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Interval-valued multiobjective semi-infinite programming (IVMOSIP) extends
interval-valued programming to handle multiple objectives and semi-infinite con-
straints. It provides a framework for finding Pareto optimal solutions in the pres-
ence of uncertainty and infinite sets of constraints, allowing decision-makers to make
robust and balanced decisions. Gadhi and El Idrissi [10] analysed interval-valued
MOSIP (IVMOSIP) using limiting subdifferentials. Huy Hung et al. [14] derived
optimality conditions and duality results for approximate quasi Pareto solutions in
MOSIP involving interval-valued functions. Jennane et al. [17] dveloped the KKT
type optimality conditions by using Abadie’s constraint qualification and convexifi-
cators for semi-infinite programs, where the multiobjective function and constraints
both are interval-valued but need not be locally Lipschitz. Tung [39] established
the KKT optimality conditions and investigated the duality problems for the semi-
infinite programming with multiple interval-valued objective functions. Antczak et
al. [7] studied the class of nondifferentiable semi-infinite vector optimization prob-
lems with both objective and constraints are interval-valued functions under appro-
priate invexity hypothesis.

IVMOSIP is a promising area of research that deals with optimization prob-
lems involving multiple objectives and semi-infinite constraints. While there have
been some notable contributions in IVMOSIP in previous works [7, 10, 14, 17, 39],
analogous results to those achieved in [18, 20] have not yet been obtained, particu-
larly regarding approximate solutions as presented in [14]. Therefore, our research
aims to fill this gap by exploring MOSIP with locally Lipschitz interval-valued ap-
proximately convex functions. Our objective is to derive necessary and sufficient
optimality conditions and duality results, employing suitable constraint qualifica-
tions, in order to identify approximate solutions. By addressing these aspects, we
seek to advance the understanding and practical applicability of IVMOSIP.

The structure of the paper is as follows: in Section 2 some preliminary results re-
garding MOSIP are given. In Section 3, we introduce approximate variants of some
constraint qualifications given in [18, 20] for IVMOSIP to derive the approximate
KKT type necessary optimality condition and strong approximate KKT optimality
condition for IVMOSIP to identify approximate quasi weakly efficient solution of
the MOSIP. Under the generalized approximate convexity assumptions, the suffi-
cient optimality condition is derived in Section 4. In Section 5, approximate duality
results in terms of Clarke subdifferentials are developed. The conclusions and future
research possibilities are matter of the last Section 6.

2. Preliminaries

Consider a nonempty subset A of n-dimensional Euclidean space, denoted as Rn.
We represent the closure of A, convex hull of A, and convex cone (which contains the
origin) generated by A as cl(A), conv(A), and cone(A), respectively. Additionally,
we define the polar cone and the strict polar cone of A as follows:

A− := {d ∈ Rn | ⟨x, d⟩ ≤ 0, ∀x ∈ A}
and

As := {d ∈ Rn | ⟨x, d⟩ < 0, ∀x ∈ A},
respectively, where ⟨., .⟩ indicates the standard inner product in Rn.
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The contingent cone and the Clarke tangent cone to A at x̄ ∈ cl(A) are defined
by

Γ(A, x̄) := {d ∈ Rn | ∃{(tk, dk)} → (0+, d) : x̄+ tkdk ∈ A, ∀k ∈ N},
and

T (A, x̄) := {d ∈ Rn | ∀{(tk, xk)} → (0+, x̄) ∃ dk → d : x̄k + tkdk ∈ A, ∀k ∈ N},
respectively. Notice that Γ(A, x̄) is generally a nonconvex closed cone in Rn.

Let x̄ be an element of Rn, and consider a function h : Rn → R, which is locally
Lipschitz at x̄. This means that there exists a number l > 0 such that for all x and
y in a neighborhood of x̄, we have the inequality ∥h(x) − h(y)∥ ≤ l∥x − y∥. If a
function h satisfies this property for every point in a subset A ⊂ Rn, we say that
h is locally Lipschitz on A. We refer to [34] for more details of locally Lipschitz
functions and their application in optimization. The Clarke directional derivative
of h at x̄ in the direction v ∈ Rn is defined by

ho(x̄; v) := lim sup
y→x̄,t↓0

h(y + tv)− h(y)

t

and the Clarke subdifferential of h at x̄ is defined by

∂0h(x̄) := {x̄∗ ∈ Rn|⟨x̄∗, v⟩ ≤ ho(x̄; v), ∀v ∈ Rn},
If the function h is continuously differentiable at x̄, then ∂0h(x̄) = {∇h(x̄)}. More-
over, if the function h is convex, then the Clarke subdifferential ∂0h(x̄) coincides
with the subdifferential ∂h(x̄) in the sense of convex analysis given by

∂h(x̄) := {x̄∗ ∈ Rn | h(x) ≥ h(x̄) + ⟨x̄∗, x− x̄⟩ ∀x ∈ Rn}.

Proposition 2.1 ([9]). Let both ξ and η be locally Lipschitz functions defined from
Rn to R and let x̄ ∈ dom(ξ) ∩ dom(η). Then

∂0(ξ + η)(x̄) ⊆ ∂0ξ(x̄) + ∂0η(x̄).

Consider a multiobjective semi-infinite programming problem as follows:

(MOSIP)
min f(x) := (f1(x), . . . , fm(x))

s.t. x ∈ F := {x ∈ Rn : gj(x) ≤ 0, ∀j ∈ J},
where fi, i ∈ I := {1, 2, ...,m}, and gj , j ∈ J are locally Lipschitz real-valued func-
tions from Rn to R with an index set J which is arbitrary nonempty not necessarily
finite.

A point x̄ ∈ F is said to be an efficient (or a weak efficient) solution of the
MOSIP, iff for any x ∈ F , one has

f(x)− f(x̄) /∈ −Rm
+ \ {0}(orf(x)− f(x̄) /∈ −intRm

+ ).

