative aD

α+1
x f(x) ≥ 0. □

Corollary 3.13. Let f ∈ C2[a, b] and α ∈ (1, 2) if left Riemann-Liouville
fractional derivative of α+ 1 order aD

α+1
x f(x) ≥ 0, f(a) ≤ 0, f ′(a) ≥ 0, f ′′(a) ≤ 0

then f ′ is monotonic increasing on [a, x].

Proof. The proof is similar to the above theorems, hence not explained in details.
□

All the above theorem deals with the monotonic character of a function to frac-
tional derivative, which one may understand clearly by the example below.

Example 3.14. Let f(x) = x3

6 , x ≥ 0. Clearly f
′
is monotonically increasing for

x ≥ 0 as f
′′
= x ≥ 0 for α ∈ (1, 2)and n = 2.

First, consider Caputo fractional derivative of f is,

c
0D

α
xf(x) =

1

Γ(2− α)

∫ x

0
(x− γ)1−α γ dγ,

=
1

Γ(3− α)
x2−α +

1

Γ(4− α)
x3−α ∀ x ≥ 0,

since Γ(3− α)and Γ(4− α) ≥ 0 for given α which clearly indicate
c
0D

α
xf(x) ≥ 0 , (see figure 1).
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If we consider the left Riemann-Liouville fractional derivative,

0D
α
xf(x) =

1

Γ(2− α)

( d

dx

)2 ∫ x

0
(x− γ)1−α τ

3

6
dγ

=
1

Γ(2− α)

[ d

dx

( ∫ x

0
(x− γ)1−α τ

3

6
dγ)

1
2
]2

=
1

Γ(2− α)

[ 1

2

( ∫ x

0
(x− γ)1−α γ3

6
dγ)−

1
2
)

×
∫ x

0

(x− γ)2−α

2− α

τ3

6
dτ

]
≥ 0.

4. Construction of relations between fractional derivatives,
integrals with monotonic nature of a function on a generalized

interval

Till now, all the above information has been calculated for a particular interval,
then new thoughts arise what about generalizing the interval for any non-negative
number? We get some new, interesting, and very different results by following the
new idea. The monotonicity character of functions deals in very different ways
of conditions to Caputo and Left Riemann-Liouville fractional derivative in this
generalized interval. These ideas bring an interesting concept in fractional calculus
to mathematics.

Theorem 4.1. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N then f (β) is
monotonic increasing on [a, x] if and only if Caputo fractional derivative that is
c
aD

α
xf(x) ≥ 0.

Proof. From the definition of Caputo fractional derivative,

c
aD

α
xf(x) =

1

Γ(β + 1− α)

∫ x

a
(x− γ)1+βf (β+1)(γ)dγ.

For any positive integer β, 1
Γ(β+1−α) > 0, (x− t)β−α > 0 and f (β+1)(t) > 0, for

any t > 0, therefore c
aD

α
xf(x) ≥ 0.

For the converse part, let h(x) = c
aD

α
xf

(β)(x) ≥ 0.
Then, aI

α
x h(x) = 1

Γ(α)

∫ x
a (x− t)α−1h(t)dt ≥ 0.

Therefore, for any x ≥ a,

0 ≤ aI
α
x

c
aD

α
xf(x)

= f(x)−
β∑

i=0

(x− a)i

Γ(i+ 1)
f (i)(a), (from (2.3))

= f(x)− f(a)− (x− a)

Γ(2)
f ′(a)− (x− a)2

Γ(3)
f

′′
(a)

− · · · − (x− a)β

Γ(β + 1)
f (β)(a).
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By differentiated β times, we get f (β) is monotonic increasing on [a, x]. □

Theorem 4.2. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N then f (β) is monotonic
decreasing on [a, x] if and only if Caputo fractional derivative that is c

aD
α
xf(x) ≤ 0.

Proof. The following result can be proved by replacing f by −f . □
The next example enables us to understand the criteria of α order fractional scene

monotonicity of a function in a generalized interval.

Example 4.3. Let f(x) = xβ+2

(β+2)! , x ≥ 0. Clearly f (β) is monotonically increasing

for x ≥ 0 as f (β+1)(x) = x ≥ 0. For α ∈ (β, β+1), β ∈ N, consider α order Caputo
fractional derivative of f is,

c
0D

α
xf(x) =

1

Γ(β + 1− α)(β + 2)!

∫ x

0
(x− γ)β−αγβ+2dγ,

since Γ(β + 1− α) ≥ 0 for given α it is clear c
0D

α
xf(x) ≥ 0.

Corollary 4.4. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, f (β−1) is monotonic
increasing on [a, x],

f (β)(x) =

{
≤ 0 if β > α

≥ 0 otherwise,

then α order left Riemann-Liouville aD
α
xf(x) ≥ 0.