The set of all efficient (or weakly efficient) solutions of the MOSIP is denoted by
FE (or FWE). The index set of all active constraints at x̄ ∈ F is given by

J(x̄) := {j ∈ J : gj(x̄) = 0}.
For each x̄ ∈ F and k ∈ I, define

A(x̄) :=
∪
i∈I

∂0fi(x̄)
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B(x̄) :=
∪

j∈J(x̄)

∂0gj(x̄)

Ak(x̄) :=
∪

i∈I,i ̸=k

∂0fi(x̄).

Definition 2.2. The MOSIP satisfies

(a) [20, Definition 3.2 (c)] the regular constraint qualification (RCQ) at x̄ ∈ F ,
iff

(A(x̄))s ∩ (B(x̄))− ⊆ Γ(F , x̄).

(b) [18] the constraint qualification (CQ) at x̄ ∈ F , iff

(Ak(x̄))
s ∩ (B(x̄))s ̸= ∅, ∀k ∈ I.

Let R|J |
+ denotes the set of all functions β : J → R+ taking values βj := β(j) = 0

for all j ∈ J except for finitely many points.

Theorem 2.3 ([20, Theorem 3.4](KKT necessary optimality conditions)). Let x̄ ∈
FWE . If RCQ holds at x̄ and the cone (B(x̄)) is a closed cone, then there exist

αi ≥ 0 (i ∈ I), and β ∈ R|J |
+ such that

0 ∈
∑
i∈I

αi∂
0fi(x̄) +

∑
j∈J(x̄)

βj∂
0gj(x̄),

∑
i∈I

αi = 1.

Assumption 2.4 (A). The index set J is a nonempty compact subset of Rl, the
function (x, j) → gj(x) is upper semicontinuous on Rn × J and for each x, ∂0gj(x)
is an upper semi-continuous mapping in j.

Theorem 2.5 ([18, Theorem 5](Strong KKT necessary condition)). If CQ is sat-
isfied at x̄ ∈ FWE and the Assumption 2.4(A) holds, then there exist αi > 0(i ∈ I),

and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αi∂
0fi(x̄) +

∑
j∈J(x̄)

βj∂
0gj(x̄).

Let Kc := {[pL, pU ] : pL, pU ∈ R, pL ≤ pU} be the class of all closed and bounded
intervals in R. Let P := [pL, pU ] and Q := [qL, qU ] be two intervals in Kc. Then

(a) P +Q := {p+ q : p ∈ P , q ∈ Q} = [pL + qL, pU + qU ];
(b) P −Q := {p− q : p ∈ P , q ∈ Q} = [pL − qU , pU − qL];
(c) For each k ∈ R,

kP := {kp : p ∈ P} =

{
[kpL, kpU ], if k ≥ 0

[kpU , kpL], if k < 0.

If pL = pU , then P = [p, p] = p which is a real number.

Definition 2.6 ( [40, Definition 3]). Let P = [pL, pU ] and Q = [qL, qU ] be two
intervals in Kc. we say that:

(i) P ≤LU Q iff pL ≤ qL and pU ≤ qU .
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(ii) P <LU Q iff P ≤LU Q and P ̸= Q, or, equivalently, P <LU Q iff{
pL < qL

pU ≤ qU
or

{
pL ≤ qL

pU < qU
or

{
pL < qL

pU < qU .

(iii) P <s
LU Q iff pL < qL and pU < qU .

Consider an interval-valued multiobjective semi-infinite programming problem as
follows:

(IVMOSIP)
LU−minF (x) := (F1(x), ..., Fm(x))

s.t. x ∈ F := {x ∈ Rn : gj(x) ≤ 0, j ∈ J},
where Fi : Rn → Kc, i ∈ I := {1, . . . ,m} are interval-valued functions defined by
Fi(x) = [fL

i (x), f
U
i (x)], fL

i , f
U
i : Rn → R are locally Lipschitz functions satisfying

fL
i (x) ≤ fU

i (x) for all x ∈ Rn, and gj(x) : Rn → R, j ∈ J are locally Lipschitz
functions. This problem has been studied by Gadhi et al. [10], Tung [40], Hung et
al. [14], Jennane et al. [17], Antczak et al. [7] etc.

Hung et al. [14] introduced approximate solutions of (IVMOSIP) with respect to
LU interval order relation.

Definition 2.7 ([14, Definition 3.1]). Let EL
i , EU

i , i ∈ I be real-numbers satisfying
0 ≤ EL

i ≤ EU
i with Ei := [EL

i , EU
i ] for all i ∈ I and let E := (E1, . . . , Em). Then, x̄ ∈ F

is a

(a) type-1 E-quasi Pareto solution of (IVMOSIP), denoted by x̄ ∈ E − Fq
1

(IVMOSIP ), iff there is no x ∈ F such that

Fi(x) + Ei∥x− x̄∥ ≤LU Fi(x̄), ∀i ∈ I,

and

Fk(x) + Ek∥x− x̄∥ <LU Fk(x̄), for at least one k ∈ I;

(b) type-2 E-quasi Pareto solution of (IVMOSIP), denoted by x̄ ∈ E − Fq
2

(IVMOSIP ), iff there is no x ∈ F such that

Fi(x) + Ei∥x− x̄∥ ≤LU Fi(x̄), ∀i ∈ I,

and

Fk(x) + Ek∥x− x̄∥ <s
LU Fk(x̄), for at least one k ∈ I;

(c) type-1 E-quasi-weakly Pareto solution of (IVMOSIP), denoted by x̄ ∈ E −
Fqw
1 (IVMOSIP ), iff there is no x ∈ F such that

Fi(x) + Ei∥x− x̄∥ <LU Fi(x̄), ∀i ∈ I;

(d) type-2 E-quasi-weakly Pareto solution of (IVMOSIP), denoted by x̄ ∈ E −
Fqw
2 (IVMOSIP ), iff there is no x ∈ F such that

Fi(x) + Ei∥x− x̄∥ <s
LU Fi(x̄), ∀i ∈ I.

Remark 2.8. If Ei = 0, i.e. for any i ∈ I, EL
i = EU

i = 0, then the concepts of a
type-1 E-quasi Pareto solution, a type-2 E-quasi Pareto solution coincides with a
type-1 Pareto solution, a type-2 Pareto solution, respectively, and a type-1 E-quasi-
weakly Pareto solution and a type-2 E-quasi-weakly Pareto solution coincides with
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a type-1 weakly Pareto solution and a type-2 weakly Pareto solution, respectively
(see, e.g. [40]). The following inclusion relationships exist:

(a) E − Fq
1 (IVMOSIP ) ⊂ E − Fq

2 (IVMOSIP ) ⊂ E − Fqw
2 (IVMOSIP ).

(b) E − Fq
1 (IVMOSIP ) ⊂ E − Fqw

1 (IVMOSIP ) ⊂ E − Fqw
2 (IVMOSIP ).

Tung [40] proved a relationship between the IVMOSIP and the following MOSIP:

(MOSIP)
R2m
+ −min(fL

1 (x), . . . , f
L
m(x), fU

1 (x), . . . , fU
m(x))

subject to x ∈ F .

Lemma 2.9 ([40, Lemma 4]). A feasible point x̄ ∈ F is a type−2 weakly Pareto
solution of the IVMOSIP if and only if x̄ is a weakly efficient solution of the MOSIP.

3. KKT optimality condition

Kanzi and Nobakhtian [20, Theorem 3.4] provided the KKT necessary condi-
tion for a point to be a weakly efficient solution of MOSIP under some constraint
qualification and Kanzi [18, Theorem 5] extended this result for strong case. Now
we extend these results for MOSIP when objective function is interval-valued and
solution is aprroximate weakly pareto optimal rather than weakly pareto optimal.
For this we introduce approximate variants of some constraint qualifications for IV-
MOSIP which will be useful to derive KKT optimality conditions. Let EL

i , EU
i , i ∈ I

be real-numbers satisfying 0 ≤ EL
i ≤ EU

i with Ei := [EL
i , EU

i ] for all i ∈ I and let
E := (E1, . . . , Em). For each x ∈ F , define

AL
E (x) :=

∪
i∈I

∂0(fL
i + EL

i ||.− x̄||)(x);

AU
E (x) :=

∪
i∈I

∂0(fU
i + EU

i ||.− x̄||)(x);

AL
k,E(x) :=

∪
i∈I,i ̸=k

∂0(fL
i + EL

i ||.− x̄||)(x);

AU
k,E(x) :=

∪
i∈I,i ̸=k

∂0(fU
i + EU

i ||.− x̄||)(x);

AE(x) := AL
E (x) ∪ AU

E (x).

Definition 3.1. The IVMOSIP satisfies

(a) the E-regular constraint qualification, denoted by E-IV-RCQ, at x̄ ∈ F , iff

(AE(x̄))
s ∩ (B(x̄))− ⊆ Γ(F , x̄);

(b) the E-constraint qualification, denoted by E-IV-CQ at x̄ ∈ F , iff

(AL
k,E(x̄) ∪ AU

E (x̄))
s ∩ (B(x̄))s ̸= ∅, ∀k ∈ I,

and

(AL
E (x̄) ∪ AU

k,E(x̄))
s ∩ (B(x̄))s ̸= ∅, ∀k ∈ I.

Remark 3.2. For EL
i = EU

i = 0 for all i ∈ I, we say that the IVMOSIP satisfies
IV-RCQ and IV-CQ at x̄ ∈ F , respectively.
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Theorem 3.3 (Approximate KKT necessary optimality condition for IVMOSIP).
Let x̄ ∈ E − Fqw

2 (IVMOSIP ). If E-IV-RCQ holds at x̄ and the cone (B(x̄)) is a

closed cone, then there exist αL
i ≥ 0(i ∈ I), αU

i ≥ 0(i ∈ I), and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄)

+
∑

j∈J(x̄)

βj∂
0gj(x̄) +

m∑
i=1

(αL
i EL

i + αU
i EU

i )BRn ,(3.1)

m∑
i=1

(αL
i + αU

i ) = 1.(3.2)

Proof. Since x̄ ∈ E −Fqw
2 (IVMOSIP ), therefore x̄ ∈ Fqw

2 (E − IVMOSIP ), where
E − IVMOSIP is given by

(E-IVMOSIP)

LU −minF (x) + E∥x− x̄∥
:= (F1(x) + E1∥x− x̄∥, ..., Fm(x) + Em∥x− x̄∥)

subject to x ∈ F .

According to Lemma 2.9, we can conclude that the solution x̄ ∈ F is a weakly
efficient solution of the E−MOSIP given by

(E-MOSIP)

R2m
+ −min(fL

1 (x) + EL
1 ∥x− x̄∥, ..., fL

m(x) + EL
m∥x− x̄∥,

fU
1 (x) + EU

1 ∥x− x̄∥, ..., fU
m(x) + EU

m∥x− x̄∥)
subject to x ∈ F .

Since E-IV-RCQ holds at x̄ and the cone (B(x̄)) is a closed cone, therefore by

Theorem 2.3, there exist αL
i ≥ 0(i ∈ I), αU

i ≥ 0(i ∈ I), and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αL
i ∂

0(fL
i + EL

i ||.− x̄||)(x̄)

+
m∑
i=1

αU
i ∂

0(fU
i + EU

i ||.− x̄||)(x̄)

+
∑

j∈J(x̄)

βj∂
0gj(x̄),

m∑
i=1

(αL
i + αU

i ) = 1.