Proof. From the previous description, the relationship properties of Left Riemann-
Liouville and Caputo fractional derivative is (from(2.1)),

aD
α
xf(x) = c

aD
α
xf(x) +

β∑
i=0

(x− a)i−α

Γ(i− α+ 1)
f (i)(a)

= c
aD

α
xf(x) +

(x− a)−α

Γ(1− α)
f(a) +

(x− a)1−α

Γ(2− α)
f ′(a)

+ · · ·+ (x− a)β−α

Γ(β − α+ 1)
f (β)(a)

Note that, for all x ≥ a, 1
Γ(β−α) > 0 , then f (β)(x) > 0, the result follows.

□
Corollary 4.5. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N,

f (β−1)(x) =

{
≥ 0 if β < α

≤ 0 if β + 1 ≥ α,

and α order left Riemann-Liouville aD
α
xf(x) ≥ 0 then f (β) is monotonic increasing

on [a, x].

Proof. One can observe from (2.1) that for all x ≥ a,

c
aD

α
xf(x) = aD

α
xf(x)−

β∑
i=0

(x− a)i−α

Γ(i− α+ 1)
f (i)(a)
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= aD
α
xf(x)−

(x− a)−α

Γ(1− α)
f(a)− (x− a)1−α

Γ(2− α)
f

′
(a)

− · · · − (x− a)β−α

Γ(β + 1− α)
f (β)(a).

Since Γ(1−α),Γ(2−α), . . .Γ(β−α) < 0 and Γ(β+1−α) > 0, therefore c
aD

α
xf(x) ≥ 0.

Thus f (β) is monotonic increasing on [a, x].
□

The statement and proof of the Corollaries (4.4) and (4.5) as stated above arrive
to the following theorems.

Theorem 4.6. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, f(a) = 0 then f (β) is
monotonic increasing on [a, x] if and only if Riemann-Liouville fractional derivative

aD
α
xf(x) ≥ 0.

Proof. From the given data f(a) = 0 which implies that the higher order of f is also
zero at point a ∈ [a, x] then Caputo fractional derivative c

aD
α
xf(x) ≥ 0 concluded

that aD
α
xf(x) ≥ 0. □

Theorem 4.7. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, if f (β) is monotonic
increasing on [a, x] then c

aD
α+1
x f(x) ≤ 0.

Proof. α order fractional derivative is

c
aD

α
xf(x) =

1

Γ(β + 1− α)

∫ x

a
(x− γ)β−αf (β)(γ)dγ

c
aD

α+1
x f(x) =

1

Γ(β − α)

∫ x

a
(x− γ)β−α−1f (β)(γ)dγ.

Here f (β+1)(x) ≥ 0 and 1
Γ(β−α) < 0 .

Thus c
aD

α+1
x f(x) ≤ 0.

□
Theorem 4.8. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, if c

aD
α+1
x f(x) ≤ 0 then

f (β) is monotonic decreasing on [x, a].

Proof. Let c
aD

α+1
x f(x) = c

aD
α
xh(x) ≤ 0 where h(x) = f ′(x).

Thus for given x ≥ a,

0 ≥ aI
α
x

c
aD

α
xh(x)

= g(x)−
β∑

i=0

(x− a)i

Γ(i+ 1)
gi(a), (from (2.3))

= g(x)− g(a)− (x− a)g′(a)− (x− a)2

Γ(2)
g
′′
(a)

− · · · − (x− a)(β)

Γ(β + 1)
g(β)(a)

= f (β)(x)− f (β)(a)
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Thus, f (β) is monotonic decreasing on [a, x]. □

Theorem 4.9. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, if Caputo fractional

derivative of α + 1 order, c
aD

α+1
x f(x) ≥ 0 then f (β) is monotonic increasing on

[a, x].

Proof. The proof similarly follows from theorem 4.8. □

Theorem 4.10. Let f ∈ Cβ [a, b] and α ∈ (β, β + 1), β ∈ N, Caputo fractional

derivative of α + 1 order c
aD

α+1
x f(x) ≥ 0 if f (β)(x) is monotonic decreasing on

[x, a].

Proof. The proof similarly follows from theorem 4.7. □

5. Conclusion

In this article, we have discussed the monotonous results using the concept of
Reimann-Liouville and Caputo fraction derivatives. Monotonicity results are estab-
lished for any generalised interval (β, β+1), where β ∈ N. However many important
topics like convexity and optimality in generalized interval calculus remain unfolded.
In addition to this, the extension of these results in the function of several variables
is not studied here. These are left as the scope of future research.
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