By the property of the Clarke subdifferentials in Proposition 2.1, one has ∂0(fL
i +

EL
i ||.− x̄||)(x̄) ⊆ ∂0fL

i (x̄)+EL
i ∂

0||.− x̄||(x̄) and ∂0(fU
i +EU

i ||.− x̄||)(x̄) ⊆ ∂0fU
i (x̄)+

EU
i ∂0||.− x̄||(x̄).
Since the Clarke subdifferential of the norm function ∂0||.− x̄||(x̄) = BRn (see [15,

Example 4, p. 198]), we have the required result. □
We have the following corollary based on the above result for EL

i = EU
i = 0 for

all i ∈ I.
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Corollary 3.4. (KKT necessary optimality condition for IVMOSIP) Let x̄ ∈ Fqw
2

(IVMOSIP). If IV-RCQ holds at x̄ and the cone (B(x̄)) is a closed cone, then there

exist αL
i ≥ 0(i ∈ I), αU

i ≥ 0(i ∈ I), and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄) +

∑
j∈J(x̄)

βj∂
0gj(x̄),

m∑
i=1

(αL
i + αU

i ) = 1.

Similarly, by using Theorem 2.5 and Proposition 2.1, we can derive strong KKT
necessary optimality conditions to identify approximate efficient solutions of the
IVMOSIP.

Theorem 3.5 (Strong approximate KKT necessary optimality conditions for IV-
MOSIP). Let x̄ ∈ E − Fqw

2 (IVMOSIP ). If E-IV-CQ holds at x̄ and Assumption

2.4(A) is satisfied, then there exist αL
i > 0(i ∈ I), αU

i > 0(i ∈ I), and β ∈ R|J |
+ such

that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄)

+
∑

j∈J(x̄)

βj∂
0gj(x̄) +

m∑
i=1

(αL
i EL

i + αU
i EU

i )BRn .(3.3)

Proof. Since x̄ ∈ E −Fqw
2 (IVMOSIP ), therefore x̄ ∈ Fqw

2 (E − IVMOSIP ), where
E − IVMOSIP is given by

(E-IVMOSIP)

LU −minF (x) + E∥x− x̄∥
:= (F1(x) + E1∥x− x̄∥, ..., Fm(x) + Em∥x− x̄∥)

subject to x ∈ F .

According to Lemma 2.9, we can conclude that the solution x̄ ∈ F is a weakly
efficient solution of the E−MOSIP given by

(E-MOSIP)

R2m
+ −min(fL

1 (x) + EL
1 ∥x− x̄∥, ..., fL

m(x) + EL
m∥x− x̄∥,

fU
1 (x) + EU

1 ∥x− x̄∥, ..., fU
m(x) + EU

m∥x− x̄∥)
subject to x ∈ F .

Since E-IV-CQ holds at x̄ and Assumption 2.4(A) is satisfied, therefore by Theorem

2.5, there exist αL
i > 0(i ∈ I), αU

i > 0(i ∈ I), and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αL
i ∂

0(fL
i + EL

i ||.− x̄||)(x̄)

+

m∑
i=1

αU
i ∂

0(fU
i + EU

i ||.− x̄||)(x̄) +
∑

j∈J(x̄)

βj∂
0gj(x̄),

By the property of the Clarke subdifferentials in Proposition 2.1, one has ∂0(fL
i +

EL
i ||.− x̄||)(x̄) ⊆ ∂0fL

i (x̄)+EL
i ∂

0||.− x̄||(x̄) and ∂0(fU
i +EU

i ||.− x̄||)(x̄) ⊆ ∂0fU
i (x̄)+
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Figure 1. Plot of F1(x) := [fL
1 (x), f

U
1 (x)].

EU
i ∂0||.− x̄||(x̄).

Since the Clarke subdifferential of the norm function ∂0||. − x̄||(x̄) = BRn (see [15,
Example 4, p. 198]), we have the required result. □

A corollary of the above result for EL
i = EU

i = 0 for every i ∈ I is given as follows:

Corollary 3.6. (Strong KKT necessary optimality conditions for IVMOSIP) Let
x̄ ∈ Fqw

2 (IVMOSIP ). If IV-CQ holds at x̄ and Assumption 2.4(A) is satisfied,

then there exist αL
i > 0(i ∈ I), αU

i > 0(i ∈ I), and β ∈ R|J |
+ such that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄) +

∑
j∈J(x̄)

βj∂
0gj(x̄).

The following example illustrates the above results.

Example 3.7. Consider an IVMOSIP as follows:

(P)
LU−minF (x) := (F1(x), F2(x))

s.t. x ∈ F = {x ∈ R : gj(x) ≤ 0, j ∈ J},

where the index set J = [5, 10], F1(x) := [fL
1 (x), f

U
1 (x)], F2(x) := [fL

2 (x), f
U
2 (x)] and

gj(x) are given by

fL
1 (x) =

{
x3 − 4x2 + 2x if x ≥ 0

x if x < 0
, fU

1 (x) =

x3 − 3x2 + 2x if x ≥ 0
x

2
if x < 0

fL
2 (x) =

{
2x3 − 5x2 + x if x ≥ 0

3x if x < 0
, fU

2 (x) =

{
2x3 − 4x2 + x if x ≥ 0

2x if x < 0

and

gj(x) =

{
x2(x− j) if x ≥ 0

jx2 if x < 0
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Figure 2. Plot of F2(x) := [fL
2 (x), f

U
2 (x)].

Figure 3. Plot of gj(x) for some values of j ∈ [5, 10].

as shown in Figures 1, 2 and 3, respectively. Observe that fL
1 , f

U
1 , fL

2 and fU
2

are locally Lipschitz at x̄ = 0 with Lipschitz constants 3, 2, 3.2 and 2, respectively.
It is easy to see that fL

1 (x) ≤ fU
1 (x) and fL

2 (x) ≤ fU
2 (x) for every x ∈ F = [0, 5].

Moreover, for x̄ = 0, one has

fL
1 (x)− fL

1 (0) < 0, ∀x ∈]2−
√
2, 2 +

√
2[,

fU
1 (x)− fU

1 (0) < 0, ∀x ∈]1, 2[,

fL
2 (x)− fL

2 (0) < 0, ∀x ∈

]
5−

√
17

4
,
5 +

√
17

4

[
,

fU
2 (x)− fU

2 (0) < 0, ∀x ∈

]
1−

√
1

2
, 1 +

√
1

2

[
,
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Figure 4. Plot of F1(x) + E1|x|.

Figure 5. Plot of F2(x) + E2|x|.

which gives F1(x) <s
LU F1(x̄) and F2(x) <s

LU F2(x̄) for every x ∈
]
1, 1 +

√
1
2

[
.

Thus, x̄ = 0 ∈ F is not a type-2 weakly Pareto solution of (P).
Now, for EL

1 = 2, EU
1 = 3, EL

2 = 17
8 , E

U
2 = 3 and for any x ∈ F , one has

fL
1 (x)− fL

1 (0) + EL
1 |x− 0| ≥ 0, fU

1 (x)− fU
1 (0) + EU

1 |x− 0| ≥ 0,

fL
2 (x)− fL

2 (0) + EL
2 |x− 0| ≥ 0, fU

2 (x)− fU
2 (0) + EU

2 |x− 0| ≥ 0,

as shown in the Figures 4 and 5, which implies that x̄ = 0 ∈ F is a type-2 E-quasi
weakly Pareto solution of (P).

The Clarke subdifferentials of fL
1 , f

U
1 , fL

2 , f
U
2 and gj , j ∈ J at x̄ = 0 are given

by ∂0fL
1 (x̄) = [1, 2], ∂0fU

1 (x̄) =
[
1
2 , 2

]
, ∂0fL

2 (x̄) = [1, 3], ∂0fU
2 (x̄) = [1, 2], and
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∂0gj(x̄) = {0}, j ∈ J, respectively, which gives

A(x̄) =

[
1

2
, 3

]
,B(x̄) = {0},

AL
1 (x̄) = [1, 3] ,AL

2 (x̄) = [1, 2] ,AL(x̄) = AL
1 (x̄) ∪ AL

2 (x̄) = [1, 3] ,

AU
1 (x̄) = [1, 2] ,AU

2 (x̄) =

[
1

2
, 2

]
,AU (x̄) = AU

1 (x̄) ∪ AU
2 (x̄) =

[
1

2
, 2

]
,

(A(x̄))s = −R+ \ {0}, (B(x̄))− = R, (B(x̄))s = ∅,
(A(x̄))s ∩ (B(x̄))− = −R+ \ {0},
Γ(F , x̄) = R+.

Since (A(x̄))s ∩ (B(x̄))− ⊈ Γ(F , x̄), therefore (P) doesn’t satisfy the IV-RCQ at
x̄ = 0. Moreover, since

(AL
i (x̄) ∪AU (x̄))s ∩ (B(x̄))s = ∅, i = 1, 2,

(AL(x̄) ∪AU
i (x̄))

s ∩ (B(x̄))s = ∅, i = 1, 2,

therefore (P) doesn’t satisfy the IV-CQ at x̄ = 0.
Now, for x̄ = 0, one has

∂0(fL
1 + EL

1 ||.− 0||)(x̄) = [−1, 4],

∂0(fL
2 + EL

2 ||.− 0||)(x̄) =
[
7

8
,
25

8

]
,

∂0(fU
1 + EU

1 ||.− 0||)(x̄) =
[
−5

2
, 5

]
,

∂0(fU
2 + EU

2 ||.− 0||)(x̄) = [−1, 4],

which gives

AE(x̄) =

[
−5

2
, 5

]
,

(AE(x̄))
s = ∅,

(AE(x̄))
s ∩ (B(x̄))− = ∅.

Since (AE(x̄))
s ∩ (B(x̄))− ⊆ Γ(F , x̄), therefore (P) satisfies the E-IV-RCQ at x̄ = 0.

Moreover, it is easy to observe that (P) does not satisfy E-IV-CQ at x̄ = 0 as
(B(x̄))s = ∅.
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Since all the conditions of Theorem 3.3 are satisfied, therefore there exist αL
i ≥

0(i ∈ I), αU
i ≥ 0(i ∈ I) with

∑2
i=1(α

L
i + αU

i ) = 1 and β ∈ R|J |
+ such that

0 ∈
2∑

i=1

αL
i ∂

0fL
i (0) +

2∑
i=1

αU
i ∂

0fU
i (0) +

∑
j∈J

βj∂
0gj(0) +

2∑
i=1

(αL
i EL

i + αU
i EU

i )[−1, 1]

=

[
αL
1 + αL

2 , 2α
L
1 + 3αL

2

]
+

[
1

2
αU
1 + αU

2 , 2α
U
1 + 2αU

2

]
+ {0}

+ (2αL
1 + 3αU

1 +
17

8
αL
2 + 3αU

2 )[−1, 1]

=

[
−αL

1 − 9

8
αL
2 − 5

2
αU
1 − 2αU

2 , 4α
L
1 + 5αU

1 +
41

8
αL
2 + 5αU

2

]
which is true for any αL

i ≥ 0(i ∈ I), αU
i ≥ 0(i ∈ I) with

∑2
i=1(α

L
i + αU

i ) = 1

and for any β ∈ R|J |
+ . Since, for x̄ ∈ E − Fqw

2 (IVMOSIP), E-RCQ holds at x̄ and

the cone (B(x̄)) is a closed cone then for any αL
i ≥ 0 and αU

i ≥ 0 the equation(1)
and equation(2) given in Theorem 3.3 are satisfied for Problem(P) i.e. approximate
KKT necessary optimality condition for Problem(P) is satisfied. Hence, Theorem
3.3 is verified .

4. Sufficient optimality conditions

The following weaker versions of generalized approximate convexity on the lines
of Gupta et al. [12] and Bhatia et al. [8] will be used to derive sufficient optimality
conditions.

Definition 4.1. Let ϵ ≥ 0. A locally Lipschitz function h : Rn → R is said to be

(a) ϵ− ∂0−convex at x̄ ∈ K ⊂ Rn over K, iff

h(x)− h(x̄) ≥< x̄∗, x− x̄ > −ϵ||x− x̄||, ∀x̄∗ ∈ ∂0h(x̄);

(b) ϵ− ∂0−quasiconvex at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)− h(x̄) ≤ 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x− x̄ > −ϵ||x− x̄|| ≤ 0;

(c) ϵ− ∂0−pseudoconvex at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)−h(x̄)+ϵ||x−x̄|| < 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x−x̄ > +
ϵ

2
||x−x̄|| < 0;

(d) ϵ− ∂0−pseudoconvex of type I at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)− h(x̄) + ϵ||x− x̄|| < 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x− x̄ >< 0;

(e) ϵ− ∂0−pseudoconvex of type II at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)− h(x̄) < 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x− x̄ > +ϵ||x− x̄|| < 0;

(f) ϵ− ∂0−quasiconvex of type I at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)− h(x̄) ≤ 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x− x̄ > −ϵ||x− x̄|| ≤ 0;

(g) ϵ− ∂0−quasiconvex of type II at x̄ ∈ K ⊂ Rn over K, iff

∀x ∈ K : h(x)− h(x̄)− ϵ||x− x̄|| ≤ 0 =⇒ ∀x̄∗ ∈ ∂0h(x̄) :< x̄∗, x− x̄ >≤ 0.
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Remark 4.2. For ϵ = 0, the above concepts reduce to ∂0−convexity, ∂0−
pseudoconvexity and ∂0−quasiconvexity, respectively (see, e.g. [20, Definition 4.1]).

Define the following index sets I+ := {i ∈ I : αL
i > 0 or αU

i > 0} and J+(x̄) :=
{j ∈ J(x̄) : βj > 0}.

Now, we are going to derive the sufficient optimality condition for a feasible
solution to be an approximate weakly pareto optimal solution of the IVMOSIP
under suitable generalised convexity assumptions.

Theorem 4.3 (Approximate sufficient optimality condition for IVMOSIP). Let EL
i ,

EU
i , i ∈ I be real-numbers satisfying 0 ≤ EL

i ≤ EU
i for all i ∈ I, let E := (E1, . . . , Em)

with Ei := [EL
i , EU

i ], and let x̄ ∈ F . Assume that there exist αL
i ≥ 0(i ∈ I), αU

i ≥
0(i ∈ I), and β ∈ R|J |

+ such that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄)

+
∑

j∈J(x̄)

βj∂
0gj(x̄) +

m∑
i=1

(αL
i EL

i + αU
i EU

i )BRn ,(4.1)

m∑
i=1

(αL
i + αU

i ) = 1.(4.2)

(a) If fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i −pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at x̄ over F , then x̄ ∈ 2E −
Fqw
2 (IVMOSIP ).

(b) If fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i −pseudoconvex of type I,

EU
i −pseudoconvex of type I, and (αL

i EL
i + αU

i EU
i )−pseudoconvex of type II,

respectively, at x̄ over F , then x̄ ∈ E − Fqw
2 (IVMOSIP ).

Proof. (a) Suppose to the contrary that x̄ /∈ 2E−Fqw
2 (IVMOSIP ). Then, there

exists x̃ ∈ F such that

fL
i (x̃)− fL

i (x̄) + 2EL
i ||x̃− x̄|| < 0, ∀i ∈ I,

and

fU
i (x̃)− fU

i (x̄) + 2EU
i ||x̃− x̄|| < 0, ∀i ∈ I.

Also, gj(x̃) ≤ 0 = gj(x̄) for every j ∈ J(x̄). Since fL
i (i ∈ I+), fU

i (i ∈ I+),
and gj(j ∈ J+) are EL

i −pseudoconvex, EU
i -pseudoconvex, and quasiconvex,

respectively, at x̄ over F , therefore

⟨x̄∗
fL
i
, x̃− x̄⟩+ EL

i ∥x̃− x̄∥ < 0, ∀x̄∗
fL
i
∈ ∂0fL

i (x̄), ∀i ∈ I+,(4.3)

⟨x̄∗
fU
i
, x̃− x̄⟩+ EU

i ∥x̃− x̄∥ < 0, ∀x̄∗
fU
i
∈ ∂0fU

i (x̄), i ∈ I+,(4.4)

⟨x̄∗gj , x̃− x̄⟩ ≤ 0, ∀x̄∗gj ∈ ∂0gj(x̄), j ∈ J+(x̄).(4.5)



ON OPTIMALITY AND DUALITY FOR APPROXIMATE SOLUTIONS IN NIVMOSIP 159

Multiplying (4.3), (4.4) and (4.5) by αL
i (i ∈ I+), αU

i (i ∈ I+), and βj(j ∈
J+(x̄)), respectively, and adding, one has⟨∑

i∈I+
αL
i x̄

∗
fL
i
+

∑
i∈I+

αU
i x̄

∗
fU
i
+

∑
j∈J+(x̄)

βj x̄
∗
gj , x̃− x̄

⟩

+
∑
i∈I+

(αL
i EL

i + αU
i EU

i )∥x̃− x̄∥ < 0,(4.6)

∀x̄∗
fL
i
∈ ∂0fL

i (x̄)(I
+), ∀x̄∗

fU
i
∈ ∂0fU

i (x̄)(I+), ∀x̄∗gj ∈ ∂0gj(x̄)(j ∈ J+(x̄)).

By Cauchy-Schwartz inequality, for any b ∈ BRn , one has

⟨b, x̃− x̄⟩ ≤ ∥b∥∥x̃− x̄∥ ≤ ∥x̃− x̄∥,

which implies that

(4.7)

⟨
m∑
i=1

(αL
i EL

i + αU
i EU

i )b, x̃− x̄

⟩
≤

m∑
i=1

(αL
i EL

i + αU
i EU

i )∥x̃− x̄∥.

Adding (4.6) with (4.7) and using (4.1), we arrive at a contradiction and
hence the result.

(b) The proof is similar to the part (a) above.
□

Example 4.4. Let us consider the problem (P) from Example 3.7. Now, if we take
EL
1 = 1, EU

1 = 3
2 , E

L
2 = 17

16 , E
U
2 = 3

2 , then it is easy to see that fL
i , f

U
i and gj are EL

i −
pseudoconvex, EU

i − pseudoconvex and quasiconvex, respectively, at x̄ = 0 over F
for i = 1, 2 and j ∈ J .

Moreover, one has

2∑
i=1

αL
i ∂

0fL
i (0) +

2∑
i=1

αU
i ∂

0fU
i (0) +

∑
j∈J

βj∂
0gj(0) +

2∑
i=1

(αL
i EL

i + αU
i EU

i )[−1, 1]

=

[
αL
1 + αL

2 , 2α
L
1 + 3αL

2

]
+

[
1

2
αU
1 + αU

2 , 2α
U
1 + 2αU

2

]
+ {0}

+

(
1αL

1 +
3

2
αU
1 +

17

16
αL
2 +

3

2
αU
2

)
[−1, 1].

=

[
− 1

16
αL
2 − αU

1 − 1

2
αU
2 , 3α

L
1 +

7

2
αU
1 +

65

16
αL
2 +

7

2
αU
2

]
which contains the origin in particular for αL

1 = 0, αL
2 = 0, αU

1 = 1
2 , α

U
2 = 1

2 and

for any β ∈ R|J |
+ . Since, all the conditions of Theorem 4.3 are satisfied, therefore

x̄ = 0 ∈ F is 2E− quasi weakly type-2 Pareto solution of (P) as already verified in
Example 3.7.

Similarly, we can derive sufficient optimality conditions for an approximate strong
KKT point to be an quasi efficient solution of the IVMOSIP.
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Theorem 4.5. Let EL
i , EU

i , i ∈ I be real-numbers satisfying 0 ≤ EL
i ≤ EU

i for all
i ∈ I, let E := (E1, . . . , Em) with Ei := [EL

i , EU
i ], and let x̄ ∈ F . Assume that there

exist αL
i > 0(i ∈ I), αU

i > 0(i ∈ I), and β ∈ R|J |
+ , such that

0 ∈
m∑
i=1

αL
i ∂

0fL
i (x̄) +

m∑
i=1

αU
i ∂

0fU
i (x̄)

+
∑

j∈J(x̄)

βj∂
0gj(x̄) +

m∑
i=1

(αL
i EL

i + αU
i EU

i )BRn ,(4.8)

m∑
i=1

(αL
i + αU

i ) = 1.(4.9)

(a) If fL
i (i ∈ I), fU

i (i ∈ I), and gj(j ∈ J+(x̄)) are EL
i −pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at x̄ over F , then x̄ ∈ 2E −
Fqw
2 (IVMOSIP ).

(b) If fL
i (i ∈ I), fU

i (i ∈ I), and gj(j ∈ J+(x̄)) are EL
i −pseudoconvex of type I,

EU
i −pseudoconvex of type I, and (αL

i EL
i + αU

i EU
i )−pseudoconvex of type II,

respectively, at x̄ over F , then x̄ ∈ E − Fqw
2 (IVMOSIP ).

5. Approximate dual models

Let X := (X1, ..., Xm) and Y = (Y1, ..., Ym), where Xi, Yi, i ∈ I, are intervals in
Kc. In what follows, we use the following notations for convenience.

X ⪯LU Y ⇐⇒
{
Xi ≤LU Yi, ∀ i ∈ I,

Xk <LU Yk for at least one k ∈ I.

}
.

X ≺s
LU Y ⇐⇒ Xi <

s
LU Yi ∀i ∈ I.

X ⪯̸LU Y and X ⊀s
LU Y are the negations of X ⪯LU Y and X ≺LU Y, respectively.

Define

L(y, αL, αU , β) := F (y) = ([fL
1 (y), f

U
1 (y)], ..., [fL

m(y), fU
m(y)]),

for any y ∈ Rn, (αL, αU ) ∈ Rm
+ × Rm

+ \ {0R2m}, and β ∈ R|J |
+ .

The E−Mond-Weir dual associated with the primal (IVMOSIP) is given as fol-
lows:

(E − IVMOSIPMWD) maxL(y, αL, αU , β) s.t. (y, αL, αU , β) ∈ FMW ,

where the feasible set is given by

FMW :=

{
(y, αL, αU , β) ∈ Rn × Rm

+ × Rm
+ × R|J |

+ : 0 ∈
m∑
i=1

αL
i ∂

0fL
i (y)

+

m∑
i=1

αU
i ∂

0fU
i (y) +

∑
j∈J

βj∂
0gj(y) +

m∑
i=1

(αL
i EL

i + αU
i EU

i )BRn ,

βjgj(y) ≥ 0, j ∈ J,
m∑
i=1

(αL
i + αU

i ) = 1

}
.
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The projection of FMW on Rn is denoted by prFMW .A feasible solution (ȳ, ᾱL, ᾱU , β̄) ∈
FMW is a type-2 E-quasi weakly Pareto solution of (E − IVMOSIPMWD), iff

L(ȳ, ᾱL, ᾱU , β̄) + E∥y − ȳ∥ ⊀s
LU L(y, αL, αU , β), ∀(y, αL, αU , β) ∈ FMW .

The following theorem describes weak duality relations for approximate quasi
Pareto solutions between the primal (IVMOSIP) and the dual problem
(E − IVMOSIPMWD).

Theorem 5.1 (E-weak duality). Let x ∈ F and (y, αL, αU , β) ∈ FMW .

(a) If fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i −pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at y over F ∪ prFMW , then

F (x) + 2E∥x− y∥ ⊀s
LU L(y, αL, αU , β).

(b) If fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i −pseudoconvex of type I,

EU
i −pseudoconvex of type I, and (αL

i EL
i + αU

i EU
i )−pseudoconvex of type II,

respectively, at x̄ over F ∪ prFMW , then

f(x) + E∥x− y∥ ⊀s
LU L(y, αL, αU , β).

Proof. (a) Let x ∈ F and (y, αL, αU , β) ∈ FMW , then there exist y∗
fL
i
∈ ∂0fL

i (y),

y∗
fU
i
∈ ∂0fU

i (y), i ∈ I, y∗gj ∈ ∂0gj(y), j ∈ J , b ∈ BRn such that

(5.1)
m∑
i=1

αL
i y

∗
fL
i
+

m∑
i=1

αU
i y

∗
fU
i
+
∑
j∈J

βjy
∗
gj +

m∑
i=1

(αL
i EL

i + αU
i EU

i )b = 0

and

(5.2) gj(x) ≤ 0, βjgj(y) ≥ 0, ∀j ∈ J.

Assume to the contrary that

F (x) + 2E∥x− y∥ ≺s
LU L(y, αL, αU , β),

that is

Fi(x) + 2Ei∥x− y∥ <s
LU Li(y, α

L, αU , β), ∀i ∈ I,

that is, {
fL
i (x) + 2EL

i ||x− y|| < fL
i (y),

fU
i (x) + 2EU

i ||x− y|| < fU
i (y),

for all i ∈ I. By (5.2), it follows that

gj(x) ≤ 0 ≤ gj(y), ∀j ∈ J+.

Since fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i − pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at y over F∪prFMW , therefore

⟨y∗
fL
i
, x− y⟩+ EL

i ∥x− y∥ < 0, ∀y∗
fL
i
∈ ∂0fL

i (y), ∀i ∈ I+,(5.3)

⟨y∗
fU
i
, x− y⟩+ EU

i ∥x− y∥ < 0, ∀y∗
fU
i
∈ ∂0fU

i (y), i ∈ I+,(5.4)

⟨y∗gj , x− y⟩ ≤ 0, ∀y∗gj ∈ ∂0gj(y), j ∈ J+.(5.5)
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Multiplying (5.3), (5.4) and (5.5) by αL
i (i ∈ I+), αU

i (i ∈ I+), and βj(j ∈
J+), respectively, and adding, one has⟨∑

i∈I+
αL
i y

∗
fL
i
+

∑
i∈I+

αU
i y

∗
fU
i
+

∑
j∈J+(β)

βjy
∗
gj , x− y

⟩

+
∑
i∈I+

(αL
i EL

i + αU
i EU

i )∥x− y∥ < 0,(5.6)

∀y∗
fL
i
∈ ∂0fL

i (y)(I
+), ∀ y∗

fU
i
∈ ∂0fU

i (y)(I+), ∀y∗gj ∈ ∂0gj(y)(j ∈ J+).

By Cauchy-Schwartz inequality, for any b ∈ BRn , one has

⟨b, x− y⟩ ≤ ∥b∥∥x− y∥ ≤ ∥x− y∥,

which implies that

(5.7)

⟨
m∑
i=1

(αL
i EL

i + αU
i EU

i )b, x− y

⟩
≤

m∑
i=1

(αL
i EL

i + αU
i EU

i )∥x− y∥.

Adding (5.6) with (5.7) and using (5.1), we arrive at a contradiction and
hence the result.

(b) The proof is similar to the part (a) above.
□

Theorem 5.2 (E− strong duality). Let x̄ ∈ E − Fqw
2 (IVMOSIP ) such that E −

IV − RCQ is satisfied at x̄ and the coneB(x̄) is closed. Then, there exist ᾱL
i ≥

0(i ∈ I), ᾱU
i ≥ 0(i ∈ I), and β̄ ∈ R|J |

+ such that (x̄, ᾱL, ᾱU , β̄) ∈ FMW and F (x̄) =

L(x̄, ᾱL, ᾱU , β̄). Furthermore,

(a) If fL
i (i ∈ I), fU

i (i ∈ I), and gj(j ∈ J+(x̄)) are EL
i −pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at x̄ over F , then x̄ ∈ 2E −
Fqw
2 (IVMOSIPMWD).

(b) If fL
i (i ∈ I), fU

i (i ∈ I), and gj(j ∈ J+(x̄)) are EL
i −pseudoconvex of type I,

EU
i −pseudoconvex of type I, and (αL

i EL
i + αU

i EU
i )−pseudoconvex of type II,

respectively, at x̄ over F , then x̄ ∈ E − Fqw
2 (IVMOSIPMWD).

Proof. By the assumptions in the theorem, it follows from Theorem 3.3 that, there

exist ᾱL
i ≥ 0(i ∈ I), ᾱU

i ≥ 0(i ∈ I), and β̄ ∈ R|J |
+ such that (x̄, ᾱL, ᾱU , β̄) ∈ FMW

and F (x̄) = L(x̄, ᾱL, ᾱU , β̄).

(a) Since fL
i (i ∈ I+), fU

i (i ∈ I+), and gj(j ∈ J+) are EL
i −pseudoconvex, EU

i -
pseudoconvex, and quasiconvex, respectively, at x̄ over F∪prFMW , therefore
by Theorem 5.1, it follows that

L(x̄, ᾱL, ᾱU , β̄) + 2E∥x− x̄∥ ⊀s
LU L(y, αL, αU , β),

for any (y, αL, αU , β) ∈ FMW . Hence, (x̄, ᾱL, ᾱU , β̄) ∈ 2E − Fqw
2

(IVMOSIPMWD).
(b) The proof of (b) is similar to that of (a).

□
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6. Conclusions

We have introduced approximate versions of the regular constraint qualifica-
tion [20] and the Cottle constraint qualification [18] for an IVMOSIP. We have
derived KKT necessary optimality conditions to identify approximate quasi weakly
efficient solutions [14] for IVMOSIP. The sufficient optimality conditions are verified
under generalized approximate convexity assumptions [8,12]. Dual models are also
developed and duality results are derived. The results are illustrated with examples.

The results of this paper may be extended under additional assumptions of saddle
point criterion [22, 31], equilibrium constraints [25, 32, 33], vanishing constraints
[13,23,29,30] etc. Moreover, we may extend these results for some other aprroximate
solution concepts (see, e.g. [6, 24, 27, 28]) and constraint qualification under the
assumption of some additional generalized convexity [16,26,36] using convexificators
[21].
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